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quadrature formulas. The finite difference scheme is established on Boglaev-
Bakhvalov type mesh. The error approximations are obtained in the discrete
maximum norm. A numerical example is solved to clarify the theoretical
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Singiiler Pertiirbe Ozellikli Yarilineer Gecikmeli Diferansiyel Denklemlerin Niimerik
Coziimleri

Makale Bilgileri Oz: Bu caligmada sabit gecikme iceren singiiler pertiirbe 6zellikli yarilineer

diferansiyel denklemlerin niimerik ¢oziimleri aragtirilmistir. Lineer baz

} fonksiyonlar1 ve interpolasyon kuadratiir kurallarini kullanarak Boglaev-

Kabul: 30;05'2022 Bakhvalov tipli sebeke tizerinde sonlu fark semast kurulmustur. Ayrik

Online Agustos 2022 maksimum normda hat klasimlar1 elde edilmistir. Teorik analizi

DOI: 10.53433/yyufbed.1085501 aksumum - normda hata yaklagimlarl  clde  cdimighr. leork  analiz
dogrulamak i¢in bir niimerik 6rnek ¢oziilmiistiir.

Gelis: 10.03.2022

Anahtar Kelimeler
Bakhvalov sebeke,
Diizgiin yakinsaklik,
Fark semasi,

Singiiler pertiirbasyon

1. Introduction

Singular perturbation problems occur in applied mathematics and different branches of science.
Their modellings are found in fluid flow, electrical networks, chemical reactions, control theory and
liquid material process (Miller et al., 1996; Ross et al., 1996; Farell et al., 2000).

In this paper, we consider the following singularly perturbed delay differential equation
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ew' () + a@®u' (@) + f(tu(@®),u(t—r)) =0, t€l=(0,T], (1)
u(t) =), t€ly=(-r,0], (2)
w(0) =2 3)

8.

Here, 0 < € < 1is a perturbation parameter, r is a delay parameter, a(t) > a > 0, f(t) and
Y(t) are sufficiently smooth functions. Also, I = (0,T]=UJL, Iy, I, ={t:iry_; <t <1}, 1<
p<mrs=sr,0<s<m, I, =(—r,0]and

< [2] <
|6u_b ve |- s c. (@))

In the literature, singularly perturbed problems have been investigated for many years. In 2003,
Amiraliyev and Duru proposed an exponentially fitted difference scheme on uniform mesh for periodic
type problem. Cakir & Amiraliyev (2005) considered singularly perturbed boundary value problem with
nonlocal boundary condition. First-order accurate difference scheme have been investigated on Shishkin
mesh for parametrized problem by (Amiraliyev & Duru, 2005). In 2010, Amiraliyev & Cimen (2010)
constructed second-order finite difference scheme for singularly perturbed delay convection-diffusion
problem. Except for these studies, many different finite difference schemes have been suggested in the
last few years. Nonlinear type singularly perturbed reaction-diffusion problems have been discretized in
(Duru & Giines, 2019; Duru & Gunes, 2020). For semilinear singularly perturbed delay differential
equations on piecewise-uniform mesh, a finite difference approach have been used (Erdogan et al.,
2020). Also, it can refer to in a series of papers (Amiraliyeva et al., 2010; Erdogan & Amiraliyev, 2012;
Kumar, 2014; Gunes et al., 2020; Zheng & Ye, 2020).

The numerical analysis of singular perturbation problems has always been far from trivial
because of the layer behavior of the solution. These problems involve the boundary layers in which the
solution changes rapidly as € — 0. Thus, the classical numerical schemes do not produce stable results.
For more details about singularly perturbed differential equations, it can be seen in (Doolan et al., 1980;
Miller et al., 1996; Roos et al., 1996; Farrell et al., 2000).

The main purpose of this paper is to present reliable numerical method for solving singularly
perturbed semilinear initial-value problems including delay argument.

The outline of this work is as follows: The asymptotic estimations of the solution of the problem
(1)-(3) are considered in Section 2. In Section 3, using the linear basis functions, a finite difference
scheme is constructed. The error bounds are analyzed in Section 4. In Section 5, the theory is tested on
a numerical example. In Section 6, paper ends with “Discussion and Conclusion”.

2. Analysis of the Continuous Problem

In this section, we give the some analytical properties of the problem (1)-(3). Furthermore,
generation of the numerical method is presented and error analysis is discussed.

