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2Adana Alparslan Türkeş Science and Technology University, Computer Engineering Department, Adana, Turkey
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Abstract—The widespread use of OSNs has brought forward the issue of privacy protection over OSNs, as sensitive information

of users needs to remain private. Most users are unaware of possible privacy risks associated with sharing personal information in

their accounts. Privacy settings of OSNs focus on protecting users’ information just by providing them with means of configuring

the audience of shared information. As such, privacy risk estimation (or scoring) is a hot topic in the field of OSN research and

aims to develop risk measuring tools to ensure user privacy in OSNs. Conventional studies in the area often rely on synthetically

generated or survey-based data and do not make any effort to infer private attribute values of users to utilize inference success in

privacy scoring of these users. In this study, we propose a novel framework that involves populating a response matrix by using

attribute inference and obtaining network aware-risk scores not just by using users’ connections but weights of these connections

as well. We perform attribute inference of users based on both their textual contents and connections. Our rule-based inference

mechanism employed on contents produces inference accuracies ranging from 0.54 to 1.0 depending on the attribute at hand.

On the other hand, the inference mechanism involving users’ social connections produces inference accuracies of 1.0 almost for

all of the considered attributes. We present results and challenges of attribute inference and use inferred attributes in privacy risk

scoring. In addition, unlike existing works, we use and show that social tie strengths have to be taken into account in network-aware

privacy risk scoring.

Keywords—Facebook, privacy risk estimation, social tie strength, online social networks.

1. Introduction

A huge number of people in today’s world have
moved their social interactions to Online Social

Networks (OSNs) such as Facebook, Twitter, and
LinkedIn [1]–[3]. These OSNs paved way for users
to have a digital representation (i.e., profile) and
various opportunities such as sharing data of differ-
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ent kinds, learning new things about their hobbies,
getting news, building and maintaining connections
as well as their offline connections [4], [5]. OSN
profiles include both structured and unstructured
data of users [6]. Popular OSNs directly or indi-
rectly demand users to share increasingly more data
- of even a sensitive nature - so that other users
can find them more easily [1], [3], [7]–[9]. Con-
sequently, OSN users often willingly disclose their
personal information and they are not usually aware
of who will or will not have access to what they
have just published [3], [9]. While dissemination
of information in the real world is slow and almost
local, information shared publicly over OSNs can be
retrieved on the Internet anytime, anywhere, and by
anyone [10]. Additionally, the private information
of OSN users can also be effectively inferred by
using different techniques including graph analysis
and probabilistic classification techniques [4], [11].
For instance, according to [12], it is possible to es-
timate some private traits of a user’s personality by
leveraging Facebook activities. Another study states
that it is even possible to infer user characteristics
from the attributes of users who are part of the
same community [13]. On the other hand, third-
party OSN applications and befriended users (i.e.,
users cannot analyze their friends’ time-varying and
changing behavior) may also put the information
owner at risk in OSNs [14].

As a result, any information shared on OSNs may
be sensitive and any kind of disclosure can signif-
icantly harm users’ privacy [2] by giving way to
some threats such as identity theft, digital stalking,
building consumer models for advertising, identity
cloning, and blackmailing among many others [1],
[14]–[16]. As such, both users and OSN service
providers recognize the need to ensure that user
privacy is well preserved in OSNs [3], [5]. OSN
providers have considerably improved their privacy

protection tools by introducing more controls like
groups, lists, and circles [7], [10], [17]. However, at
the end of the day, the most powerful data protectors
are the users themselves [18], as a user’s level of
privacy attitude determines her sharing activities
on any OSN. The privacy-aware user tends not to
share her own or her friends’ sensitive or private
information, whereas an unaware user does not carry
such a concern. Access control policies enforced by
OSN providers are based on users’ privacy settings
that are confusing and time-consuming to manage.
These policies make users face too many options
and controls, which cause a lack of understanding
of the privacy risks and threats or being unable
to accurately asses them [3], [5], [9], [19]–[21].
Thus, determining privacy risks when publishing
information on OSNs often presents a challenge for
the users.

A measure of how much sensitive information
users shared with others on an OSN would help
the users understand whether they individually share
too much [3]. However, privacy measurement and
quantification is a challenging task because privacy
does not have a specific definition as its degree
differs from individual to individual. In other words,
there are different perceptions and concerns of pri-
vacy among different cultures, notions, societies,
and religions [16]. Even so, there has been a large
collection of studies with a different point of view
that considers privacy in OSNs.

Conventional privacy-related studies mainly focus
on protecting or measuring the identities or private
attributes of users [22]. On the other hand, content-
based measuring has not been strongly addressed
before and existing privacy models for structured
data are inadequate to capture privacy risks from
user posts [23]. However, a lot of users’ personal
aspects can be extracted from user-generated con-
tents [24], as a text message or post may directly or
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indirectly disclose personal information like a user’s
gender, age, political view, interests, and hobbies
that many users would not prefer to reveal di-
rectly [23], [25]. In the literature, few studies [22]–
[24] consider content in privacy scoring, while
most of them do not include methods for obtain-
ing/driving/inferring sensitive information from the
messages and status updates [2], [17], [26].

Content-based sensitivity detection is studied in
some works, but these studies do not address the
problem in terms of privacy measurement [27], [28].
Instead, these works often focus on the detection
of sensitive contents. Additionally, they also try
to categorize contents into more general private
information (i.e., vacation, location, health, etc.)
or personal attributes (i.e., gender, political view,
etc.) [27], [28]. All of these cases show that the
majority of existing privacy scoring solutions are
inspired from [1] and score users based on the
attribute they reveal to other users.

In this paper, we propose and implement a novel
privacy risk scoring framework that relies on at-
tribute inference from both content and social con-
nections of users. This framework populates a re-
sponse matrix using disclosed and inferred attributes
in an incremental way and produces network-aware
risk scores of users. Computing network-aware risk
scores involve calculation of intrinsic risk scores
at first and then giving them along with social tie
strengths to produce the final output.

Our approach is described herein for one of the
most popular OSNs, namely Facebook, but for ob-
vious reasons, applies to any other OSN trivially.
Our contributions in this paper can be summarized
as follows:

• Unlike most of the existing studies, we perform
privacy scoring over real-world Facebook data.

• We use different privacy risk scoring methods
and explore correlations between these meth-

ods.
• We build various adversarial models with dif-

ferent attribute inference capabilities based on
content and structure information of OSN users
and show that users are at considerably higher
risk against these adversaries compared to their
risk against a passive adversary.

• We adopt the self-information feature weighting
method to measure the strength of the social tie
across OSN users in a non-symmetrical way.

• We show that the strength of the social tie
from one user to another plays a statistically
significant role in computing centrality-based
(or network-aware) risk scores of OSN users.

This paper is an extension of our preliminary
work [29] and to the best of our knowledge, it
is the first study to concentrate on the privacy
scoring of Facebook users from Turkey. This paper
also suggests using social tie strength in network-
aware risk calculation. It also performs and reports
attribute inference based on users’ textual contents
and network structure. We believe that these make
this study different from the existing studies in the
field of privacy scoring over OSNs.

2. Literature Review: Privacy Evalua-
tion And Scoring In OSNs

Either consciously or unconsciously, OSN users
disclose on their profiles sensitive information that
puts their privacy at risk. Several techniques and
methods that aim at quantifying the extent of such
risks have been proposed. The table given in the
appendix presents a summary of the studies with a
focus on privacy risk scoring over OSNs. As seen
from the table, previous studies can be grouped
into two categories based on whether they perform
PRE (privacy risk estimation) or suggest a novel
framework or approach for privacy evaluation of
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OSN users.

