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In this paper, we give (𝛼, 𝜙)−weak Pata contractive mapping by using the simulation
function and multivalued (𝛼, 𝜙)−weak Pata contractions and establish some fixed
point results for such contractions. Also, we give an example related to (𝛼, 𝜙)−weak
Pata contractive mappings via simulation function. Our results generalize some
Pata type contractions and Banach contractions. Consequently, the obtained results
encompass several results in the literature.
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1. Introduction and Preliminaries
One of the fundamental results in fixed point theory, which is called Banach’s contraction principle was given by Banach
[7]. Several researchers have dealt with this result. Recently, Pata [21] extended the Banach contraction principle and
proved some interesting fixed point results. Chakraborty et. al. [9] got an extension of Kannan’s based on the result of
Pata [21]. Later Pata-Chatterjea type cyclic fixed point theorems were proved by Kadelburg et. al. [12] in metric spaces.
After that coupled fixed point theorems for Pata type mappings were proved by Eshaghi [10]. This topic was extended
the metric space into various different spaces by some researchers. For instance, Paknazar et. al. [20] gave Pata type
fixed point theorems in modular metric space and Balasubramanian [6] obtained a fixed point theorem for Pata type
mappings in cone metric spaces. Later, Aktay et. al. [2] proved some fixed point results for generalized Pata–Suzuki
type contractive mappings.
Firstly, the concept of 𝜙−weak contraction was defined by Alber et. al. [1] and then, Rhoades [24] studied such
contractions for single-valued mappings in Banach spaces. After that, Zhang et. al. [26] introduced generalized 𝜙−weak
contraction and they obtained a unique common fixed point of such contractions.
Existence of fixed point for multivalued mappings in metric fixed point theory was initiated by Nadler [18]. Some
notable generalizations were obtained by Hong [11].
In a recent work, Khojasteh et al. [15] introduced the notion of 𝑍−contraction using simulation functions. Later,
Karapınar [14] and Argoubi et. al. [5] studied such contractions.
Samet et. al. [25] and Karapınar et al. [13] gave respectively, the definition of 𝛼−admissible and triangular 𝛼−admissible
mappings. Further, Asl et al. [4], Mohammadi et al. [17], Patel [22] and Aktay et. al. [2] gave some definitions related
to 𝛼−admissibility.
The aim of this paper is to establish some fixed point results for (𝛼, 𝜙)−weak Pata contractive mapping by using the
simulation function and multivalued (𝛼, 𝜙)−weak Pata contractions. Our results give existence of fixed point for a
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wider class of Pata type contractions. Moreover, we give an example related to (𝛼, 𝜙)−weak Pata contractive mappings.
Consequently, the obtained results encompass various well known results in the literature.
𝑃(𝑊) = 2𝑊 all nonempty subset of𝑊 . Let ℘ = 𝑃(𝑊) − {∅} for𝑈,𝑉 ∈ 2𝑊 ,

𝐻𝜚 (𝑈,𝑉) = max
{

sup
𝑢∈𝑈

𝜚(𝑢,𝑉), sup
𝑣∈𝑉

(𝑈, 𝑣)
}

where
𝜚(𝑢,𝑉) = inf

𝑣∈𝑉
𝜚(𝑢, 𝑣)

𝐻𝜚 is called the Hausdorff-Pompeiu functional induced by 𝜚.
A point 𝑢 ∈ 𝑊 is said to be a fixed point of ⊤ : 𝑊 → ℘ if 𝑢 ∈ ⊤𝑢 (for single valued mapping 𝑢 = ⊤𝑢). The set of all
fixed points of ⊤ is denoted by 𝐹𝐻 (⊤) (for single valued mapping 𝐹 (⊤)).
Alber et. al. [1] gave the following definition.
[1] Let (𝑊, 𝜚) be a metric space. A mapping ⊤ : 𝑊 → 𝑊 is said to be 𝜙−weak contraction, if there exists a map
𝜙 : [0, +∞) → [0, +∞) with 𝜙(0) = 0 and 𝜙(𝑠) > 0 for all 𝑠 > 0 such that

𝜚(⊤𝑤,⊤𝑡) ≤ 𝜚 (𝑤, 𝑡) − 𝜙(𝜚 (𝑤, 𝑡))

for all 𝑤, 𝑡 ∈ 𝑊 .
Along this work, Ψ denotes the class of all increasing function 𝜓 : [0, 1] → [0,∞), which vanishes with continuity at
zero. For an arbitrary 𝑤0 ∈ 𝑊 , we denote ∥𝑤∥ = 𝜚 (𝑤, 𝑤0) ,∀𝑤 ∈ 𝑊.
The existence of fixed point of Pata contraction mappings was proved by Pata [21] as follow.
[21] Let (𝑊, 𝜚) be a complete metric space. Let Λ ≥ 0, 𝜉 ≥ 1 and 𝜗 ∈ [0, 𝜉] be fixed constants, 𝜓 ∈ Ψ and ⊤ : 𝑊 → 𝑊

be a function. If for all 𝑤, 𝑡 ∈ 𝑊 the inequality

𝜚(⊤𝑤,⊤𝑡) ≤ (1 − 𝜖) 𝜚 (𝑤, 𝑡) + Λ𝜖 𝜉𝜓 (𝜖) [1 + ∥𝑤∥ + ∥𝑡∥]𝜗

is satisfied for all 𝜖 ∈ [0, 1], then ⊤ has a unique fixed point, 𝑢 = ⊤𝑢.
Samet et al. [25] and Karapınar et al. [13] gave respectively, the following definitions.
Let𝑊 be a metric space and ⊤ : 𝑊 → 𝑊 be a map and 𝛼 : 𝑊 ×𝑊 → [0, +∞) be a function. Then for all 𝑤, 𝑡, 𝑧 ∈ 𝑊,

(i) [25] ⊤ is said to be 𝛼−admissible if 𝛼 (𝑤, 𝑡) ≥ 1 implies 𝛼 (⊤𝑤,⊤𝑡) ≥ 1.

(ii) [13] ⊤ is said to be triangular 𝛼−admissible if:

- ⊤ is 𝛼−admissible,

- 𝛼 (𝑤, 𝑧) ≥ 1 and 𝛼 (𝑧, 𝑡) ≥ 1 imply 𝛼 (𝑤, 𝑡) ≥ 1.

Further, Asl et al. [4] gave the concept of an 𝛼∗−admissible mapping which is a multivalued version of the 𝛼−admissible
mapping. Later, Mohammadi et al. [17] and Patel [22] gave respectively, the definitions of 𝛼−admissible and triangular
𝛼− admissible as follows.
Let𝑊 be a nonempty set, ⊤ : 𝑊 → 𝑃(𝑊) and 𝛼 : 𝑊 ×𝑊 → [0,∞) be two given mappings. Then

(i) [17] ⊤ is said to be an 𝛼−admissible if whenever for each 𝑥 ∈ 𝑊 and 𝑦 ∈ 𝑇𝑥, 𝛼(𝑥, 𝑦) ≥ 1 ⇒ 𝛼(𝑦, 𝑧) ≥ 1, for all
𝑧 ∈ 𝑇𝑦.

(ii) [22] ⊤ is said to be triangular 𝛼− admissible if ⊤ is 𝛼−admissible and 𝛼(𝑥, 𝑦) ≥ 1 and 𝛼(𝑦, 𝑧) ≥ 1 ⇒ 𝛼(𝑥, 𝑧) ≥
1,∀𝑧 ∈ 𝑇𝑦.

Khojasteh et. al. [15] gave the simulation function and 𝑍−contraction in 2015 as follows.
[15] A mapping 𝜁 : [0,∞) × [0,∞) → R is called a simulation function if it satisfies the following conditions:

(𝜁1) 𝜁 (0, 0) = 0;
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(𝜁2) 𝜁 (𝑤, 𝑡) < 𝑤 − 𝑡;

(𝜁3) if {𝑤𝑛} and {𝑡𝑛} are sequences in (0,∞) such that lim𝑛→+∞ 𝑤𝑛 = lim𝑛→+∞ 𝑡𝑛 > 0 then lim sup𝑛→+∞ 𝜁 (𝑤𝑛, 𝑡𝑛) <
0.