2.1. Asymptotic estimates
We can rewrite the equation (1) as follows
ew'(t) + a(®)u’ + b@®)u(t) + c(u(t —r) = —f(t,0,0), t €l (5)
where

0 0
b(t) = % (t,u,7), c(t)= % (t,u,7),

Fltuv) = £(6,0,0) + 2 (gf DN ICLAN

ov ’
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d=yu,7=yult—-r),(0<y<1).
Therefore, it can be written that
Lu:= eu''(t) + a(®)u'(t) = F(t), (6)
where
F(t) =—f(0,0) —b(®)u(t) — c®)u(t —r).

Lemmal. a,b,c f € Ct(I), ¢ € C1(l,) the solution u of the problem (1)-(3) holds that

Il (eo,ry < C, (7

lu'(t)] < C{l + iexp (— a?t)},t €l (8)

()] < C{l + (f—rr;;zl)p_lexp (_“(%ﬁ’—l»}t €l p=12 9)
W' <Ctel,3<p<m. (10)

Proof. Firstly, from the equation (6), we obtain

u'(t) = u'(0) exp (— lfot a(s)ds) + ifOtF(T) exp (—ifrt a(s)ds) dr (11)

&
Integrating the equation (11) from 0 to t, we have

u(t) = u(0) + Ae™1 ftexp —%f a(t)dr |ds
0

I} a(©)dg) dr.

&

1 ot
+Ef0 ds fOSF(r) exp (
From here, it is found that

lu(®)| < |u(0)| + |As‘1 fot exp (—ifos a(r)dr) ds| + é |f0t dtF (1) f: exp( 1f: a(()d() ds|.

&

Thus,

t
lu®l < [w) +a (Al + lIfll) + a_lf(llblloolu(T)l +llclleo[u(z = ) Ddr.
0

From here, we arrive at the proof of the relation (7).
Rewriting u'(t) = w(t) in the equation (11) and integrating on the interval [0, t], we get

t t t

1 1 1
lw(t)| < |w(0)| exp _Ef a(s)ds +EI|F(T)| exp —Ef a(s)ds |dt
0

0 T

<o fmeron(-2) (1 n ()
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which immediately leads to the relation (8). Thus, the proof of the lemma is completed.
3. The Difference Scheme

Let @y, be a non-uniform mesh on the interval [0, T]:
wy, ={0=ty <ty <<ty =T; hy =t; —ti_1},

wyp ={t:(@-DN+1<i<pN},1<p<m,

m
wNO = U (A)N'p.
p=1

Here, t; are node points, h; is the mesh stepsize and N, = mN. While establishing the difference
scheme, we use the following difference rules (Samarskii, 2001):

W Wi = Wi w _ Wiy — Wy W =W
ti — » Wi — » Wei — Wi+,
h; hiyq
w WE i+ Wi w Wei — Wi g w Wiy1 — W;
0=, Wi, = — 5 Wy =
0 2 h; n;

where a; = %(hi + h;41) and the mesh function w: @y, — R. Moreover, the discrete maximum norm
is denoted by

Wlleop = 1Wllooa, = max |w;].
To establish the difference scheme for the equation (1), we use
At ftiiff Lu(t) ;()dt =0, 1<i <Ny —1, (12)
where the linear basis function

. t—ti,
oY (1) Eh—l’ti—l <t<ty

i

. = tivi—t
PO =0 = <<t
i+1
0 6 & (-1, tiv)-

Also, A;? ftt_:l @;(t)dt = 1. Using the partial integration for the first term of (12), we find

ties tiy1
ehy! f u'p (H)dt = shi‘lu’(t)w(t)ﬁz: —ehi! f u'p'(t)dt
tiq ti-1
t; tit1
= —ehjt fu'(p(l)'(t) dt—sh{lf Wp@'(t) dt.
tiq ti
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After, applying the interpolating quadrature rules in (Amiraliyev & Mamedov, 1995), it is
obtained that

t

= —eh; lug, f oW’ (t)dt + eh! f dto ™" (t) f u’ (K (§)de

ti—q ti—1 ti—1
tiv1 tit1 tiv1

—eh f 0@ (Ddt + ehy? f dt®" (1) f W (E)K(E)dé

t

= eh; M ue; — ug;] = eug, ;. (13)

For the term #;* ftt."“ a(t) u'p;(t)dt, again using the interpolating quadrature rules, we have
-1

At f a(t)u' (e ()dt + a;t f [a(®) — a(t)] ' () (t)dt
tiq ti—1

_ ti 1 ti 2
= h; la; [uai ftil—l (pi( Ddt + Uy fti“ (pi( )dt] + Ry +R;.