In the first category, one of the earliest and most
popular works based on profile items belongs to Liu
and Terzi [1] who have proposed an Item Response
Theory (IRT) based model to assess the privacy risk
of OSN users. It also has been a guide for later
studies [2], [3], [10], [20], [26], [30]–[37] which
propose a new or use an existing PRE method based
on this work. Privacy-functionality score (PFS) [34]
is one of these later studies that measure privacy
by dividing the amount of information a user can
see about other users by the amount of information
it shows about herself. There are other methods
or metrics [9], [15], [18], [19], [22], [38], [39]
as well, which have a focus on privacy evalua-
tion in OSNs. For instance, Susceptible-Infectious-
Recovered (SIR) model is adopted for modeling the
spread of information in an OSN in [18].

In the second category, on the other hand, stud-
ies [5], [7], [11], [14], [17], [21], [23]–[25], [40]–
[42] focus on building a new and complete frame-
work or model for PRE and increasing privacy
awareness in OSNs. The majority of these studies
suggest using three types of information, but they
often do not concern with the techniques to be
employed. For instance, SONET defines attribute to
actor, attribute to attribute, and actor to actor rela-
tionships and contains a privacy index (PIDX) based
on the visibility and sensitivity of user attributes.
Besides, there are developed OSN applications [4],
[43] as well, which mostly aim to increase the
privacy awareness of users. For instance, Friend
Inspector is a serious game that allows its users
to playfully increase their privacy awareness on
Facebook.

When we compare the previous studies in terms
of their main focus, it is clear that the majority of
them consider risk scoring of users, while some
of them take privacy in different aspects such as

measuring the extent of information diffusion [9],
[18], privacy setting configuration [21], predicting
privacy vulnerability of users [44], sharing behavior
analysis [45], [46], modeling of privacy attacks [8],
and privacy-preserving friending [6], [47]. Similarly,
the majority of the works consider users’ point of
view when measuring privacy risk, while a few
are service oriented [14] and consider third-party
applications [11], [36].

As a branch of link prediction, tie strength
prediction has also received much attention from
researchers in recent years. In the literature, tie
strength prediction is one of the hot topics in the
OSN research field and many studies try to achieve
this task using different techniques such as super-
vised learning [48], [49], regressions models [50],
similarity-based models [51], simple partial [52] or
linear functions [49], [53] and so on.

On the other hand, when the previous studies are
examined in terms of the type of information that
they use, we observed that most studies rely on
structured data (i.e., profile items) and a few suggest
employing actions and content in the privacy risk
scoring method or model. We also observe that
content-based studies are typically not concerned
with the technologies that can extract or infer at-
tribute values from the unstructured data [2], [38]. It
is important to note that some content-based studies
aim at detecting sensitive information from OSN
data without any emphasis on privacy evaluation and
scoring. As of the writing of this paper, we were
able to detect only a handful of studies [22]–[25]
that use content in the privacy evaluation of OSN
users.

In this study, however, we studied the attribute
inference of users based on their profile items, tex-
tual contents, and connections. Afterward, inferred
attributes along with the disclosed ones are used for
the privacy scoring of users. Privacy risk scoring is
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Table 1.
Quantitative description of crawled public Facebook data [45].

Property (# of) Count Property (# of) Count

users (nodes) whose entire profile has been crawled 20,000 public wall 18,579
friendship links (edges) among crawled users 402,300 private wall 1,421
friendship links 3,980,270 private friend list 11,675
public and partially public friend list 8,325 liked pages [54] 459,335
unique accounts discovered 2,350,454 wall activities (post, comment, reply) 5,972,531
users disclosing date of birth 1,687 users disclosing age gender 16,286
users whose age is detected/computed 879 users disclosing places 11,113

performed by using both profile attributes and social
connections (i.e., network structure) of users. In
network-structure-based scoring, social tie strengths
of users are taken into consideration as well.

We believe that content-based attribute inference
and using social tie strengths in network-aware risk
scoring make this study different from the existing
ones.

3. Material

3.1. Data set

The data sets utilized in this study were collected
with a web crawler that obtains public Facebook
data from user accounts. The design choices and
implementation details of the crawler, along with
detailed statistical analyses of the collected OSN
data can be found in both [45] and [55]. This crawler
outputs a breadth-first traversal/search (BFS) of all
public, Turkish Facebook accounts starting at a seed
account. It then visits the seed user’s friends, friends
of the seed’s friends, and so on. Thus, crawling
creates a process similar to the waves of a water
droplet.

In this phase, the crawler visits an account and
fetches all public profile information, wall content,

and friend list of the current account. The crawler
then stores the collected friend list into a database
so as to visit the accounts within the list in the
next steps of crawling and this process continues
until it is stopped. The only criterion in the crawling
process is that the crawler just collected every public
information from user accounts in text format. That
is, multimedia and other non-textual information is
discarded. Additionally, information about groups
that users joined and pages that users liked are not
crawled.

We would like to note that the crawling process
is started by using just a few accounts that were
befriended with the seed account. No additional
criterion is applied to decide how to select accounts
to visit by the crawler. The crawling process is
performed in BFS order and therefore accounts
befriended with the first, second, and any other
levels of friends are found to be potential (since
the crawling process was stopped after visiting 20K
users, so remaining unvisited ones can be referred to
as potential) candidates to be visited by the crawler.

In this study, we work with the largest sub-graph
generated by the crawler of [45]. The statistical
properties of this graph are summarized in Table 1.
The graph contains basic profile information of 20K
users from Turkey, alongside their friendship links
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Table 2.
List of attributes used in the privacy risk estimation process.

Attribute/Item Code Attribute/Item Code Attribute/Item Code Attribute/Item Code

Friend List FL Political View PV Email MA Having Child Status CHL
Gender G School EDU Marriage Date MD Relationship Status REL
Birth Date BD Place (Hometown) HT OSN accounts CON Family Membership KIN
Age AG Place (Lived-in) LIV Places (Other) OP Phone Number PN

Table 3.
A sample list of Facebook pages associated with political parties.

Party Facebook Page Party Facebook Page
Name Code ID Title Name Code ID Title

Justice and
Development
Party

JDP

4*****1 T C Devlet Başkanı Erdoğan
Good
Party

GP

1*****4 Meral Akşener

5*****7 Efsane Lider R T Erdoğan 1*****6
Cumhurbaşkanı Adayım Meral
Akşener

7*****6 AkParti 2*****5 İYİ Parti Gönüllüleri
Nationalist
Movement
Party

NMP
7*****3 Lider Devlet Bahçeli Peoples’

Democratic
Party

DPP
5*****3 Selahattin Demirtaş

7*****3 Ülkücü Hareket Engellenemez 1*****4 Sırrı Süreyya ÖNDER HDP
4*****0 Milliyetçi Hareket Partisi MHP 1*****2 HDP Lideri Selahattin Demirtaş

Republican
People’s
Party

RPP

4*****9 Kemal Kılıçdaroğlu
Felicity
Party

HP

2*****8 Temel Karamollaoğlu
1*****7 Cumhuriyet Halk Partisi 1*****4 Saadet Partisi Milli Görüş

1*****4 Ne Mutlu CHP liyiz 9*****4
Saadet Partisi Pendik Gençlik
Kolları Resmi Sayfası

(approx. 4M), and wall activities (over 5.9M) which
are comprised of posts, comments, and replies.
Notice that liked pages of users are collected under
a different study aiming at proposing a new privacy
scoring framework [54].