[15] Let (𝑊, 𝜚) be a metric space and ⊤ : 𝑊 → 𝑊 be a mapping. If there exists 𝜁 ∈ 𝑍 such that

𝜁 (𝜚 (⊤𝑤,⊤𝑡) , 𝜚 (𝑤, 𝑡)) ≥ 0, for all 𝑤, 𝑡 ∈ 𝑊

then ⊤ is called 𝑍−contraction with respect to 𝜁 .
(𝜁1) condition was removed in above definition of simulation function by Argoubi et. al. [5] in 2015. Also, �́� denotes
the set of all simulation functions.
Let (𝑊, ≤) be a partially ordered set and 𝑤, 𝑡 ∈ 𝑊 . Elements 𝑤 and 𝑡 are said to be comparable elements of𝑊 if either
𝑤 ≤ 𝑡 or 𝑡 ≤ 𝑤.
Hong [11] gave following definitions for multivalued mappings.
[11] Let 𝑊 be a metric space. A subset 𝑉 ⊂ 𝑊 is said to be approximative if the multivalued mapping 𝐹𝑉 (𝑤) =

{𝑣 ∈ 𝑉 : 𝜚(𝑤, 𝑣) = 𝜚(𝑤,𝑉)} ∀𝑤 ∈ 𝑊 , has nonempty values.
[11] Let ⊤ : 𝑊 → 2𝑊 be a multivalued mapping. Then

(i) ⊤ is said to have approximative values (AV), if ⊤𝑤 is approximative for each 𝑤 ∈ 𝑊 .

(ii) ⊤ is said to have comparable approximative values (CAV), if ⊤ has approximative values and, foreach 𝑡 ∈ 𝑊 ,
there exists 𝑢 ∈ 𝐹⊤𝑡

(𝑤) such that 𝑤 is comparable to 𝑢.

(iii) ⊤ is said to have upper comparable approximative values (UCAV), (resp. lower comparable approximative values
(LCAV)), if ⊤ has approximative values and, for each 𝑡 ∈ 𝑊 , there exists 𝑢 ∈ 𝐹⊤𝑡

(𝑤) such that 𝑢 ≥ 𝑡 (resp.𝑢 ≤ 𝑡).

Nieto et. al. [19] gave the following definition in 2005.
[19] (𝐻∗) : Let (𝑊, 𝜚, ≤) be a partial ordered complete metric space. If {𝑤𝑛} is a non-decreasing (resp. non-increasing)
sequence in𝑊 such that 𝑤𝑛 → 𝑤, then 𝑤𝑛 ≤ 𝑤(resp.𝑤𝑛 ≥ 𝑤) for all 𝑛 ∈ N.
The following Lemma 1 is used to prove our results.
[23] Let (𝑊, 𝜚) is a metric space and {𝑤𝑛} be a sequence in 𝑊 such that 𝜚(𝑤𝑛+1, 𝑤𝑛) → 0 as 𝑛 → ∞. If {𝑤𝑛} is
not a Cauchy sequence, then there exist a 𝜍 > 0 and sequences of positive integers

{
𝑚 𝑗

}
and

{
𝑛 𝑗
}

with 𝑚 𝑗 > 𝑛 𝑗 > 𝑗

such that 𝜚(𝑤𝑚 𝑗
, 𝑤𝑛 𝑗

) ≥ 𝜍 and 𝜚(𝑤𝑚 𝑗−1, 𝑤𝑛 𝑗
) ≤ 𝜍 and lim 𝑗→∞ 𝜚(𝑤𝑚 𝑗−1, 𝑤𝑛 𝑗+1) = 𝜍, lim 𝑗→∞ 𝜚(𝑤𝑚 𝑗

, 𝑤𝑛 𝑗
) = 𝜍,

lim 𝑗→∞ 𝜚(𝑤𝑚 𝑗−1, 𝑤𝑛 𝑗
) = 𝜍 . From Lemma 1, we obtain

lim
𝑗→∞

𝜚(𝑤𝑚 𝑗+1, 𝑤𝑛 𝑗+1) = 𝜍 and lim
𝑗→∞

𝜚(𝑤𝑚 𝑗
, 𝑤𝑛 𝑗−1) = 𝜍.

2. Main Results
In this section, we introduce the concept of (𝛼, 𝜙)−weak Pata contractions via simulation function and multivalued
(𝛼, 𝜙)−weak Pata contractions in metric spaces. We establish some fixed point results for such contractions on metric
spaces.
Let Λ ≥ 0, 𝜉 ≥ 1 and 𝜗 ∈ [0, 𝜉] be fixed constants, 𝜓 ∈ Ψ and 𝛼 : 𝑊 ×𝑊 → [0, +∞), ⊤ : 𝑊 → 𝑊 be two functions.
We say that ⊤ is an (𝛼, 𝜙)−weak Pata contractive mapping via simulation function if there exists a function 𝜁 ∈ �́� such
that for all 𝑤, 𝑡 ∈ 𝑊 , and 𝜖 ∈ [0, 1], ⊤ satisfies the inequality

𝜁 (𝛼 (𝑤, 𝑡) 𝜚(⊤𝑤,⊤𝑡), (1 − 𝜖) (𝑀 (𝑤, 𝑡) − 𝜙(𝑀 (𝑤, 𝑡)) + 𝑃(𝑤, 𝑡)) ≥ 0, (1)

where 𝜙 : [0, +∞) → [0, +∞) is a continuous and nondecreasing function with 𝜙(0) = 0 and 𝜙(𝑠) > 0, for all 𝑠 > 0,
and

𝑃(𝑤, 𝑡) = Λ𝜖 𝜉𝜓 (𝜖) [1 + ∥𝑤∥ + ∥𝑡∥ + ∥⊤𝑤∥ + ∥⊤𝑡∥]𝜗

and
𝑀 (𝑤, 𝑡) = max

{
𝜚(𝑤, 𝑡), 𝜚(𝑤,⊤𝑤), 𝜚(𝑡,⊤𝑡), 𝜚(𝑤,⊤𝑡) + 𝜚(𝑡,⊤𝑤)

2

}
.
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Now, we state a fixed point result for (𝛼, 𝜙)−weak Pata contractive mapping via simulation function.
Let (𝑊, 𝜚) be a complete metric space. ⊤ : 𝑊 → 𝑊 be an (𝛼, 𝜙)−weak Pata contractive mapping via simulation
function. Assume that

(i) ⊤ is triangular 𝛼−admissible;

(ii) there exists 𝑤0 ∈ 𝑊 such that 𝛼 (𝑤0,⊤𝑤0) ≥ 1;

(iii) ⊤ is continuous;

(iv) for all 𝑢, 𝑣 ∈ 𝐹 (⊤), 𝛼 (𝑢, 𝑣) ≥ 1.

Then ⊤ has a unique fixed point that is 𝑢 = ⊤𝑢, 𝑢 ∈ 𝑊 .

Proof The hypothesis (𝑖𝑖) of the Theorem 2, there exists 𝑤0 ∈ 𝑊 such that 𝛼 (𝑤0,⊤𝑤0) ≥ 1. Starting at the point
𝑤0 ∈ 𝑊, the iterative sequence {𝑤𝑛} is constructed by 𝑤𝑛 = ⊤𝑤𝑛−1 = ⊤𝑛𝑤0, 𝑛 ≥ 1. If 𝑤𝑛0 = 𝑤𝑛0+1 for any 𝑛0 ∈ N,
then 𝑤𝑛0 = ⊤𝑤𝑛0 . Consequently, we assume that succesive terms are distinct ie. 𝑤𝑛0+1 ≠ 𝑤𝑛0 for all 𝑛0 ∈ N. First of all,
we show that 𝛼 (𝑤𝑛, 𝑤𝑛+1) ≥ 1 for all 𝑛 ∈ N. Since ⊤ is an 𝛼−admissible mapping, we have

𝛼 (𝑤0, 𝑤1) ≥ 1 = 𝛼 (𝑤0,⊤𝑤0) ≥ 1 implies 𝛼 (𝑤1, 𝑤2) ≥ 1

and
𝛼 (𝑤1, 𝑤2) ≥ 1 implies 𝛼 (𝑤2, 𝑤3) ≥ 1.

By induction, we obtain
𝛼 (𝑤𝑛, 𝑤𝑛+1) ≥ 1 for all 𝑛 ∈ N. (2)

Since ⊤ is triangular 𝛼−admissible, we have

𝛼 (𝑤𝑛, 𝑤𝑛+1) ≥ 1 and 𝛼 (𝑤𝑛+1, 𝑤𝑛+2) ≥ 1 imply 𝛼 (𝑤𝑛, 𝑤𝑛+2) ≥ 1.

Thus, by induction, we get
𝛼 (𝑤𝑛, 𝑤𝑚) ≥ 1 for all 𝑚 > 𝑛 ≥ 0. (3)

Now, we will show that {𝜚(𝑤𝑛+1, 𝑤𝑛)} is a decreasing sequence. Since ⊤ is an (𝛼, 𝜙)−weak Pata contractive mapping
via simulation function, we have

𝜁 (𝛼(𝑤𝑛−1, 𝑤𝑛)𝜚(𝑤𝑛, 𝑤𝑛+1), (1 − 𝜖) (𝑀 (𝑤𝑛−1, 𝑤𝑛) − 𝜙(𝑀 (𝑤𝑛−1, 𝑤𝑛))) + 𝑃(𝑤𝑛−1, 𝑤𝑛)) ≥ 0.