here
tiv1
Ras = hi* f [a(®) — a(t)] wei()dt
ti—1
and
t; ‘
R, = hi'q, f deo® () [ w @ Kot £)de
ti—1 ti-1
ity [ e (©) i W () Kot §)dE. (14)

Then, taking into account

t; t;

ft—ti_ldt _ -6 M
h; 2h; 2’
ti—q tia
tira 21ti+1
f liv1 — tdt _ (tiy1 — 1) hitq
- hig Zhivs |, 2
and
1 tivg —ti—q
hizi(hi+hi+1)=—l > —,

we obtain that
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t; tit1
_ 1 2 - Ui —Uj—1  Ujp1 — Uy
hita | ugg f goi( )dt + ug f goi( Ddt | = h; 1al~( 5 + 5 )
ti—1 t;
—a (ui+1 - ui—1> —a (ui+1 - ui—l)
"\ iy + 1y "\t —tig
= a;uo + Ra,i + Rl' (15)
t

For the term A;? ftt,i“f(t, u, u(t —r))e; dt, itis written that
-1

tiv1 tiv1
ht f f(t, u,u(t — r))q)l- dt = k't f [f(t,u(t),u(t —71)) — f(tl-,u(t),u(t - r))]cpi dt
ti—1 . ti—1
+ f LF (o u0), uCt — 1)) — f (b gy ut — )]y dt
n f LF (bt — 1)) — (e g u(t; — 7))oy de
ti—1
tiy1

+ f £t u(t — 7)) dt
ti—1

= f(ti upu(ti—m,)) + Ry (16)
Taking h = Nl and M, = r%, we get

t;—r =ih—hM® = (i = MO)h = t;_,.

Moreover, it is found that

tiy1
Ry = hid f LF (6 u(0), u(t = 1)) — f (b u(®), ult — )]y dt
ti—1
tiy1
+ f LF (o u0), uCt — 1)) — f (b gy ut — )]y dt
ti—1
+ fttii_+11[f(tl-,ul-,u(t —1) = f(tiwut; — 1)] e dt}. (17)

For the condition u'(0) = %, we consider that

ty
f [Lu + f(t, w,u(t — r))]qoo(t) dt = 0.
to
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Here the function ¢, (x) is as follows:

t
Po(t) =— t, <t<t,.
hy

From here, we get

t1
f [Lu + f(t,wu(t —1)]po (O)dt = —A + eugg + r@® =0
to
and
wo=d -2, (18)
where

ty
r© = j[a(t)u'(t) + f(twult — )] po(H)de.
to

Combining (13), (15), (16) and (18), we obtain the following problem

eug + auo + f(¢,upuiy,) + R =0, i=12,..,No— 1, (19)
t,i
u(t) =¢t), —My<i<Oo, (20)
A (O]
Uto= 7~ rT' (21)
where
Ri - Ra,i + Rl + Rf,i' (22)

By neglecting the remainder term R;, the following difference scheme is presented for the
approximate solution:

&Ygi t aiyo + f(ti, yi,yi_MO) =0,i=12,..,Ny—1, (23)
ti
y®) =), —M;<i<0, (24)
A
Yeo= (25)

S.

3.1. Bakhvalov mesh

Let wy 1 ={0 =1ty <t; <t <..<ty_1 <ty =r}be anon-uniform mesh. The transition
points is taken as

o =min {g a‘lelns}
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We divide into the interval I, = [0, r] subintervals of [0,o0] and [g,7]. The corresponding
t; nodes are as follow:

20\ N g
—a_lsln(l—(l—s)ﬁ>,l = 0,1,...,§,ti € [0,0],if 0 <=;

2

ary 20 N T
ti = —a"lsln<1 - (1 —ez)ﬁ),l = 0,1,...,3,1'1' € [0,0'],if0' =§;
2(r —o)

N
2 N

N
o+ (i )h(l),i =>+L. Nt € [0,0],if KV =

It can be determined by similarly on the other I, intervals (Boglaev, 1984).