As seen in Table 1, the largest snapshot of the
crawled data contains a high volume of user data
and is sufficient for making rule-based attribute
inference. Please note that even in the case of
automatic inference, the data is very sufficient to
create large datasets to train learning models as done
in [56]. In this study, we disregard the underlying
graph structure and focus only on basic profile
information and 5.9M wall activities to perform

privacy risk scoring of Facebook users. Notice that
this largest snapshot is a graph with 20K nodes and
402,3K directed edges. To perform attribute infer-
ence and PRE, we consider 16 different personal
attributes of users. These attributes are given along
with their codes in Table 2. The reader is advised
to [55] for all of the details of the crawling process
as well as the detailed statistical description of the
crawled data with respect to its different snapshots.

3.2. Lexicon of political pages

This lexicon includes a list of Facebook pages
along with their supported political party. To create
this lexicon, we started with a subset of 459,335
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Figure 1. Flowchart of our privacy risk scoring method.

Facebook pages liked by 13,023 of 20K users in
the largest snapshot of the crawled data. As stated
before, our crawler does not traverse liked pages
of users, but this additional data is crawled by
Kılıç and Inan [54] in their separate study that
proposes a quantitative framework for privacy risk
score evaluation. Hereby, we could create a subset
of liked pages that are created for political purposes.

After creating our subset, we selected the pages
whose title includes any term related to six main
political parties (i.e., JDP, NMP, RPP, HP, DPP, and
GP) in Turkey. For instance, if the title of a page
includes “Devlet Bahçeli”, we assigned the related
page to the pages supporting the NMP. Similarly, if
the title of a page contains “Kemal Kılıçdaroğlu”,
we assigned the related page to pages supporting the
RRP party. This process produced a list including
1,763 pages such that each page is associated with
one of the six parties.

Table 3 gives an example and incomplete list of
pages with their associated political parties. We used

this lexicon to infer the political views of users
based on their liked pages (see Section 4.1.2)

3.3. Lexicon of schools and universities

This lexicon contains the names of primary, sec-
ondary, and high schools [57], [58] in Turkey. It also
includes university names in Turkey along with the
names of cities they are located [59].

3.4. Lexicon of district and provinces

This lexicon includes province and district names
in Turkey. Each record in this lexicon stores infor-
mation on the province a district is located at.

4. Methods

This section describes the methods we used to
perform privacy risk scoring of Facebook users.
Figure 1 depicts a flowchart of our privacy risk
scoring framework that includes the following steps:

• Attribute inference: In this step, we perform
attribute inference and build different response
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matrices to explore the effect of attribute in-
ference on both intrinsic and network-aware
privacy risk scores of users.

• Building graph representation: Converts rela-
tional Facebook data into a graph using friend-
ship links among users.

• Tie strength calculation: Calculates tie strength
between each pair of befriended users based
on our tie strength components. Computed tie
strengths are incorporated into the graph as edge
weights (i.e., transition probabilities).

• Intrinsic privacy risk calculation: Computes in-
trinsic privacy risk scores based on sensitivity
and visibility components obtained from the
response matrix. These intrinsic risk values are
incorporated into the graph as relative impor-
tance (i.e., initial state value) of nodes during
the traversal of nodes (i.e., users).

• Network-aware privacy risk calculation:
Performs privacy risk measurement by running
a personalized page rank algorithm on the final
graph resulting from the previous steps briefly
explained above.

The natural choice of a data structure to represent
OSNs is a graph. As such, we consider a set of n
users participating in an OSN as a directed graph
G(V,E), where V is the set of nodes {v1,v2, . . . ,vn}
in which each node v j ∈ V represents a user, and
E ⊆V ×V is a set of directed edges {e1,e2, . . . ,em}
such that an edge eq ∈ E represents a friendship
link between a pair of users v j,v j′ ∈ V . Each user
in V may disclose information related to a set of t
topics T = {t1, t2, . . . , tz} that corresponds to his/her
profile items such as gender, age, job, religion, and
so on [31]. Following subsections present the details
of our proposed method.

4.1. Building a Response Matrix

A response matrix R is an n× z matrix which
is associated with the set V of users and the set
T of attributes [31]. Response matrix R includes
attributes disclosed by users in the dichotomous and
polytomous cases. In the dichotomous case, cells of
R take values in {0,1}, while in the polytomous
case individual cell values are integers in range
{0,1, . . . , l} [1]. In a dichotomous R, entry r ji = 0
implies that user v j keeps item ti private, whereas
r ji = 1 represents that user v j makes item ti pub-
licly available. In a polytomous R, r ji = 0 has the
same meaning compared with the dichotomous case,
while r ji = k with k≥ 1 means that user v j discloses
information regarding item ti to users which are at
most k links away in G [1], [31].

We make the critical observation that in addition
to which attributes a user reveals willingly, the
attributes that can be inferred successfully by an
adversary should be incorporated into the process
of risk scoring. Hence, a deeper and more effective
privacy measurement of OSN users can be achieved.
As a side benefit, users could be informed that they
may be under considerable privacy violation risk
even if they keep their data private. To do so, in
this paper, we use three different models to build
our response matrix. These models are described in
the following sub-headings.

4.1.1 L1: Revealed Attributes

This model considers only revealed attribute val-
ues (e.g., similar setting as in [1] and most of the
related work) to build a response matrix.

4.1.2 L2: Attributes Inferred from Contents

Uses meta-data and contents of all activities of
a user’s wall together with the profile items and
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liked pages to infer private attribute values. This
model utilizes regular expressions, some rules, and
activity meta-data in the inference phase. We group
our attributes in Table 2 into 6 groups based on the
inference mechanism as follows:

• G1: This group includes attributes MA, PN, and
CON. The inference mechanism utilizes regular
expressions. For instance, we search URLs in
attribute fields and the activity contents of a
user. Next, we filter URLs to select ones that in-
clude OSN names (e.g., Twitter, Instagram, etc.)
and extract the username from these connection
URLs. Similarly, we search email addresses and
phone numbers within the activity contents and
attribute fields of users.

• G2: This group includes attributes REL and
CHL. To infer these two attributes, we first seek
for relationship and family membership fields
of both the account owner and his/her friends’
profiles to check whether they have disclosed a
private relationship or family membership with
the wall owner. If no information is found, a
rule-based inference mechanism is employed to
infer the target attribute values from the wall
activities.
Let VA be a Facebook user whose REL and
CHL attributes will be inferred, while F =

{v1,v2, . . . ,v f } represents a set of befriended
users with VA. Additionally, let WA represents
a set of activity contents written by the account
owner (i.e., VA), while WF stands for a set of
activity contents both addressing (i.e., targeting)
user VA and written by any of his/her friends
in F . To infer related attributes of user VA, we
search all textual content in both WA and WF for
a phrase p in a set of phrases denoted by P that
includes single or multi-word phrases specific
to the target attribute. If any p ∈ P is observed
in WA∪WF , it is assumed that the target attribute

is inferred by taking its orientation into account.
For the REL attribute, P contains phrases that
strongly imply that VA’s relationship status has
changed. These phrases are selected based on
our observations and sample phrases are as
follows: “düğünüm var (I have a wedding ...)”,
“artık evliyim (I am married now)”, “evlendik
(we got married)”, “düğünüme bekliyorum
(waiting for you to attend my wedding)”,
“evlilik yıl dönümü (wedding anniversary)”,
“eşimle beraber (together with my spouse)”,
“mutluluklar (I wish you to be happy)”, “ömür
boyu mutlu (be happy for life)”, “bir yastıkta
(be happy for life)”, “güzel gelinim (my beauti-
ful bride)”, “eşinle birlikte (together with your
spouse)”, and “mutlu mesud (I wish you to be
happy)”.
For the CHL attribute, the same process is
employed on P including phrases that imply
that user VA has a child. Sample phrases are as
follows: “analı babalı.. (wish your child grow
up with parents..)”, “bebeğin çok tatlı (your
baby is very sweet)”, “yanaklarını yerim (I eat
your cheeks)”, “allah bağışlasın (god bless)”,
and so on.