From 𝜁2 and together with (2.2), we obtain

𝜚(𝑤𝑛, 𝑤𝑛+1) ≤ 𝛼(𝑤𝑛−1, 𝑤𝑛)𝜚(𝑤𝑛, 𝑤𝑛+1)
≤ (1 − 𝜖) (max{𝜚(𝑤𝑛, 𝑤𝑛−1), 𝜚(𝑤𝑛+1, 𝑤𝑛), 𝜚(𝑤𝑛, 𝑤𝑛−1),

𝜚(𝑤𝑛, 𝑤𝑛) + 𝜚(𝑤𝑛−1, 𝑤𝑛+1)
2

} − 𝜙(max{𝜚(𝑤𝑛, 𝑤𝑛−1),

𝜚(𝑤𝑛+1, 𝑤𝑛), 𝜚(𝑤𝑛, 𝑤𝑛−1),
𝜚(𝑤𝑛, 𝑤𝑛) + 𝜚(𝑤𝑛−1, 𝑤𝑛+1)

2
}))

+Λ𝜖 𝜉𝜓 (𝜖) [1 + ∥𝑤𝑛−1∥ + ∥𝑤𝑛∥ + ∥𝑤𝑛∥ + ∥𝑤𝑛+1∥]𝜗

≤ (1 − 𝜖) (max{𝜚(𝑤𝑛, 𝑤𝑛−1),
𝜚(𝑤𝑛+1, 𝑤𝑛) + 𝜚(𝑤𝑛, 𝑤𝑛−1)

2
}

−𝜙(max{𝜚(𝑤𝑛, 𝑤𝑛−1),
𝜚(𝑤𝑛+1, 𝑤𝑛) + 𝜚(𝑤𝑛, 𝑤𝑛−1)

2
}))

+𝐾𝜖 𝜉𝜓 (𝜖) ,

for some𝐾 > 0. If 𝜚(𝑤𝑛, 𝑤𝑛−1) ≤ 𝜚(𝑤𝑛+1, 𝑤𝑛), then we obtain 𝜚(𝑤𝑛+1, 𝑤𝑛) ≤ (1−𝜖) (𝜚(𝑤𝑛+1, 𝑤𝑛)−𝜙(𝜚(𝑤𝑛+1, 𝑤𝑛)))+
𝐾𝜖 𝜉𝜓 (𝜖). In this way, we obtain 𝜚(𝑤𝑛+1, 𝑤𝑛) = 0, is a contraction. Therefore we have

𝜚(𝑤𝑛+1, 𝑤𝑛) < 𝜚(𝑤𝑛, 𝑤𝑛−1) < · · · < 𝜚(𝑤1, 𝑤0) = ∥𝑤1∥ ,
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that is {𝜚(𝑤𝑛+1, 𝑤𝑛)} is a decreasing sequence. Since {𝜚(𝑤𝑛, 𝑤𝑛+1)} is decreasing, and so, it is convergent to 𝜚 ≥ 0 and
lim𝑛→∞ 𝜚(𝑤𝑛, 𝑤𝑛+1) = 𝜚. Now, we will demonstrate that {∥𝑤𝑛∥} is a bounded sequence. By the triangle inequality,
we have

∥𝑤𝑛∥ = 𝜚(𝑤𝑛, 𝑤0) ≤ 𝜚(𝑤𝑛, 𝑤𝑛+1) + 𝜚(𝑤𝑛+1, 𝑤1) + 𝜚(𝑤1, 𝑤0).

Since ⊤ is an (𝛼, 𝜙)−weak Pata contractive mapping via simulation function, we have

0 ≤ 𝜁 (𝛼(𝑤0, 𝑤𝑛)𝜚 (⊤𝑤0,⊤𝑤𝑛) , (1 − 𝜖) (𝑀 (𝑤0, 𝑤𝑛) − 𝜙(𝑀 (𝑤0, 𝑤𝑛))) + 𝑃(𝑤0, 𝑤𝑛))
≤ (1 − 𝜖) (𝑀 (𝑤0, 𝑤𝑛) − 𝜙(𝑀 (𝑤0, 𝑤𝑛))) + 𝑃(𝑤0, 𝑤𝑛)) − 𝛼(𝑤0, 𝑤𝑛)𝜚 (⊤𝑤0,⊤𝑤𝑛) .

Using (2.3), we obtain

𝜚(𝑤1, 𝑤𝑛+1) = 𝛼(𝑤0, 𝑤𝑛)𝜚 (⊤𝑤0,⊤𝑤𝑛)
≤ (1 − 𝜖) (max{𝜚(𝑤𝑛, 𝑤0), 𝜚(𝑤𝑛, 𝑤𝑛+1), 𝜚(𝑤0, 𝑤1),

𝜚(𝑤𝑛, 𝑤1) + 𝜚(𝑤0, 𝑤𝑛+1)
2

} − 𝜙(max{𝜚(𝑤𝑛, 𝑤0), 𝜚(𝑤𝑛, 𝑤𝑛+1),

𝜚(𝑤0, 𝑤1),
𝜚(𝑤𝑛, 𝑤1) + 𝜚(𝑤0, 𝑤𝑛+1)

2
}))

+Λ𝜖 𝜉𝜓 (𝜖) [1 + ∥𝑤𝑛∥ + 0 + ∥𝑤𝑛+1∥ + ∥𝑤1∥]𝜗

≤ (1 − 𝜖) (max{𝜚(𝑤𝑛, 𝑤0), 𝜚(𝑤𝑛, 𝑤𝑛+1), 𝜚(𝑤0, 𝑤1),
𝜚(𝑤𝑛, 𝑤0) + 𝜚(𝑤1, 𝑤0) + 𝜚(𝑤𝑛+1, 𝑤𝑛) + 𝜚(𝑤𝑛, 𝑤0)

2
}

−𝜙(max{𝜚(𝑤𝑛, 𝑤0), 𝜚(𝑤𝑛, 𝑤𝑛+1), 𝜚(𝑤0, 𝑤1),
𝜚(𝑤𝑛, 𝑤0) + 𝜚(𝑤1, 𝑤0) + 𝜚(𝑤𝑛+1, 𝑤𝑛) + 𝜚(𝑤𝑛, 𝑤0)

2
}))

+Λ𝜖 𝜉𝜓 (𝜖) [1 + 2 ∥𝑤𝑛∥ + 2 ∥𝑤1∥]𝜗

≤ (1 − 𝜖) (max {∥𝑤𝑛∥ , ∥𝑤1∥ , ∥𝑤𝑛∥ + ∥𝑤1∥} − 𝜙(max{∥𝑤𝑛∥ , ∥𝑤1∥ ,
∥𝑤𝑛∥ + ∥𝑤1∥})) + Λ𝜖 𝜉𝜓 (𝜖) [1 + 2 ∥𝑤𝑛∥ + 2 ∥𝑤1∥]𝜗

≤ (1 − 𝜖) (∥𝑤𝑛∥ + ∥𝑤1∥ − 𝜙(∥𝑤𝑛∥ + ∥𝑤1∥))
+Λ𝜖 𝜉𝜓 (𝜖) [1 + 2 ∥𝑤𝑛∥ + 2 ∥𝑤1∥]𝜗 .

Since 𝜗 ≤ 𝜉, we get

∥𝑤𝑛∥ ≤ (1 − 𝜖) (∥𝑤𝑛∥ + ∥𝑤1∥ − 𝜙(∥𝑤𝑛∥ + ∥𝑤1∥)) + 2 ∥𝑤1∥ + Λ𝜖 𝜉𝜓 (𝜖) [1 + 2 ∥𝑤𝑛∥ + 2 ∥𝑤1∥] 𝜉

and
𝜖 ∥𝑤𝑛∥ ≤ 𝑘𝜖 𝜉𝜓 (𝜖) ∥𝑤𝑛∥ 𝜉 + 𝑙,

for some 𝑘, 𝑙 > 0. By the same reason as in [21], {∥𝑤𝑛∥} is a bounded sequence. Using (2.2), we have

𝜚(𝑤𝑛, 𝑤𝑛+1) ≤ 𝛼(𝑤𝑛−1, 𝑤𝑛)𝜚(𝑤𝑛, 𝑤𝑛+1)
(1 − 𝜖) (max{𝜚(𝑤𝑛, 𝑤𝑛−1), 𝜚(𝑤𝑛+1, 𝑤𝑛), 𝜚(𝑤𝑛, 𝑤𝑛−1),
𝜚(𝑤𝑛, 𝑤𝑛) + 𝜚(𝑤𝑛−1, 𝑤𝑛+1)

2
} − 𝜙(max{𝜚(𝑤𝑛, 𝑤𝑛−1), 𝜚(𝑤𝑛+1, 𝑤𝑛),

𝜚(𝑤𝑛, 𝑤𝑛−1),
𝜚(𝑤𝑛, 𝑤𝑛) + 𝜚(𝑤𝑛−1, 𝑤𝑛+1)

2
}))