4. Error Analysis

Let u be the solution of the problem (19)-(21) and y be the solution of the problem (23)-(25).
The error function z; = y; — u; satisfies the following discrete problem:

ez + a;zo + f(tu Yo Vimy) = f(ti iy timpy) = Ry = 1,2,..,Ng — 1, (26)
ti
2(t) =0, —My<i<0, 27)
1
Ze o= ;r<0>. (28)

Lemma 2. For the error function z, the following relation is held:
Izllconp < V[P @] + € ZhoilIRllco iy, 1 < P < .
Proof. Rewriting z,; = v;, we obtain that
-1 a;
ehy (v + vi-1) + ?(Ui +vi4)=F,
where
Fi =R — f(tuyiYiem,) + f(to wi wip, )-
From here, we can write that

_1 a;
ehi (v —vie)) + 5 Wi tvig) = F
(shi T+ ?l) v, = (shi 1— ?l) viq + F,

(eh;l +%) o (eh;l +%)

N

V; =

Therefore, we get

F
. ay Qi—k; (29)

v; = vOQi + Z?{=1 eholy8k
k T2
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here
1, k=i
{ -1_Y%
ehy - ——=
Qicie = ( Iil fj>,0Sk<l—1
For h = max h;, we have
0<is<N
p-1 P
Zp =h v; = hz Vi_1.
i=0 i=1
Substituting this relation in the equation (29), it is found that
p—-1
2] < 40 elzeo] +h D (IRl +b*lz] + |z |) | 1 <P < Ny — 1,
i=1

where

p—Mp 0

P p-1 p-1
mylal=h Y lgl<h D Il +h Y |51+ Wiy +h ) |5
i=1 j j=1 j=1

:1—M0 j=1—M0

Thus, we obtain

p

lz,| < [ [F@| + Iyl + Z(IRiI bz + etz |,
j=1

which shows the proof of the lemma.

Lemma 3. For the remainder term R;, it can be written the following estimate:
IRlloooy, SCNTY, 1<p<m
and
[r@] < cN

Proof. Combining all the remainder terms, we can write that

tit1
Rl <At [ (@@ - a)| e @louerat
fi+t1i_1
d
+h;? j (t—t) {|af(t,u(t),u(t -1))
ti—1

+ |%f(t, u(t),u(t —r))

lu'(©)]

(30)
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N TOR ()

/(e =l pucoyde
t;

t
phot f dt o '(2) f [0/ (6)] Ko (t, €)dE
ticq

ti—1
tiv1 tiv1

+h7 f dto®@' (1) f @) Kot E)dE, 1< i< N,

since partial derivatives are bounded and usmg the estimate (8), we get

tiy1
Rl < L+ f (O + (€ - Plde
ti—1
tit1
1 _at
<Cih+ j e edty,1<i<N,
ti—1

At the each submesh wy ,,, we estimate the truncation error R as follows. We consider first the
case o, = r,_y +7/2andsor/2 < a~'elne, as on the interval L,. Thus, we find that

': h$Y =2(0, =1, )N"L(p - DN <i < (p— 1/2)N
P =20, -0)NY,  (p—1/2)N+1<i<pN.

For the hy" = h®, if o, < <

h;l) — —al¢ln (1 —(1-¢) %) + a~leln (1 -(1-¢) Z(i]; 1))

is obtained. Applying the mean value theorem according to i, we have

—(1—¢)2N™t
h(l) — 0(_18 ( 8) . —
p 1—(1-¢)2i,N

-(1—-&)2N"'<2a'(1—-¢)N™

rxti atj_q

From here, it is written that |h(1)| < CN™*. Also, ifg, =—,since e e —e™ ¢ <2(1-—
g)N"' < CN7*, we get

h; = —a~leln (1 - (1 - e_%) 2iN‘1)

_ar 2(i—1
+aleln(1— (1 —e 2e) ———— ( )

and
L, —a-Qa- e £)2N7?t

h; =ae = (1—e &)2N*<2a'(1—e &)2N*<CN™.
1—(1—(1—e e)2i,N*
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at; ati_q

Heree s —e™ ¢ <2(1—e 2e)N~1 < CN"L. For the interval [o,,7,], it is found that h$? =
2(rp—0p) _ 2(rp—a”lelne)

~ < CN~". Substituting these results in term R;, we obtain

2a”ter
5=

—1 -1 (tiyn - - -
hite ™t ["e edt < e th, <e!
i1

2a71(1—-&)N"1 < CN?,

IR|<CN"L(p-DN<i<pN,1<p<m-1

-1
IRl < c(1+e DALY = C2(1 + e‘l))%, (p-DN<i<(p-1/2)N,

1<ps<m-1

IRI<CNL(p—-1DN<i<(p—-1/2)N,1<p<m-1.
altiy)  _alty)
|R;| SC{hl(,z)+a_1<e_ e« >}

IR;| < CN~L

Similarly, for the remainder term %, we have |[r(®| < N7,

Theorem 1. Let u be the solution of the problem (19)-(21) and y be the solution of the problem
(23)-(25). Then the following estimate is satisfied:

lyi —w| <CN7%,  0<i<N,.