• G3: This group contains attributes FL, BD,
AG, MD, and EDU. Inference of these attribute
values relies mainly on wall activities, user in-
teraction listed under wall activities, and meta-
data of activities.
To infer the friend list of a wall owner, we
search users who interact (i.e., posting a status,
commenting on the wall owner’s post, etc.) with
the wall owner on both their own wall pages and
wall owner’s wall.
On the other hand, the simple rule-based in-
ference mechanism employed to infer attributes
in G2 is again employed to infer the BD, AG,
EDU, and MD attribute values in a similar way.
In this phase, we only consider event and direct

33



INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
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post within WA ∪WF . To infer BD, we create
P to include some multi-word phrases which
give clues about the birth day of VA, while we
add phrases into the P implying educational
changes, marriage, and birthday celebration to
infer EDU, MD, and AG attributes respectively.
For the BD attribute some of phrases in P are
as follows: “doğum günü (birthday..)”, “nice
yaşlara (happy birthday)”, “tarihinde doğdu
(born on..)”.
For the EDU attribute, sample phrases are
as follows: “okula başladı (started school)”,
“okulu terk etti (dropped out of school)”,
“mezun oldu (graduated)”.
For the MD attribute, sample phrases used in
P are as follows: “düğünüm var (I have wed-
ding)”, “evlendim (I got married)”, and so on.
Note that if any of p ∈ P observed in just event
and direct posts within WA ∪WF , we use the
orientation of the p to infer the EDU attribute,
while we use the most frequently observed
posting date to infer the BD attribute of VA,
To infer the AG attribute, on the other hand,
we only consider event posts that show the
exact date of birth information. Finally, we infer
the MD attribute by taking the posting date of
activities.
If any p is not observed in event posts, we
additionally use our lexicon of schools and
universities (see Section 3.3) and try to match
any of the school names within any part of the
activity contents within WA∪WF .

• G4: Inference is quite similar to the mecha-
nism employed to infer attributes in both G2
and G3. This group is comprised of attributes
HT, LIV, and OP. To infer these attributes,
the inference mechanism applies lexicon-based
searching over all textual content (i.e., WA)
generated by the wall/account owner (i.e., VA).
The infer these three attributes, we use a com-

mon lexicon (see Section 3.4) that includes
district and province names in Turkey. However,
we apply simple rules to differentiate (i.e.,
hometown or liven-in place) the values of these
attributes.
If we find a place name in WA, we also search
for phrases P in both the preceding and follow-
ing words of the place name. If any p in P exists
before or after the place name, we add this place
as one of the possible candidates of HT or LIV
attribute. For the LIV attribute, we additionally
consider posting location information, if exists,
to infer possible candidates of users’ places.
For the OP attribute, only place names matched
with the lexicon are considered to be candidate
places.
For the HT attribtue P includes the some of
the followings: “baba ocağı (father’s home)”,
“memleketim (my hometown)”, “doğduğum yer
(where I was born)”, and “bizim köy (our
village)”.
For the LIV attribute, sample phrases in P are
as follows: “ilk iş günü (first business day)”,
“iş yerim (my working place)”, “okulum (my
school)”, “taşındım (moved my house)”, and
“yeni evim (my new house)”.

• G5: This group includes only the attribute PV.
The inference of this attribute is based on the
users’ liked pages. To achieve this task, we
used our dictionary of political pages (see Sec-
tion 3.2) and inferred which party is supported
by the wall owner. At this stage, we count the
number of liked political pages by the wall
owner, and the PV value is determined by
looking at which of the six main parties (i.e.,
JDP, NMP, RPP, HP, DPP, and GP) was liked
more frequently.

• G6: This group includes only the attribute G.
We employ an inference mechanism that builds
a learning model for determining the gender
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of the wall owner. The details of this learning
model are presented in [56].

4.1.3 L3: Attributes Inferred from Social Con-
nections

This model considers inference on social connec-
tions of the users and mainly depends on the bi-
directional structure of Facebook. Contrary to the
L2 model, it is not possible to employ attribute
inference mechanisms to determine the values of all
attributes that can be obtained by using the social
connections of users. This is because the data used
in this study is real data and it is incomplete. As
such, in the L3 model, we only consider a few
attributes that we could be able to obtain, and group
them into 3 groups as follows:

• G1: This group includes the FL attribute. We
extract the friend list of a user by performing
reverse social engineering over the OSN [56],
[60].

• G2: This group includes only the attribute G.
Inference mechanism is based on the popularity
of the user’s first name among other users in the
crawled snapshot [56].

• G3: This group contains the attributes KIN,
REL, and CHL. The inference mechanism again
depends on the bi-directional nature of Face-
book. For relationship status (i.e., REL), we
only search for any user who discloses that
he/she is in a relationship with the related user.
For family membership attributes, on the other
hand, we infer all kinds of family memberships
of the related user if each of these relationships
is disclosed by the related user and/or his/her
friends. For instance, let vA, vB, and vC be three
Facebook users and vA discloses that he is a son
of vB, while vC reveals that she is the wife of vB.
Using these connections, we infer that vA is also

a son of vC, even though vC does not explicitly
declare this relationship publicly. We would like
to note that we perform this inference only for
one step to avoid making biased inferences,
because some users may share some loved ones
as their family members even though they are
not real family members. This can be explained
with the following example: Assume that vA

discloses that he/she is a sibling of vB (even this
is not true in real life), and it is also inferred
that vC is a sibling of vA. Running the inference
mechanism for more than one step causes have
false relationship that vC is a sibling of vB which
is not true in real life. Therefore, the inference
phase is restricted to running just one step on
the overall network to eliminate this kind of
false inference.

4.2. Tie Strength Calculation

A common point among existing studies on tie
strength calculation over OSN data is that their
models output a strength label (e.g., strong, weak)
or a score representing the social strength between
a pair of OSN users. A score of tie strength is
computed by using weight values (i.e., parameter
importance) of a set of components which may vary
depending on the completeness of the OSN data at
hand. On the other hand, as stated in Section 2, dif-
ferent techniques (e.g., linear functions, regression
models) are employed to learn/compute the weights
of components.

In this paper, we use real-world Facebook data
that only provides whether there is a friendship
link between two users without any indication of
the strength of this link or tie. Since supervised
learning approaches require labeled training data,
we adopt and use a linear function to measure tie
strength between users as in [49], [53]. Our model
uses weights of the tie strength components which
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Table 4.
Tie strength components

Component Code
Bidirectional components
Whether user vA and user vB have the same gender SGEN
# of common friends CFRI
# of liked pages in common CPAGE
Whether user vA and user vB work in the same
company

SCOMP

Whether user vA and user vB go/went to the same
school

SEDU

Whether user vA and user vB are from the same
hometown

SHT

Whether user vA and user vB live in the same place SLI
Whether user vA and user vB have the same job title SJOB
Unidirectional components
# of events that user vA attended with user vB EVNT
Whether user vA reveals being in a relation with
user vB

PREL

Whether user vA reveals being family members with
user vB

FMEM

# of posts in which user vA tagged user vB PATAG
# of posts in which user vA tagged only user vB PSTAG
# of directly commented posts (i.e., user vA writes the
first comment for any post by user vB)