+Λ𝜖 𝜉𝜓 (𝜖) [1 + ∥𝑤𝑛∥ + ∥𝑤𝑛−1∥ + ∥𝑤𝑛+1∥ + ∥𝑤𝑛∥]𝜗

≤ (1 − 𝜖) (max
{
𝜚(𝑤𝑛, 𝑤𝑛−1),

𝜚(𝑤𝑛+1, 𝑤𝑛) + 𝜚(𝑤𝑛, 𝑤𝑛−1)
2

}
−𝜙(max

{
𝜚(𝑤𝑛, 𝑤𝑛−1),

𝜚(𝑤𝑛+1, 𝑤𝑛) + 𝜚(𝑤𝑛, 𝑤𝑛−1)
2

}
)) + 𝐾𝜖 𝜉𝜓 (𝜖) ,

for some 𝐾 > 0. Taking limit as 𝑛→ ∞, we obtain 𝜚 ≤ 𝐾𝜖 𝜉𝜓 (𝜖) and thus 𝜚 = 0.
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Next, we demonstrate that {𝑤𝑛} is a Cauchy sequence. We assume that {𝑤𝑛} is not a Cauchy sequence. From
Lemma 1, there exist subsequences

{
𝑤𝑚 𝑗

}
and

{
𝑤𝑛 𝑗

}
with 𝑛 𝑗 > 𝑚 𝑗 > 𝑗 such that lim 𝑗→∞ 𝜚(𝑤𝑚 𝑗−1, 𝑤𝑛 𝑗+1) = 𝜍,

lim 𝑗→∞ 𝜚(𝑤𝑚 𝑗
, 𝑤𝑛 𝑗 ) = 𝜍 , lim 𝑗→∞ 𝜚(𝑤𝑚 𝑗−1, 𝑤𝑛 𝑗

) = 𝜍 , lim 𝑗→∞ 𝜚(𝑤𝑚 𝑗+1, 𝑤𝑛 𝑗+1) = 𝜍 and lim 𝑗→∞ 𝜚(𝑤𝑚 𝑗
, 𝑤𝑛 𝑗−1) = 𝜍 .

Since ⊤ is an (𝛼, 𝜙)−weak Pata contractive mapping via simulation function, we have

𝜍 ≤ 𝜚(𝑤𝑚 𝑗
, 𝑤𝑛 𝑗

) = 𝛼(𝑤𝑚 𝑗−1, 𝑤𝑛 𝑗−1)𝜚(⊤𝑤𝑚 𝑗−1,⊤𝑤𝑛 𝑗−1)
≤ (1 − 𝜖) (max{𝜚(𝑤𝑚 𝑗−1, 𝑤𝑛 𝑗−1), 𝜚(𝑤𝑚 𝑗−1, 𝑤𝑚 𝑗

), 𝜚(𝑤𝑛 𝑗−1, 𝑤𝑛 𝑗
),

𝜚(𝑤𝑛 𝑗−1 , 𝑤𝑚 𝑗
) + 𝜚(𝑤𝑚 𝑗−1, 𝑤𝑛 𝑗

)
2

} − 𝜙(max{𝜚(𝑤𝑚 𝑗−1, 𝑤𝑛 𝑗−1),

𝜚(𝑤𝑚 𝑗−1, 𝑤𝑚 𝑗
), 𝜚(𝑤𝑛 𝑗−1, 𝑤𝑛 𝑗

),
𝜚(𝑤𝑛 𝑗−1 , 𝑤𝑚 𝑗

) + 𝜚(𝑤𝑚 𝑗−1, 𝑤𝑛 𝑗
)

2
}))

+Λ𝜖 𝜉𝜓 (𝜖)
[
1 +

𝑤𝑚 𝑗

 + 𝑤𝑛 𝑗

 + 𝑤𝑛 𝑗+1
 + 𝑤𝑚 𝑗+1

]𝜗 .

Taking the limit as 𝑗 → ∞, we obtain

𝜍 ≤ (1 − 𝜖) (𝜍 − 𝜙(𝜍)) + 𝐾𝜖𝜓 (𝜖)

and
𝜍 ≤ (1 − 𝜖) 𝜍 + 𝐾𝜖𝜓 (𝜖) ,

then
𝜍 ≤ 𝐾𝜓 (𝜖) ,

is a contradiction. Hence, {𝑤𝑛} is a Cauchy sequence in (𝑊, 𝜚). By the completeness of𝑊 , 𝑤𝑛 → 𝑢 ∈ 𝑊 as 𝑛→ +∞.
Since ⊤ is continuous, ⊤𝑤𝑛 → ⊤𝑢 as 𝑛→ +∞. By the uniqueness of the limit, we obtain 𝑢 = ⊤𝑢, that is, 𝑢 ∈ 𝐹 (⊤).
Now we demonstrate that fixed point of ⊤ is unique. Assume that 𝑢 and 𝑣 are fixed points of ⊤. Since ⊤ is an
(𝛼, 𝜙)−weak Pata contractive mapping via simulation function, we have

0 ≤ 𝜁 (𝛼(𝑢, 𝑣)𝜚(⊤𝑢,⊤𝑣), (1 − 𝜖) (𝑀 (𝑢, 𝑣) − 𝜙(𝑀 (𝑢, 𝑣))) + 𝑃(𝑢, 𝑣))
≤ (1 − 𝜖) (𝑀 (𝑢, 𝑣) − 𝜙(𝑀 (𝑢, 𝑣))) + 𝑃(𝑢, 𝑣)) − 𝛼(𝑢, 𝑣)𝜚(⊤𝑢,⊤𝑣).

Since ⊤ satisfies the hypothesis (𝑖𝑣) of Theorem 2, we have

𝜚(⊤𝑢,⊤𝑣) ≤ 𝛼(𝑢, 𝑣)𝜚(⊤𝑢,⊤𝑣)

≤ (1 − 𝜖) (max
{
𝜚(𝑢, 𝑣), 𝜚(𝑢,⊤𝑢), 𝜚(𝑣,⊤𝑣), 𝜚(𝑢,⊤𝑣) + 𝜚(𝑣,⊤𝑢)

2

}
−𝜙(max

{
𝜚(𝑢, 𝑣), 𝜚(𝑢,⊤𝑢), 𝜚(𝑣,⊤𝑣), 𝜚(𝑢,⊤𝑣) + 𝜚(𝑣,⊤𝑢)

2

}
)) + 𝐾𝜖𝜓 (𝜖) .

We obtain that 𝜚(𝑢, 𝑣) ≤ 𝐾𝜓 (𝜖), and so, 𝑢 = 𝑣. Thus, ⊤ has a unique fixed point in𝑊 . □

The following theorem does not require the continuity of ⊤.
Let (𝑊, 𝜚) be a complete metric space. ⊤ : 𝑊 → 𝑊 be an (𝛼, 𝜙)−weak Pata contractive mapping via simulation
function. Assume that

(i) ⊤ is triangular 𝛼−admissible;

(ii) there exists 𝑤0 ∈ 𝑊 such that 𝛼 (𝑤0,⊤𝑤0) ≥ 1;

(iii) if {𝑤𝑛} is a sequence in𝑊 such that 𝛼 (𝑤𝑛, 𝑤𝑛+1) ≥ 1, for all 𝑛 and 𝑤𝑛 → 𝑢 ∈ 𝑊 as 𝑛→ +∞, then 𝛼 (𝑤𝑛, 𝑢) ≥ 1
for all 𝑛;

(iv) for all 𝑢, 𝑣 ∈ 𝐹 (⊤), 𝛼 (𝑢, 𝑣) ≥ 1.

Then ⊤ has a unique fixed point that is 𝑢 = ⊤𝑢, 𝑢 ∈ 𝑊 .
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Proof Following the proof of Theorem 2, we have already shown that {𝑤𝑛} is a Cauchy sequence in 𝑊 . Since 𝑊
is complete, we have 𝑤𝑛 → 𝑢 ∈ 𝑊 as 𝑛 → +∞. Next, we prove that 𝑢 ∈ 𝐹 (⊤), that is, 𝑢 = ⊤𝑢. From (2.2) and the
hypothesis (𝑖𝑖𝑖) of Theorem 2, we have 𝛼 (𝑤𝑛, 𝑢) ≥ 1 for all 𝑛. Also, we have

0 ≤ 𝜁 (𝛼(𝑤𝑛, 𝑢)𝜚(⊤𝑢, 𝑤𝑛+1), (1 − 𝜖) (𝑀 (𝑤𝑛, 𝑢) − 𝜙(𝑀 (𝑤𝑛, 𝑢)) + 𝑃(𝑤𝑛, 𝑢))

and

𝜚(⊤𝑢, 𝑢) = 𝜚(⊤𝑢, 𝑤𝑛+1) + 𝜚(𝑤𝑛+1, 𝑢)
≤ 𝛼(𝑤𝑛, 𝑢)𝜚(⊤𝑢, 𝑤𝑛+1) + 𝜚(𝑤𝑛+1, 𝑢)

≤ (1 − 𝜖) (max
{
𝜚(𝑢, 𝑤𝑛), 𝜚(𝑢,⊤𝑢), 𝜚(𝑤𝑛, 𝑤𝑛+1),

𝜚(𝑢, 𝑤𝑛+1) + 𝜚(𝑤𝑛,⊤𝑢)
2

}
−𝜙(max

{
𝜚(𝑢, 𝑤𝑛), 𝜚(𝑢,⊤𝑢), 𝜚(𝑤𝑛, 𝑤𝑛+1),

𝜚(𝑢, 𝑤𝑛+1) + 𝜚(𝑤𝑛,⊤𝑢)
2

}
))

+Λ𝜖 𝜉𝜓 (𝜖) [1 + ∥𝑤𝑛∥ + ∥𝑢∥ + ∥⊤𝑢∥ + ∥𝑤𝑛+1∥]𝜗 + 𝜚(𝑤𝑛+1, 𝑢).