5. Numerical Results

In this section, the presented method is tested on a numerical example and the obtained results
will be discussed. For this, we consider the following problem:

') +u' @) +ut—1)=1, t € (0,)

u® =) =1+t —1<t<0.

1
u’(t) = —E.

The exact solution of this problems is as follow:

et/e, t €[0,1]

u(t) =
©® {—1—25+t+e‘t/s+(—1+26+t)e'(t‘1)/£, t € (1,2].

Now, the difference scheme is written as the form
k k k
By - Ciyi( ) 4 Aiyi(+i =—F (31)

i-1

Using the quasilinearization technique, we can write
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(k-1)  (k-1)
- - af ti:yi VieMm _
f(tn v Vien ) =f(ti.yi(k 1)’yi(icM;))+ ( — 0 )(yi(k) _ yi(k 1))
(k-1)  (k—1)
+0f (tini lyi—MO )( (k) _ (k—l))
ov i—M, i-My )*

Thus, we obtain

k) RN (k) (3 ) k-1 (k-1)
ept (Y Y Vi T Yiea ) (Y T Yima ) of (t“y‘ Yi-mo )y.(k)
t hi+1 hi t Zhl 6u t

ool )y )
l

Yi—m, Yi~m,

ou ov

—f (ti; yi(k_l), yi(fn};) )

Here the coefficients of the equation (31) are as follow:

a.
A; = eh7Thil + ——,

' 2h;
a.
B; = eh;th;t — ﬁ
L
of (tu ™ . v%u>)
C; =ehi (hiy + A1) + — =,
_ _ of tz'yi(k'l),yi(f&l) _
F=f (ti»yi(k DJ’EM;) ) _ ( - 0 )yi(k 1)
(k-1)  (k—1)
+6f (ti:yi »Yi—M, )( ) _ y-(k_l))
v i—Mj i-My J°

Then, we consider the following iteration:

AyY) —cy® + By = —Fi=1,.. N-1,k=0,1,..

yi—MO = 1 + ti—Mo’

y1=9(0) +h; A/e.

Also, for the elimination method in (Samarskii, 2001), we have

dit1 =L,a1 = _1,l = 2,3,...,N,
Cl-—Al-al-

Ai; + F; _
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k k :
v = a1y 4 B i=N—1LN=2,.. 1,

Also, the maximum errors are denoted by
2N|

N _ N
e" = max|y;" —y;

)

and the convergence rates are calculated as

In (eN/eZN)

p= In2

According to these, the computed results are presented in Table 1.

Table 1. Exact errors and order of convergence on Bakhvalov mesh

£ N=64 N=128 N=256 N=512
27t eV=0.01349102 eV=0.00823915 eV=0.00450459 eV=0.00235012
e?N=0.00823915 e2V=0.00450459 e2VN=0.00235012 €2V=0.00119972
p=0.71143235 p=0.87109910 p=0.93865950 p=0.97003589
272 eV=0.01410116 eV=0.00716200 eV=0.00358096 eN=0.00178774
e2V=0.00716200 e2N=0.00358096 e2V=0.00178738 e2N=0.00089275
p=0.97737798 p=1.00001598 p=1.00250216 p=1.00180251
273 eN=0.00773744 eV=0.00233993 eN=0.00105512 e=0.00050239
e2V=0.00233993 e2N=0.00105512 e2V=0.00050214 e2N=0.00024490
p=1.72539127 p=1.14905641 p=1.07123342 p=1.03659430
274 eN=0.00547751 e=0.00191764 eN=0.00056959 e=0.00017400
e2V=0.00191764 e2N=0.00056934 e2V=0.00017388 ¢2N=0.00005810
p=1.51418468 p=1.75196790 p=1.71183973 p=1.58240113
275 e=0.00589368 e=0.00937462 eN=0.00280064 e=0.00135739
e?N=0.00937462 e2V=0.00280064 e2N=0.00135697 €2V=0.00126656
p=-0.66959124 p=1.74300168 p=1.04536938 p=0.09992271

In Table 1, exact errors and convergence rates are demonstrated for different values
¢ of and N. According to the obtained results, the scheme is almost first-order convergent.

6. Discussion and Conclusion

In this paper, we presented a finite difference scheme on Boglaev-Bakhvalov type mesh for
solving singularly perturbed semilinear delay differential equations. The uniform convergence of the
presented scheme was proven in the discrete maximum norm and first-order convergence rate was
obtained. A numerical example was solved and the computational results were summarized.
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