CMDIR

# of indirectly commented posts (i.e., user vA writes a
comment in any order but not the first for any post by
user vB)

CMIND

# of directly replied comments (i.e., user vA writes the
first reply for a comment by user vB)

RPDIR

# of indirectly replied comments (i.e., user vA writes a
reply in any order but not the first for a comment by
user vB)

RPIND

# of direct posts shared by user vA on the wall of
user vB

DRPST

are presented in Table 4. Inspired by [61], in this
paper, we adopt and use the self-information model
to assign weights to our components. This is one of
the major contributions of this paper. For a set of C
components {λ1,λ2, . . . ,λc}, we construct a binary
vector Beq to represent a directed edge eq from user
v j to v j′ (i.e., v j→ v j′):

Beq = 〈Iλ1(eq),Iλ2(eq), . . . ,Iλc(eq)〉 (1)

where Iλi(eq) is a component indicator function

which indicates whether eq satisfies component λi:

Iλi(eq) =

{
1 if eq satisfies component λi

0 otherwise
(2)

Then, the tie strength between v j and v j′ is calcu-
lated as the weighted sum of individual component
values:

tie strenght(eq) =
c

∑
i=0

Oλi(eq)×W (λi) (3)

where Oλi(eq) is the observed value of component λi

for edge eq. On the other hand, W (λi) represents the
weight of the component λi and equals to its self-
information which is defined as I(m) =−logPr(m)

where Pr(m) represents the probability that message
m is chosen from all possible choices in the mes-
sage space. By the way, W (λi) = I(Iλi(.) = 1) =
−logPr(Iλi(.) = 1) where it is not possible to get
the true value of Pr(Iλi(.) = 1). As such, we obtain
the value of W (λi) by estimating Pr(Iλi(.) = 1) on
our directed edge set E as follows [61]:

W (λi) = P̂r(Iλi(.) = 1) =
|{eq ∈ E|Iλi(eq) = 1}|

|E|
(4)

4.3. Privacy Risk Measurement

4.3.1 General Framework

Most of the existing studies measure privacy risk
based on a general framework proposed by Liu and
Terzi [1]. This framework depends on the sensitivity
and visibility of attributes and is formulated as
follows:

PR(v j) =
z

∑
i=1

PR(ti,v j) =
z

∑
i=1

βti×V (ti,v j) (5)

In equation 5, PR(v j) represents overall privacy risk
of user v j, while t is the total number of items
considered in privacy scoring. On the other hand,
PR(ti,v j), βti , and V (ti,v j) correspond to privacy
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risk of user v j due to item ti, sensitivity of item
ti, and visibility of item ti with respect to the user
v j, respectively. As seen from the general frame-
work, privacy scores depend on the sensitivity and
visibility of items. Sensitivity measures how much
sensitive information is revealed by a user, while
visibility measures how wider a range of informa-
tion about a user spreads. These two components
are computed based on the response matrix R.

4.3.2 IRT Scoring

Liu and Terzi calculate the sensitivity and visibil-
ity of items using two different methods [1]. The
first one, called the naive method, uses observed
visibility and sensitivity of items and is formulated
as follows in dichotomous case:

PR(v j) =
z

∑
i=1

n−|ri|
n︸ ︷︷ ︸
βi

× |ri|
n
× |r

j|
z︸ ︷︷ ︸

Pi j=V (i, j)

(6)

In equation 6, n and z represents the number of
users and items in network respectively. On the
other hand, |ri| denotes the number of users who
set r( j, i)=1, while |r j| is the number of items for
which user v j sets r( j, i) = 1.

Sensitivity values computed with the naive
method are significantly biased by the user popu-
lation. The second method, inspired by IRT tries to
remedy this problem. Risk scoring in the dichoto-
mous case is carried out as follows [1]:

PR(v j) =
z

∑
i=1

βi×
1

1+ eαi(θ j−βi)︸ ︷︷ ︸
Pi j=V (i, j)

(7)

Notice that the equations given above are applicable
in the dichotomous case. The reader can refer to [1]
for details on the handling of polytomous R.

4.3.3 Intrinsic Privacy Risk Score

In their recent work, Pensa and diBlasi [31]
proposed a less expensive formulation of Liu and
Terzi’s naive model (see eq. 6) that can be em-
ployed in both polytomous and dichotomous cases.
According to their method, for any visibility degree
h = {0,1, . . . , l}, sensitivity σi of item ti can be
computed depending on whether h equals one of
the two extreme (i.e., h = 0 or h = l) values. If h
takes one of the two extreme values, the sensitivity
of the item can be computed as follows [31]:

σi0 =
n−∑

n
j=1 f(r ji>1)

n
, for h = 0, and (8)

σil =
n−∑

n
j=1 f(r ji>l)

n
for h = l. (9)

If the value of h is not equal to any extreme value,
on the other hand, the sensitivity is computed as
follows [31]:

σih =
1
2

(n−∑
n
j=1 f(r ji>h)

n
+

n−∑
n
j=1 f(r ji>h+1)

n

)
(10)

In equations given above (eq. 8, eq. 9, and eq. 10),
fA is an indicator function with value 1 when
condition A is true and 0 when A is false. This
two way computation of sensitivity guarantees that
σi0 < σi1 < · · ·< σil . The visibility calculation con-
siders visibility vi j (i.e., V (i, j)) of an item ti due to
user v j and, for any degree h = {0,1, . . . , l}, and it
can be computed as follows [31]:

vi jh =
∑

n
j=1 f(r ji=h)

n
×

∑
z
i=1 f(r ji=h)

z
×h (11)

After computing sensitivity and visibility compo-
nents, intrinsic privacy risk ρp(v j) for any given user
v j is computed as follows [31]:

ρp(v j) =
z

∑
i=1

ρp(v j, ti)
maxv j′∈V ρp(v j′, ti)

(12)
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In equation 12, ρp(v j, ti) =∑
l
h=0 σih×vi jh is the risk

of item ti due to user v j.

In this paper, we use both IRT scoring and intrin-
sic privacy risk (IPS) scoring to compute the privacy
risks of users due to their disclosed items. For the
rest of this paper, we will refer to these two methods
as IRT and IPS in short.

4.3.4 Network-aware Privacy Risk Score

Privacy risk of a user does not only stem from
his/her publicly available information, but the risk
is also affected by his/her friends [31]–[33]. For
instance, if a user is mostly befriended by privacy-
unaware users, then the user should be assigned
a higher privacy risk than a user who is be-
friended by users who care about both their own
and their friends’ privacy [31]. As such, Pensa
and diBlasi [31] proposed a network-aware privacy
scoring method inspired by the page rank algo-
rithm [62].

In this method, each user v j ∈ V is associ-
ated with his/her intrinsic privacy score ρp(v j).
Unlike the original page rank algorithm, the au-
thors use a personalized non-uniform page rank
vector P = [p(v1), . . . , p(vn)]

T , where each com-
ponent corresponding to node v j is equal to
ρp(v j)/∑

n
j′=1 ρp(v j′) [31]. Based on this setting,

network-aware privacy scores of all users are de-
fined as follows [31]:

P = dAT P+
1−d

∑
n
j=1 ρp(v j)

ρ (13)

In equation 13, ρ = [ρp(v1), . . . ,ρp(vn)]
T , d is a

damping factor, A is an n×n matrix such that each
element a j j′ = a j′ j = 1/deg(v j), if (v j,v j′) ∈ E, and
a j j′ = 0 otherwise.

In this paper, we additionally, use this network
aware-risk scoring method to obtain privacy risk

scores of users due to their social connections in
the network. In the rest of this paper, we refer to
the network-aware risk scoring method with NPS.