≤ (1 − 𝜖) (max
{
𝜚(𝑢, 𝑤𝑛), 𝜚(𝑢,⊤𝑢), 𝜚(𝑤𝑛, 𝑤𝑛+1),

𝜚(𝑢, 𝑤𝑛+1) + 𝜚(𝑤𝑛,⊤𝑢)
2

}
−𝜙(max

{
𝜚(𝑢, 𝑤𝑛), 𝜚(𝑢,⊤𝑢), 𝜚(𝑤𝑛, 𝑤𝑛+1),

𝜚(𝑢, 𝑤𝑛+1) + 𝜚(𝑤𝑛,⊤𝑢)
2

}
))

+𝐾𝜖 𝜉𝜓 (𝜖) ,

for some 𝐾 > 0. We take the limit as 𝑛→ ∞, we get

𝜚(⊤𝑢, 𝑢) ≤ (1 − 𝜖) (𝜚(⊤𝑢, 𝑢) − 𝜙(𝜚(⊤𝑢, 𝑢))) + 𝐾𝜖 𝜉𝜓 (𝜖) .

Thus, we obtain that ⊤𝑢 = 𝑢 and that is 𝑢 ∈ 𝐹 (⊤). Similar to the proof of Theorem 2, the uniqueness of fixed point of ⊤
can be obtained. □

Let 𝑊 = [0, 1] with the usual metric and define the mappings ⊤ : 𝑊 → 𝑊 by ⊤ (𝑤) =
𝑤2

4
, 𝑤 ∈ [0, 1] and

𝜙 : [0,∞] → [0,∞], 𝜙 (𝑠) = 𝑠

3
. Let 𝛼 : 𝑊 ×𝑊 → [0, +∞) be defined as 𝛼(𝑤, 𝑡) =

{
1, 𝑤, 𝑡 ∈ [0, 1]
0, otherwise . It is clear

that ⊤ is triangular 𝛼−admissible. Our goal is to show that ⊤ satisfies (2.1). For 𝑤, 𝑡 ∈ [0, 1], we have

𝜚(𝑤, 𝑡) − 𝜙 (𝜚(𝑤, 𝑡)) = 𝜚(𝑤, 𝑡) − 1
3
𝜚(𝑤, 𝑡) = 2

3
𝜚(𝑤, 𝑡)

and

𝜚(⊤𝑤,⊤𝑡) ≤ 𝛼(𝑤, 𝑡)𝜚(⊤𝑤,⊤𝑡)

=
𝑤2

6
− 𝑡2

6

=
1
6
( |𝑤 − 𝑡 |) (𝑤 + 𝑡)

≤ 1
3
( |𝑤 − 𝑡 |)

=
1
3
𝜚(𝑤, 𝑡).

Since 𝜚(𝑤, 𝑡) ≤ 𝑀 (𝑤, 𝑡), we obtain

𝜚(⊤𝑤,⊤𝑡) ≤ 1
3
𝑀 (𝑤, 𝑡) = 1

2

(
2
3
𝑀 (𝑤, 𝑡)

)
=

1
2
(𝑀 (𝑤, 𝑡) − 𝜙 (𝑀 (𝑤, 𝑡))) .

MANAS Journal of Engineering, Volume 10 (Issue 2) © (2022) www.journals.manas.edu.kg



M. Aktay1, M. ¨Ozdemir$2 / MANAS Journal of Engineering, 10 (2) (2022) 235

For arbitrary 𝜖 ∈ [0, 1], we can write the above inequality as follows

𝜚(⊤𝑤,⊤𝑡) ≤ (1 − 𝜖) (𝑀 (𝑤, 𝑡) − 𝜙 (𝑀 (𝑤, 𝑡))) +
(

1
3
+ 𝜖 − 1

)
𝑀 (𝑤, 𝑡)

≤ (1 − 𝜖) (𝑀 (𝑤, 𝑡) − 𝜙 (𝑀 (𝑤, 𝑡)))

+
(

1
3
+ 𝜖 − 1

)
(1 + ∥𝑤∥ + ∥𝑡∥ + ∥⊤𝑤∥ + ∥⊤𝑡∥) .

Our goal is to prove that 𝛾 ≥ 0 and Λ ≥ 0 such that(
1
3
+ 𝜖 − 1

)
(1 + ∥𝑤∥ + ∥𝑡∥ + ∥⊤𝑤∥ + ∥⊤𝑡∥) ≤ Λ𝜖𝛾+1 (1 + ∥𝑤∥ + ∥𝑡∥ + ∥⊤𝑤∥ + ∥⊤𝑡∥) ,

satisfies for all 𝑤, 𝑡 ∈ [0, 1] and every 0 ≤ 𝜖 ≤ 1. We can find Λ ≥ 0 such that

Λ =

(
1
3 + 𝜖 − 1

)
𝜖𝛾+1 ,

satisfies for each 0 ≤ 𝜖 ≤ 1 and some 𝛾 ≥ 0. If we choose 𝛾 such that
𝛾

𝛾 + 1
> 1 − 1

3
, then

Λ =
𝛾𝛾

(𝛾 + 1)𝛾+1
(
1 − 1

3

)𝛾 .

Thus, we have that

𝛼(𝑤, 𝑡)𝜚(⊤𝑤,⊤𝑡) ≤ (1 − 𝜖) (𝑀 (𝑤, 𝑡) − 𝜙(𝑀 (𝑤, 𝑡)) + Λ𝜖𝛾+1
(

1 + ∥𝑤∥ + ∥𝑡∥
+ ∥⊤𝑤∥ + ∥⊤𝑡∥

)
and

𝜁

(
𝛼(𝑤, 𝑡)𝜚(⊤𝑤,⊤𝑡), (1 − 𝜖) (𝑀 (𝑤, 𝑡) − 𝜙(𝑀 (𝑤, 𝑡)) + Λ𝜖𝛾+1

(
1 + ∥𝑤∥ + ∥𝑡∥
+ ∥⊤𝑤∥ + ∥⊤𝑡∥

))
≤ 0,

satisfies for all 𝑤, 𝑡 ∈ [0, 1], 𝜁 ∈ �́� and each 𝜖 > 0. If 𝜖 = 0, it can be seen that (2.1) is satisfied. Also, the conditions of
Theorem 2 are satisfied with 𝜓 (𝜖) = 𝜖𝛾 , 𝜉 = 𝜗 = 1 . Hence, ⊤ has a unique fixed point in𝑊 = [0, 1]. It is seen that,
𝑢 = 0 is the unique fixed point of ⊤ in𝑊 .
Now, we state a fixed point result for multivalued (𝛼, 𝜙)−weak Pata contractive mapping.
Let (𝑊, 𝜚) be an ordered complete metric space and satisfy (𝐻∗). Let Λ ≥ 0, 𝜉 ≥ 1 and 𝜗 ∈ [0, 𝜉] be fixed constants,
𝜓 ∈ Ψ and 𝛼 : 𝑊 ×𝑊 → [0, +∞) be two functions. Assume that ⊤ : 𝑊 → 2𝑊 be a multivalued mapping has UCAV
and if for all 𝑤, 𝑡 ∈ 𝑊 with 𝑤 and 𝑡 comparable, and 𝜖 ∈ [0, 1], ⊤ satisfies the inequality

𝛼 (𝑤, 𝑡) 𝐻𝜚 (⊤𝑤,⊤𝑡) ≤ (1 − 𝜖) (𝑀 (𝑤, 𝑡) − 𝜙(𝑀 (𝑤, 𝑡)) + 𝑃(𝑤, 𝑡), (4)

where 𝜙 : [0, +∞) → [0, +∞) is a continuous and nondecreasing function with 𝜙(0) = 0 and 𝜙(𝑠) > 0, for all 𝑠 > 0,
and

𝑃(𝑤, 𝑡) = Λ𝜖 𝜉𝜓 (𝜖) [1 + ∥𝑤∥ + ∥𝑡∥ + ∥⊤𝑤∥ + ∥⊤𝑡∥]𝜗

and
𝑀 (𝑤, 𝑡) = max

{
𝜚(𝑤, 𝑡), 𝜚(𝑤,⊤𝑤), 𝜚(𝑡,⊤𝑡), 𝜚(𝑤,⊤𝑡) + 𝜚(𝑡,⊤𝑤)

2

}
,

and also, assume that ⊤ satisfies the following conditions

(i) ⊤ is triangular 𝛼−admissible;

(ii) there exists 𝑤0 ∈ 𝑊, 𝑤1 ∈ ⊤𝑤0 such that 𝛼 (𝑤0, 𝑤1) ≥ 1;

(iii) ⊤ is continuous;
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(iv) for all 𝑢, 𝑣 ∈ 𝐹𝐻 (⊤), 𝛼 (𝑢, 𝑣) ≥ 1.