5. Experimental Results

To measure the privacy risk of users, we first
created our response matrices using different mod-
els. In this phase, we use R1, R2, and R3 matrices
populated by L1, L1 + L2, and L1 + L2 + L3 models
respectively in an incremental way. Note that the L2
and L3 models infer private attributes of users based
on different techniques (see Figure 1) such as reg-
ular expressions, social connections, lexicons, and
meta-data of activities depending on the attribute at
hand.

We performed extensive experiments on the
crawled data that is described in Table 1 and con-
tains approximately 5.9M wall activities and profile
information of 20K users. The following subsections
present the results of each sub-task in our flowchart,
a qualitative assessment of risk scoring methods,
and an overall privacy risk scoring discussion for
Turkish Facebook users, respectively.

5.1. Attribute inference

Figure 2 depicts the number of revealed (for L1)
and inferred (for L2 and L3) attributes for users.
As seen from Figure 2, when we consider overall
inferred attributes, our results show that the most
inferred ones are FL, G, HT, and LIV attributes.

Using the L2 model, we were able to perform
the inference task for the majority of items. The
attributes whose values are most inferred are FL,
G, EDU, HT, LIV, and OP, while the least inferred
ones are MA and PV. In this model, KIN and PV
attributes are difficult to correctly interpret through
automatic tools because people are prone to use
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Figure 2. The number of revealed (L1) and inferred (L2 and L3) attributes with respect to the users.

Figure 3. Accuracy of our inference models with respect to distinct attributes.

sarcastic phrases or provoking words that cannot
be easily interpreted. Therefore, we prefer not to
include these items in our content-based inference
task in the L2 model (PV attribute is inferred just
based on liked pages of users) and leave them
untouched for future improvements.

The L3 model, on the other hand, can be em-
ployed to infer FL, G, PV, EDU, HT, LIV, OP, KIN,
REL, and CHL attributes. However, we employed
the L3 model just for a few of these attributes
because users’ information in our crawled snapshot
is incomplete. The results in Figure 2 show that
it is possible to infer the complete list of a user’s
friend list (i.e., FL), family membership (i.e., KIN,
and CHL), and private relationship (i.e., REL). The

popularity of an attribute within the overall network
can help to infer some attributes like G, even when
the first neighborhood (i.e., direct friends) of a user
is private or incomplete.

After completing attribute inference, we measured
how accurate our L2 and L3 models are. To do so,
we used a simple approach such that if there is an
intersection between revealed and inferred value(s),
we assume that the related model’s inference is
true and false otherwise. Using this approach, we
measured the accuracy of our inference models
concerning the attributes. The inference accuracy of
an attribute is computed by dividing the number of
total users whose attributes are inferred correctly by
the total number of users who disclose the attribute.
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Table 5.
Computed weights of tie strength components

in ascending order.

Component Weight Component Weight

PREL 0.000577 CMDIR 0.027054
EVNT 0.001148 RPDIR 0.038379
SJOB 0.002426 SEDU 0.044330
FMEM 0.002461 CMIND 0.122535
RPIND 0.002575 CPAGE 0.194213
DRPST 0.007238 SHT 0.211385
PSTAG 0.014422 SLI 0.235391
PATAG 0.014914 CFRI 0.292170
SCOMP 0.018558 SGEN 0.769739

Inference accuracy for all of the considered at-
tributes is given in Figure 3, where 0 means that we
do not include the related attribute in our inference
task for the corresponding model.

As seen from Figure 3, the L2 model often
achieves considerable accuracy even though it infers
attribute values from textual contents and liked
pages of users. On the other hand, attributes that
can not be detected using a regular format or some
specific rules were inferred with lower accuracy
than the accuracy of attributes inferred by regular
expressions and specific rules. Attributes that are
inferred with the highest accuracy by the L2 model
are FL (100%), PV (100%), CHL (100%), REL
(99.1%), G (98.3%), and BD (98.1%), while the
lowest accuracy measurements are obtained for HT
(59.4%), LIV (57.9%), and PN (54.8%) respectively.

The L3 model, on the other hand, achieves very
high accuracy for all attributes (i.e., FL, G, KIN,
REL, and CHL) it considers. This is because the L3
model uses social connection information that is not
required to be mined or extracted by an additional
step. In other words, this information may be an

edge known to be present (due to the bi-directional
nature of Facebook) or an attribute revealed by any
user in the network. As a final step of this first
phase, we created three different response matrices
in dichotomous form by populating revealed or
inferred values of attributes. We aim to explore
how the privacy risks of users were affected by
our attribute inference models. For this purpose, we
used an incremental way and created three response
matrices, namely R1, R2, and R3 by populating
them with attribute values obtained by L1, L1 +
L2, and L1 + L2 + L3 respectively.

We would like to note that while populating R2
and R3 matrices, we ignored attributes that are
predicted with an accuracy rate below 90%. Our aim
in doing this is to filter out attributes -inferred with
low accuracy- that may cause any bias in privacy
risk scoring.

5.2. Results of tie strength calculation

In the second phase of our privacy scoring frame-
work, we computed tie strengths between each pair
of befriended users and injected these strengths as
edge weights in the next step. We first calculated
self-information of the tie strength components as
their weights using Eq. 4. We obtained our weights
based on the satisfaction of our components by each
directed edge of 402.3K edges. Table 5 presents the
results of this experiment which shows that the top
five most important components of social friending
are SGEN, CFRI, SLI, SHT, and CPAGE.

Secondly, we computed tie strength between each
pair of users with Eq. 3 which is based on the
weight and the observed value of each component in
interactions between these users. We then injected
these tie strengths into the graph representation of
our crawled network to represent edge weights. Note
that our tie strength computation produces non-
symmetric weights for each (now, directional) edges
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(a)

(b)

Figure 4. Privacy risks of randomly selected 100 users with respect to the L1, L1 + L2, and L1 +
L2 + L3 models. Risk scores are obtained with (a) IPS, (b) IRT.

between a pair of users due to the unidirectional
components given previously in Table 4.

5.3. Results of privacy risk scoring

5.3.1 Risk due to revealed and inferred at-
tributes

In this phase, we employ IRT and IPS privacy risk
scoring methods formulated in Eq. 7 and Eq. 12,
respectively. We obtained privacy risks of 20K users
due to their revealed and inferred items. Next, we
fed risk scores into the PageRank algorithm and
obtained network-aware privacy scores. Note that
our response matrices (i.e., R1, R2, and R3) are
populated in an incremental way and store infor-
mation about how users make their items visible or
think that sensitive. However, each of these matrices
has different nature due to we populate them by
including inferred items (actually kept private in
reality) in each step. This leads an item to have
different sensitivity and visibility values for each of
our response matrices.

For instance, assume that an arbitrary attribute

A1 is kept private by the majority of users and
we inferred its value by applying the L2 model for
most of the users. In this case, the sensitivity of
A1 would be high in response matrix R1 filled by
the L1 model, but its sensitivity would be low in
response matrix R2 filled by the L1 + L2 model.
This is because item A1 would be shared in R2 by
the majority of users in the OSN. This case causes
to compute biased privacy risks for three models.
Therefore, in this paper, we obtained sensitivity and
visibility of items based on the R1 matrix and used
these values to compute privacy risks from R2 and
R3 matrices as well. Figure 4a and Figure 4b depict
privacy risks of randomly selected 100 users due to
their shared/inferred items concerning the R1, R2,
and R3 matrices filled by L1, L1 + L2, and L1 +
L2 + L3 models, respectively.

As seen from these figures, IRT and IPS methods
have similar behavior and produce scores at dif-
ferent scales. Privacy risk of users increases (even
though attributes inferred with low accuracy are fil-
tered) after making attribute inference. The highest
privacy risk scores are obtained on the R3 matrix
which is filled by all our models.
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(a)

(b)

(c)

(d)

Figure 5. Privacy risks of randomly selected 100 users with respect to the L1, L1 + L2, and L1 +
L2 + L3 models. Risk scores are obtained with (a) NPSIPS, (b) NPSIPS-TS, (c) NPSIRT, and finally,
(d) NPSIRT-TS.

5.3.2 Risk due to friendship connections

In this phase, we obtained the NPS values of
users by using the PageRank algorithm which is
formulated in Eq. 13. However, differently from
[31], we also injected social tie strengths (TS in
short) of users as edge weights which is one of
the major contributions of this paper. In this phase,
we obtained NPS values in different ways where
we fed IRT and IPS scores as initial values of the
PageRank algorithm. As such, we use NPSIPS and
NPSIRT to represent NPS scores obtained by using
IRT and IPS scores as initial values respectively.

Additionally, we also add the “TS” term as an
indicator of whether NPS scores are obtained by
injecting social tie strengths or not. For instance,
NPSIPS-TS means that NPS scores are obtained by
running PageRank injected with user’s social tie
strengths and uses IPS scores as its initial values.

We obtained users’ NPS values depending on the
initial risk scoring method (i.e., IRT or IPS), re-
sponse matrix, and injection status of the PageRank
algorithm. Figure 5a and Figure 5c depict NPSIPS

and NPSIRT privacy risk scores of previously se-
lected 100 users with respected to the attribute
models. Figure 5b and Figure 5d, on the other hand,
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show results of the same experiments on injected
PageRank with social tie strengths.

As seen from these figures, privacy risks due to
revealed items and social connections are signif-
icantly different from each other. Using IRT and
IPS values to obtain PageRank-based NPS values
only changes the scale of risk score as the behavior
of the PageRank is the same for each case. NPS
scores make it clear to observe which users are
more central and build more social connections in
the network. For instance, the user numbered 94 is
at more central and builds more social connections
among previously selected 100 users in the network.
Tie strengths also have a significant effect on the
NPS scores of users. The NPS values of users may
increase or decrease depending on the tie strengths
of their connections. For instance, the NPS value
of the user numbered 25 decreased after injecting
the PageRank with tie strengths between his/her
connections, while the reverse is also true for user
numbered 13 (see Figure 5b and Figure 5c).

We explore the correlation between risk scoring
methods and chi-square testing in the next subsec-
tions to give a more clear insight into the behavior
and the effect of our suggestion of using tie strength
in NPS calculation.

5.3.3 Correlation between risk scoring meth-
ods

In this step, we computed the Pearson correlation
between each pair of risk scores obtained by using
these different cases. We obtained risk scores on
the response matrix R1 and presented results in
Table 6. As seen from Table 6, NPS values have a
very low correlation with IPS and IRT values. This
means that NPS values have different distributions
due to network structure, and intense friendship
connections have a strong effect on privacy risk

Table 6.
Pearson correlation scores for privacy scoring

methods on response matrix R1.

Method IPS NPSIPS NPSIPS-TS IRT NPSIRT NPSIRT-TS

IPS 1 0.21 0.24 0.98 0.22 0.25
NPSIPS 0.27 1 0.79 0.20 0.99 0.79
NPSIPS-TS 0.24 0.79 1 0.23 0.80 0.99
IRT 0.98 0.20 0.23 1 0.21 0.23
NPSIRT 0.22 0.99 0.80 0.21 1 0.79
NPSIRT-TS 0.25 0.79 0.99 0.23 0.79 1

scoring. IPS and IRT values, on the other hand,
have a very high correlation which shows that these
two methods have similar behavior as stated in
previous subsections. Using tie strengths affects the
correlation of NPS values which means that social
tie strengths should not be ignored when making
privacy scoring of OSN users.

5.3.4 Importance of tie strengths in NPS cal-
culation

As seen from Table 6, network structure has a
strong effect on the privacy risk scores of users. The
privacy score of a user depends on his/her location
in the network and the number of his/her connec-
tions with other users. However, it also depends
on the weights of each connection of the users as
well. As seen from Figure 5b and Figure 5d, privacy
scores of users increase or decrease depending on
weights (i.e., tie strength) of their connections.
To explore whether there is a strong dependence
between NPS score and social tie strength, we use
chi-square test statistics. Our aim here is to explore
whether users with high risk have a high social tie
strength with others. For this purpose, we obtained
the average tie strength value for each user by taking
the weights of edges coming from other users to
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Table 7.
The number of users with respect to the

quartiles of average tie strength and NPS
values.

Grade
(Risk/TS)

VLTS LTS MTS HTS VHTS

R1
VLR 2,114 1,451 386 49 0
LR 1,176 1,392 1,143 281 8
MR 605 945 1,616 281 65
HR 80 232 828 769 912
VHR 0 5 27 953 3,015

R2
VLR 2,075 1,452 395 75 2
LR 1,162 1,363 1,150 313 13
MR 648 940 1,588 748 76
HR 90 266 834 1,899 911
VHR 0 4 33 965 2,998

R3
VLR 2,045 1,454 414 84 3
LR 1,225 1,325 1,125 313 12
MR 610 972 1,602 742 74
HR 95 270 825 1,891 919
VHR 0 4 34 970 2,992

the current user at hand. Next, we grouped users
by considering quartiles of NPS and average tie
strength values into five different groups. These
groups are very low (VLTS), low (LTS), medium
(MTS), high (HTS), and very high (VHTS) for tie
strength values; similarly risk score groups are very
low (VLR), low (LR), medium (MR), high (HR),
and very high (VHR) for NPS values. Notice that
in the group names TS represents tie strength, and
R means risk score. Afterward, we obtained the
number of users for each of these groups and created
a contingency table for each model as given in
Table 7.

We would like to note that Table 7 shows three
different contingency tables concerning the users’
social tie strengths and privacy risk scores obtained

from the R1, R2, and R3 matrices respectively.
We used scipy.stats.chisquare package to
employ chi-square test statistics and obtained sta-
tistically significant p values (i.e., p < 0.05) with
95% confidence level for each of three contin-
gency tables. This shows that NPS and social tie
strength values are strongly dependent and there is
an association between these two variables. In other
words, we reject the null hypothesis that these two
variables are independent of each other.

5.4. Overall Risk Analysis of Turkish Facebook
users

In this section, we conduct risk analysis for all
users in our crawled snapshot for investigating the
privacy awareness of Turkish Facebook users and its
change by gender and age. Privacy risks due to the
revealed (and inferred) items and social connections
have very low correlation (see Table 6) and they are
at different scales (see Figure 4 and Figure 5). This
is because IPS and IRT methods perform scoring
just based on revealed attributes by users. Network
aware scoring method (i.e., NPS), on the other hand,
considers network structure.

As a result, these two approaches produce dif-
ferent privacy scores for each user. As such, in this
analysis, we take the average privacy risk scores ob-
tained with these two approaches. Even though IPS
and IRT methods produce highly correlated scores
(see Table 6), we selected IRT as our intrinsic risk
scoring method. This is because IRT approximates
the item characteristics curve that best represents
the response matrix [1]. To obtain network-aware
privacy risk scores we fed IRT scores as initial
values of the PageRank both with tie strengths
(NPSIRT-TS) and without tie strengths (NPSIRT) to
make the effect of tie strengths more clear.