Then ⊤ has a unique fixed point that is 𝑢 ∈ ⊤𝑢, 𝑢 ∈ 𝑊 .

Proof The hypothesis (𝑖𝑖) of the Theorem 2, there exists 𝑤0 ∈ 𝑊 such that 𝛼 (𝑤0,⊤𝑤0) ≥ 1. Starting at the point
𝑤0 ∈ 𝑊, if 𝑤0 ∈ ⊤𝑤0, proof is clearly completed. Since ⊤𝑤0 has UCAV, there exists 𝑤1 ∈ ⊤𝑤0 with 𝑤1 ≠ 𝑤0 and
𝑤1 ≥ 𝑤0 such that

𝜚 (𝑤0, 𝑤1) = inf
𝑤∈⊤𝑤0

𝜚 (𝑤, 𝑤0) = 𝜚 (⊤𝑤0, 𝑤0) .

Continuing this process, the iterative sequence {𝑤𝑛} is constructed by 𝑤𝑛+1 ∈ ⊤𝑤𝑛 with 𝑤𝑛+1 ≠ 𝑤𝑛 and 𝑤𝑛+1 ≥ 𝑤𝑛,
for all 𝑛 ≥ 1 such that

𝜚 (𝑤𝑛, 𝑤𝑛+1) = 𝜚 (⊤𝑤𝑛, 𝑤𝑛) .

Furthermore
𝜚 (⊤𝑤𝑛, 𝑤𝑛) ≤ sup

𝑤∈⊤𝑤𝑛−1

𝜚 (⊤𝑤𝑛, 𝑤) ≤ 𝐻𝜚 (⊤𝑤𝑛,⊤𝑤𝑛−1) .

Thus, we have
𝜚 (𝑤𝑛, 𝑤𝑛+1) ≤ 𝐻𝜚 (⊤𝑤𝑛−1,⊤𝑤𝑛) , for 𝑛 ≥ 2.

We denote ∥𝑤𝑛∥ = 𝜚 (𝑤𝑛, 𝑤0) for 𝑛 ≥ 1. If 𝑤𝑛0 = 𝑤𝑛0+1 for any 𝑛0 ∈ N, then 𝑤𝑛0 ∈ ⊤𝑤𝑛0 . First of all, we show that
𝛼 (𝑤𝑛, 𝑤𝑛+1) ≥ 1, for all 𝑛 ∈ N. Since ⊤ is an 𝛼−admissible mapping, 𝑤0 ∈ 𝑊, 𝑤1 ∈ ⊤𝑤0 we have

𝛼 (𝑤0, 𝑤1) ≥ 1 implies 𝛼 (𝑤1, 𝑤2) ≥ 1, for 𝑤2 ∈ ⊤𝑤1

and
𝛼 (𝑤1, 𝑤2) ≥ 1 implies 𝛼 (𝑤2, 𝑤3) ≥ 1, for 𝑤3 ∈ ⊤𝑤2.

By induction, we obtain
𝛼 (𝑤𝑛, 𝑤𝑛+1) ≥ 1, for 𝑤𝑛+1 ∈ ⊤𝑤𝑛, 𝑛 ∈ N. (5)

Since ⊤ is triangular 𝛼−admissible, we have

𝛼 (𝑤𝑛, 𝑤𝑛+1) ≥ 1 and 𝛼 (𝑤𝑛+1, 𝑤𝑛+2) ≥ 1 imply 𝛼 (𝑤𝑛, 𝑤𝑛+2) ≥ 1, 𝑤𝑛+2 ∈ 𝑤𝑛+1.

Thus, by induction, we get
𝛼 (𝑤𝑛, 𝑤𝑚) ≥ 1 for all 𝑚 > 𝑛 ≥ 0. (6)

Now, we will show that {𝜚(𝑤𝑛+1, 𝑤𝑛)} is a decreasing sequence. Using (2.5),

𝜚(𝑤𝑛, 𝑤𝑛+1) ≤ 𝐻𝜚 (⊤𝑤𝑛−1,⊤𝑤𝑛)
≤ 𝛼(𝑤𝑛−1, 𝑤𝑛)𝐻𝜚 (⊤𝑤𝑛−1,⊤𝑤𝑛)
≤ (1 − 𝜖) (max{𝜚(𝑤𝑛, 𝑤𝑛−1), 𝜚(𝑤𝑛+1, 𝑤𝑛), 𝜚(𝑤𝑛, 𝑤𝑛−1),

𝜚(𝑤𝑛, 𝑤𝑛) + 𝜚(𝑤𝑛−1, 𝑤𝑛+1)
2

} − 𝜙(max{𝜚(𝑤𝑛, 𝑤𝑛−1),

𝜚(𝑤𝑛+1, 𝑤𝑛), 𝜚(𝑤𝑛, 𝑤𝑛−1),
𝜚(𝑤𝑛, 𝑤𝑛) + 𝜚(𝑤𝑛−1, 𝑤𝑛+1)

2
}))

+Λ𝜖 𝜉𝜓 (𝜖) [1 + ∥𝑤𝑛−1∥ + ∥𝑤𝑛∥ + ∥𝑤𝑛∥ + ∥𝑤𝑛+1∥]𝜗

≤ (1 − 𝜖) (max{𝜚(𝑤𝑛, 𝑤𝑛−1),
𝜚(𝑤𝑛+1, 𝑤𝑛) + 𝜚(𝑤𝑛, 𝑤𝑛−1)

2
}

−𝜙(max{𝜚(𝑤𝑛, 𝑤𝑛−1),
𝜚(𝑤𝑛+1, 𝑤𝑛) + 𝜚(𝑤𝑛, 𝑤𝑛−1)

2
}))

+𝐾𝜖 𝜉𝜓 (𝜖) ,

for some𝐾 > 0. If 𝜚(𝑤𝑛, 𝑤𝑛−1) ≤ 𝜚(𝑤𝑛+1, 𝑤𝑛), then we obtain 𝜚(𝑤𝑛+1, 𝑤𝑛) ≤ (1−𝜖) (𝜚(𝑤𝑛+1, 𝑤𝑛)−𝜙(𝜚(𝑤𝑛+1, 𝑤𝑛)))+
𝐾𝜖 𝜉𝜓 (𝜖). In this way, we obtain 𝜚(𝑤𝑛+1, 𝑤𝑛) = 0, is a contraction. Therefore, we have

𝜚(𝑤𝑛+1, 𝑤𝑛) ≤ 𝐻𝜚 (⊤𝑤𝑛−1,⊤𝑤𝑛) < 𝜚(𝑤𝑛, 𝑤𝑛−1).
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If we continue this process, we get

𝜚(𝑤𝑛+1, 𝑤𝑛) < 𝜚(𝑤𝑛, 𝑤𝑛−1) < · · · < 𝜚(𝑤1, 𝑤0) = ∥𝑤1∥ ,

that is {𝜚(𝑤𝑛+1, 𝑤𝑛)} is a decreasing sequence and so, this sequence is convergent to 𝜚 ≥ 0 and lim𝑛→∞ 𝜚(𝑤𝑛, 𝑤𝑛+1) = 𝜚.
Now, we will demonstrate that {∥𝑤𝑛∥} is a bounded sequence. By the triangle inequality, we have

∥𝑤𝑛∥ = 𝜚(𝑤𝑛, 𝑤0) ≤ 𝜚(𝑤𝑛, 𝑤𝑛+1) + 𝜚(𝑤𝑛+1, 𝑤1) + 𝜚(𝑤1, 𝑤0),

is a contradiction. Since ⊤ is a multivalued (𝛼, 𝜙)−weak Pata contractive mapping with (2.6), we obtain

𝜚(𝑤1, 𝑤𝑛+1) ≤ 𝐻𝜚 (⊤𝑤0,⊤𝑤𝑛)
≤ 𝛼(𝑤0, 𝑤𝑛)𝐻𝜚 (⊤𝑤0,⊤𝑤𝑛)
≤ (1 − 𝜖) (max{𝜚(𝑤𝑛, 𝑤0), 𝜚(𝑤𝑛, 𝑤𝑛+1), 𝜚(𝑤0, 𝑤1),

𝜚(𝑤𝑛, 𝑤1) + 𝜚(𝑤0, 𝑤𝑛+1)
2

} − 𝜙(max{𝜚(𝑤𝑛, 𝑤0), 𝜚(𝑤𝑛, 𝑤𝑛+1),

𝜚(𝑤0, 𝑤1),
𝜚(𝑤𝑛, 𝑤1) + 𝜚(𝑤0, 𝑤𝑛+1)

2
}))

+Λ𝜖 𝜉𝜓 (𝜖) [1 + ∥𝑤𝑛∥ + 0 + ∥𝑤𝑛+1∥ + ∥𝑤1∥]𝜗

≤ (1 − 𝜖) (max{𝜚(𝑤𝑛, 𝑤0), 𝜚(𝑤𝑛, 𝑤𝑛+1), 𝜚(𝑤0, 𝑤1),
𝜚(𝑤𝑛, 𝑤0) + 𝜚(𝑤1, 𝑤0) + 𝜚(𝑤𝑛+1, 𝑤𝑛) + 𝜚(𝑤𝑛, 𝑤0)

2
}

−𝜙(max{𝜚(𝑤𝑛, 𝑤0), 𝜚(𝑤𝑛, 𝑤𝑛+1), 𝜚(𝑤0, 𝑤1),
𝜚(𝑤𝑛, 𝑤0) + 𝜚(𝑤1, 𝑤0) + 𝜚(𝑤𝑛+1, 𝑤𝑛) + 𝜚(𝑤𝑛, 𝑤0)

2
}))

+Λ𝜖 𝜉𝜓 (𝜖) [1 + 2 ∥𝑤𝑛∥ + 2 ∥𝑤1∥]𝜗

≤ (1 − 𝜖) (max {∥𝑤𝑛∥ , ∥𝑤1∥ , ∥𝑤𝑛∥ + ∥𝑤1∥} − 𝜙(max{∥𝑤𝑛∥ , ∥𝑤1∥ ,
∥𝑤𝑛∥ + ∥𝑤1∥})) + Λ𝜖 𝜉𝜓 (𝜖) [1 + 2 ∥𝑤𝑛∥ + 2 ∥𝑤1∥]𝜗

≤ (1 − 𝜖) (∥𝑤𝑛∥ + ∥𝑤1∥ − 𝜙(∥𝑤𝑛∥ + ∥𝑤1∥))
+Λ𝜖 𝜉𝜓 (𝜖) [1 + 2 ∥𝑤𝑛∥ + 2 ∥𝑤1∥]𝜗 .

Since 𝜗 ≤ 𝜉, we get

∥𝑤𝑛∥ ≤ (1 − 𝜖) (∥𝑤𝑛∥ + ∥𝑤1∥ − 𝜙(∥𝑤𝑛∥ + ∥𝑤1∥)) + 2 ∥𝑤1∥ + Λ𝜖 𝜉𝜓 (𝜖) [1 + 2 ∥𝑤𝑛∥ + 2 ∥𝑤1∥] 𝜉

and
𝜖 ∥𝑤𝑛∥ ≤ 𝑘𝜖 𝜉𝜓 (𝜖) ∥𝑤𝑛∥ 𝜉 + 𝑙,

for some 𝑘, 𝑙 > 0. By the same reason as in [21], {∥𝑤𝑛∥} is a bounded sequence. Using (2.5), we have

𝜚(𝑤𝑛, 𝑤𝑛+1) ≤ 𝛼(𝑤𝑛−1, 𝑤𝑛)𝐻𝜚 (⊤𝑤𝑛−1,⊤𝑤𝑛)
(1 − 𝜖) (max{𝜚(𝑤𝑛, 𝑤𝑛−1), 𝜚(𝑤𝑛+1, 𝑤𝑛), 𝜚(𝑤𝑛, 𝑤𝑛−1),
𝜚(𝑤𝑛, 𝑤𝑛) + 𝜚(𝑤𝑛−1, 𝑤𝑛+1)

2
} − 𝜙(max{𝜚(𝑤𝑛, 𝑤𝑛−1), 𝜚(𝑤𝑛+1, 𝑤𝑛),

𝜚(𝑤𝑛, 𝑤𝑛−1),
𝜚(𝑤𝑛, 𝑤𝑛) + 𝜚(𝑤𝑛−1, 𝑤𝑛+1)

2
}))

+Λ𝜖 𝜉𝜓 (𝜖) [1 + ∥𝑤𝑛∥ + ∥𝑤𝑛−1∥ + ∥𝑤𝑛+1∥ + ∥𝑤𝑛∥]𝜗

≤ (1 − 𝜖) (max
{
𝜚(𝑤𝑛, 𝑤𝑛−1),

𝜚(𝑤𝑛+1, 𝑤𝑛) + 𝜚(𝑤𝑛, 𝑤𝑛−1)
2

}
−𝜙(max

{
𝜚(𝑤𝑛, 𝑤𝑛−1),

𝜚(𝑤𝑛+1, 𝑤𝑛) + 𝜚(𝑤𝑛, 𝑤𝑛−1)
2

}
)) + 𝐾𝜖 𝜉𝜓 (𝜖) ,

for some 𝐾 > 0. Taking limit as 𝑛→ ∞, we obtain 𝜚 ≤ 𝐾𝜖 𝜉𝜓 (𝜖) and thus 𝜚 = 0.
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Next, we demonstrate that {𝑤𝑛} is a Cauchy sequence. We assume that {𝑤𝑛} is not a Cauchy sequence. From
Lemma 1, there exist subsequences

{
𝑤𝑚 𝑗

}
and

{
𝑤𝑛 𝑗

}
with 𝑛 𝑗 > 𝑚 𝑗 > 𝑗 such that lim 𝑗→∞ 𝜚(𝑤𝑚 𝑗−1, 𝑤𝑛 𝑗+1) = 𝜍,

lim 𝑗→∞ 𝜚(𝑤𝑚 𝑗
, 𝑤𝑛 𝑗 ) = 𝜍 , lim 𝑗→∞ 𝜚(𝑤𝑚 𝑗−1, 𝑤𝑛 𝑗

) = 𝜍 , lim 𝑗→∞ 𝜚(𝑤𝑚 𝑗+1, 𝑤𝑛 𝑗+1) = 𝜍 and lim 𝑗→∞ 𝜚(𝑤𝑚 𝑗
, 𝑤𝑛 𝑗−1) = 𝜍 .

Since ⊤ is a multivalued (𝛼, 𝜙)−weak Pata contractive mapping with (2.6), we have

𝜍 ≤ 𝜚(𝑤𝑚 𝑗
, 𝑤𝑛 𝑗

) ≤ 𝛼(𝑤𝑚 𝑗−1, 𝑤𝑛 𝑗−1)𝐻𝜚 (⊤𝑤𝑚 𝑗−1,⊤𝑤𝑛 𝑗−1)
≤ (1 − 𝜖) (max{𝜚(𝑤𝑚 𝑗−1, 𝑤𝑛 𝑗−1), 𝜚(𝑤𝑚 𝑗−1, 𝑤𝑚 𝑗

), 𝜚(𝑤𝑛 𝑗−1, 𝑤𝑛 𝑗
),

𝜚(𝑤𝑛 𝑗−1 , 𝑤𝑚 𝑗
) + 𝜚(𝑤𝑚 𝑗−1, 𝑤𝑛 𝑗

)
2

} − 𝜙(max{𝜚(𝑤𝑚 𝑗−1, 𝑤𝑛 𝑗−1),

𝜚(𝑤𝑚 𝑗−1, 𝑤𝑚 𝑗
), 𝜚(𝑤𝑛 𝑗−1, 𝑤𝑛 𝑗

),
𝜚(𝑤𝑛 𝑗−1 , 𝑤𝑚 𝑗

) + 𝜚(𝑤𝑚 𝑗−1, 𝑤𝑛 𝑗
)

2
}))

+Λ𝜖 𝜉𝜓 (𝜖)
[
1 +

𝑤𝑚 𝑗

 + 𝑤𝑛 𝑗

 + 𝑤𝑛 𝑗+1
 + 𝑤𝑚 𝑗+1

]𝜗 .

Taking the limit as 𝑗 → ∞, we obtain

𝜍 ≤ (1 − 𝜖) (𝜍 − 𝜙(𝜍)) + 𝐾𝜖𝜓 (𝜖)

and 𝜍 ≤ (1 − 𝜖) 𝜍 + 𝐾𝜖𝜓 (𝜖). We obtain that
𝜍 ≤ 𝐾𝜓 (𝜖) ,

is a contradiction. Hence, {𝑤𝑛} is a Cauchy sequence in (𝑊, 𝜚). Since𝑊 is complete metric space, we get 𝑤𝑛 → 𝑢 ∈ 𝑊
as 𝑛→ +∞. Since ⊤ is continuous, ⊤𝑤𝑛 → ⊤𝑢 as 𝑛→ +∞. By the uniqueness of the limit, we obtain 𝑢 ∈ ⊤𝑢, that is,
𝑢 ∈ 𝐹𝐻 (⊤).
Now, we demonstrate that fixed point of ⊤ is unique. Assume that 𝑢 and 𝑣 are fixed points of ⊤. Since ⊤ satisfies the
hypothesis (𝑖𝑣) of Theorem 2 and ⊤ is a multivalued (𝛼, 𝜙)−weak Pata contractive mapping, we have

𝜚(⊤𝑢, 𝑓 𝑣) ≤ 𝛼(𝑢, 𝑣)𝐻𝜚 (⊤𝑢, 𝑓 𝑣)

≤ (1 − 𝜖) (max
{
𝜚(𝑢, 𝑣), 𝜚(𝑢,⊤𝑢), 𝜚(𝑣, 𝑓 𝑣), 𝜚(𝑢, 𝑓 𝑣) + 𝜚(𝑣,⊤𝑢)

2

}
−𝜙(max

{
𝜚(𝑢, 𝑣), 𝜚(𝑢,⊤𝑢), 𝜚(𝑣, 𝑓 𝑣), 𝜚(𝑢, 𝑓 𝑣) + 𝜚(𝑣,⊤𝑢)

2

}
)) + 𝐾𝜖𝜓 (𝜖) .

Thus, we obtain that 𝜚(𝑢, 𝑣) ≤ 𝐾𝜓 (𝜖), and so, 𝑢 = 𝑣. Thus ⊤ has a unique fixed point in𝑊 . □

If we take 𝑀 (𝑤, 𝑡) = 𝜚(𝑤, 𝑡), for all 𝑤, 𝑡 ∈ 𝑊 in Theorem 2, then we get the following corollary.
Let (𝑊, 𝜚) be a complete metric space, Λ ≥ 0, 𝜉 ≥ 1 and 𝜗 ∈ [0, 𝜉] be fixed constants, 𝜓 ∈ Ψ and 𝛼 : 𝑊×𝑊 → [0, +∞),
⊤ : 𝑊 → 𝑊 be two functions. If for all 𝑤, 𝑡 ∈ 𝑊 , and 𝜖 ∈ [0, 1], ⊤ satisfies the inequality

𝛼(𝑤, 𝑡)𝜚(⊤𝑤,⊤𝑡) ≤ (1 − 𝜖) (𝜚(𝑤, 𝑡) − 𝜙(𝜚(𝑤, 𝑡)) + Λ𝜖 𝜉𝜓 (𝜖) [1 + ∥𝑤∥ + ∥𝑡∥ + ∥⊤𝑤∥ + ∥⊤𝑡∥]𝜗 ,

where 𝜙 : [0, +∞) → [0, +∞) is a continuous and nondecreasing function with 𝜙(0) = 0 and 𝜙(𝑠) > 0, for all 𝑠 > 0,
and

(i) ⊤ is triangular 𝛼−admissible;

(ii) there exists 𝑤0 ∈ 𝑊 such that 𝛼 (𝑤0,⊤𝑤0) ≥ 1;

(iii) ⊤ is continuous;

(iv) for all 𝑢, 𝑣 ∈ 𝐹 (⊤), 𝛼 (𝑢, 𝑣) ≥ 1.

Then ⊤ has a unique fixed point 𝑢 = ⊤𝑢.

If we take 𝑀 (𝑤, 𝑡) = 𝜚(𝑤, 𝑡) and 𝛼(𝑤, 𝑡) = 1, for all 𝑤, 𝑡 ∈ 𝑊 in Theorem 2, then we get the following corollary.
Let (𝑊, 𝜚) be a complete metric space, Λ ≥ 0, 𝜉 ≥ 1 and 𝜗 ∈ [0, 𝜉] be fixed constants, 𝜓 ∈ Ψ, ⊤ : 𝑊 → 𝑊 be a
function. If for all 𝑤, 𝑡 ∈ 𝑊 , and 𝜖 ∈ [0, 1], ⊤ satisfies the inequality

𝜚(⊤𝑤,⊤𝑡) ≤ (1 − 𝜖) (𝜚(𝑤, 𝑡) − 𝜙(𝜚(𝑤, 𝑡)) + Λ𝜖 𝜉𝜓 (𝜖) [1 + ∥𝑤∥ + ∥𝑡∥ + ∥⊤𝑤∥ + ∥⊤𝑡∥]𝜗 ,
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where 𝜙 : [0, +∞) → [0, +∞) is a continuous and nondecreasing function with 𝜙(0) = 0 and 𝜙(𝑠) > 0, for all 𝑠 > 0,
and ⊤ is continuous. Then ⊤ has a unique fixed point 𝑢 = ⊤𝑢.
Corollary 2 generalizes the results of Pata [21] and Banach [7]. For 𝜖 = 0, we get the results of [26] and in addition to
this, if 𝜖 = 0 and we take 𝑀 (𝑤, 𝑡) = 𝜚(𝑤, 𝑡), for all 𝑤, 𝑡 ∈ 𝑊 in Theorem 2, then we get the results of [1].
If we take 𝛼(𝑤, 𝑡) = 1, for all 𝑤, 𝑡 ∈ 𝑊 in Theorem 2, then we get the following corollary.
Let (𝑊, 𝜚) be an ordered complete metric space and satisfy (𝐻∗). Let Λ ≥ 0, 𝜉 ≥ 1 and 𝜗 ∈ [0, 𝜉] be fixed constants,
𝜓 ∈ Ψ be a function. Assume that ⊤ : 𝑊 → 2𝑊 be a multivalued mapping has UCAV and if for all 𝑤, 𝑡 ∈ 𝑊 with 𝑤
and 𝑡 comparable, and 𝜖 ∈ [0, 1], ⊤ satisfies the inequality

𝐻𝜚 (⊤𝑤,⊤𝑡) ≤ (1 − 𝜖) (𝑀 (𝑤, 𝑡) − 𝜙(𝑀 (𝑤, 𝑡)) + 𝑃(𝑤, 𝑡),

where 𝜙 : [0, +∞) → [0, +∞) is a continuous and nondecreasing function with 𝜙(0) = 0 and 𝜙(𝑠) > 0 for all 𝑠 > 0, and

𝑃(𝑤, 𝑡) = Λ𝜖 𝜉𝜓 (𝜖) [1 + ∥𝑤∥ + ∥𝑡∥ + ∥⊤𝑤∥ + ∥⊤𝑡∥]𝜗

and
𝑀 (𝑤, 𝑡) = max

{
𝜚(𝑤, 𝑡), 𝜚(𝑤,⊤𝑤), 𝜚(𝑡,⊤𝑡), 𝜚(𝑤,⊤𝑡) + 𝜚(𝑡,⊤𝑤)

2

}
,

and also, ⊤ is continuous, then ⊤ has a unique fixed point, that is, 𝑢 ∈ ⊤𝑢, 𝑢 ∈ 𝑊 .
If we take 𝑀 (𝑤, 𝑡) = 𝜚(𝑤, 𝑡) and 𝛼(𝑤, 𝑡) = 1, for all 𝑤, 𝑡 ∈ 𝑊 in Theorem 2, then we get the following corollary.
Let (𝑊, 𝜚) be an ordered complete metric space and satisfy (𝐻∗). Let Λ ≥ 0, 𝜉 ≥ 1 and 𝜗 ∈ [0, 𝜉] be fixed constants,
𝜓 ∈ Ψ be a function. Assume that ⊤ : 𝑊 → 2𝑊 be a multivalued mapping has UCAV and if for all 𝑤, 𝑡 ∈ 𝑊 with 𝑤
and 𝑡 comparable, and 𝜖 ∈ [0, 1], ⊤ satisfies the inequality

𝐻𝜚 (⊤𝑤,⊤𝑡) ≤ (1 − 𝜖) (𝜚 (𝑤, 𝑡) − 𝜙(𝜚(𝑤, 𝑡)) + 𝑃(𝑤, 𝑡),

where 𝜙 : [0, +∞) → [0, +∞) is a continuous and nondecreasing function with 𝜙(0) = 0 and 𝜙(𝑠) > 0, for all 𝑠 > 0,
and

𝑃(𝑤, 𝑡) = Λ𝜖 𝜉𝜓 (𝜖) [1 + ∥𝑤∥ + ∥𝑡∥ + ∥⊤𝑤∥ + ∥⊤𝑡∥]𝜗 ,
and also ⊤ is continuous, then ⊤ has a unique fixed point, that is, 𝑢 ∈ ⊤𝑢, 𝑢 ∈ 𝑊 .
Corollary 2 generalizes the results of Kolagar [16] and Nadler [18].
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