To make a reasonable analysis, we first scaled
averaged risk scores in a range of 0 and 1. Then
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Figure 6. The number of users in ten different
groups with respect to average of IRT and NPS
values

grouped users into ten different groups based on
their risk scores. We would like to note that for this
analysis we obtained IRT scores on the response
matrix R3. We present the results of this experiment
in Figure 6 which shows that majority of users have
less than 0.5 risks of privacy and using social tie
strengths has a strong effect on the privacy risk of
users. To exemplify, the number of users having risk
scores in a range between 0.1 to 0.2 is 3,745 without
tie strengths, whereas it is 5,236 when tie strengths
are considered in NPS calculation.

Next, we explored the relative percent of 11,830
male and 7,957 female users (in total 19,787 users
whose gender attributes were disclosed or inferred,
see Figure 2) concerning their gender attributes
and average privacy risk scores. Note that in the
rest of our experiments, we use the average of
IRT and NPSIRT-TS values. We show the results
of this experiment in Figure 7, which depicts that
male users often have a higher risk of privacy than
females. Note that in this experiment, we considered
users who reveal their gender attributes along with
users whose gender attributes are inferred by the L2
and/or L3 model(s).

Finally, we investigated the relative percent of
206 users younger than 30 years old and 721 users

Figure 7. Relative percents of users in ten risk
groups with respect to average privacy risk and
gender attribute.

who are 30 years of age and older with respect to
their age and average privacy risk attributes. In this
experiment, we again considered users whose age
is obtained from the revealed birth date (i.e., BD)
attribute and others whose age is inferred by the L2
model.

As seen from Figure 8, in a range of the privacy
risk between 0 and 0.4, the relative percent of users
who are under 30 years of age is greater than the
relative percent of those users over the 30 years of
age. On the other hand, in a range of the privacy
risk between 0.4 and 1.0, relative percentages of
users over 30 years of age are greater than those of
users under 30 years of age. These results show that
users over thirty years of age often have a lower risk
than other users. However, the majority of users in
high-risky groups (i.e., involving risk scores of 0.4
and higher) are over the age of thirty. This is highly
because users over 30 years of age and older both
share more sensitive information and build more
social connections compared to younger users.

We would like to note that we do not name our
risk groups in the experiments in this subsection
due to group names (e.g., high, low, very high, etc.)
are relative and can vary from person to person.
However, our privacy analysis of Turkish Facebook
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Figure 8. Relative percents of users in ten risk
groups with respect to average privacy risk and
age attribute.

users shows that majority of them have less than 0.5
risks of privacy. On the other hand, male users have
a higher privacy risk than females, and users over
the age of 30 years take place in high-risky groups
more frequently than younger users in general.

6. Discussion

In this paper, we perform a privacy risk analysis
of Turkish Facebook users employing a novel risk
scoring framework that relies on attribute inference
to produce an R matrix as input. It then uses both
intrinsic risk scores along with social tie strengths to
produce its final output representing network-aware
risk scores of users. For this purpose, we use real-
world OSN data unlike most of the existing studies.
In addition, we perform attribute inference to fill our
dichotomous response matrices.

Our attribute inference results show that many
attributes of OSN users can be learned by using their
textual contents and social connections. Our results
related to attribute inference show that the majority
of Turkish Facebook users keep their attributes
private, but they are still not aware that an attribute
can be learned or inferred by using different tech-
niques. Therefore, they often disclose their sensitive
information by posting activities on their walls or

building connection with other users. However, the
risk is so serious that a user may contribute to
putting any other user at risk even though he/she
is not befriended with him/her by only disclosing
his gender. This is because an adversary can infer
a user’s gender by using the popularity of his/her
first name among other male and female users in
the network.

Users disclose their private attributes in their
activity contents or other text-based fields of their
profiles. Even though we used a restricted list of
attributes in our inference tasks, textual contents of
users have a great potential to infer various other
attributes (e.g., health status, hobbies, etc.) of users.
Our results in the content-based inference model
(i.e., the L2 model) provided low accuracy for
some of our attributes. However, taking the accuracy
metric as the only value to measure the performance
of an inference task may not be sufficient. This
is because the inferred value of an attribute may
be true even though it does not match disclosed
value. For instance, a user may have many phone
numbers and only disclose one of them in the related
field of his profile. However, this user can post an
activity including his/her other phone numbers at the
same time. In such a case, using only the accuracy
measure can mislead us because the inferred value
may actually be true.

Inference based on user connections (i.e., the L3
model) provides very accurate results and it is easy
to perform compared to the content-based model.
Besides, in this model the more complete the OSN
data, the higher the inference performance. It will
also be possible to apply inference tasks for more
attributes in more complete OSN data.

OSN users have privacy risk scores due to their re-
vealed items and social connections in the network.
In the literature, centrality or network-aware risk
scoring methods ignore social tie strengths between
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users. In this paper, we inject and use social tie
strengths in network-aware risk computation. We
also show that there is a strong association between
high-risk scores and social tie strength. Therefore,
we suggest not just using the social connections of
users in network-aware risk scoring, but also using
weights (i.e., tie strengths) of the social connections
of users. Please note that computationally there is
not an overload (taking apart the attribute inference
and assuming that the R matrix is populated) within
our framework that employs existing studies in a
different manner. Its disadvantage may be produc-
ing risk scores with a two-step calculation, but
the advantage is that, unlike existing studies, our
framework considers social tie strengths. We believe
that this way of scoring produces more concrete and
reliable risk scores for users.

7. Conclusion

In this paper, we perform privacy scoring of Turk-
ish Facebook users by proposing a framework that
involves our novel aspects together with existing
methods. These novel aspects are populating the R
matrix by using attribute inference and obtaining
network aware-risk scores not just by using users’
connections but weights of these connections as
well. In the attribute inference phase, we use two
different ways of inference mechanisms (i.e., L2,
and L3) that completely rely on textual content
and social connections of users. In this phase, we
use several dedicated regular expressions, rules, and
activity meta-data information to infer the attributes
of users. Afterward, we use both disclosed (L1) and
inferred attributes (L2 for inferred from contents
and L3 for inferred from connections) to derive
three different response matrices (i.e., R1, R2, and
R3) in an incremental way in which the response
matrices are populated by L1, L1 + L2, and L1
+ L2 + L3 models respectively. We would like to

note that inferring attributes both from contents and
connections is one of the first major contributions
of this study in the context of Turkish OSN users.
Upon completion of the attribute inference, we
discarded some of the attributes within the both L2
and L3 models having an inference accuracy lower
than 0.9 (i.e., 90%) to prevent having biased re-
sults. Using these sets of features, we first obtained
intrinsic privacy risk scores that were then used to
compute network-aware risk scores of users. In the
phase of network-aware risk scoring, employing the
self-information model to compute weights of tie
strength components is the second major contribu-
tion of this paper.

Based on our results, we conclude that the social
tie strengths of users’ connections have to be taken
into consideration when computing their centrality
or network-aware risk scores. What is more, it is
often possible to infer the private attributes of users
by using network structure information. However,
network structure is not enough to perform inference
in some cases due to OSN data being often incom-
plete. The content-based inference is, on the other
hand, very challenging compared to inference based
on network structure. This is because OSN textual
data is often dirty and generally written in informal
language. Performing such an inference task without
a learning model requires many rules, sources, and
so on. Using a learning model, on the other hand,
requires a labeled corpus for each related inference
task. When a learning model is employed, it may
improve the accuracy of attribute inference for some
attributes like gender; however, inference of some
other attributes may still be challenging like EDU
due to inferring such items require combining and
applying multiple learning tasks such as named
entity recognition, word sense disambiguation, and
machine learning.

In future work, we are planning to perform a sen-
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sitivity classification of users’ wall activity contents
to detect whether a given textual content is sensitive
or not in terms of privacy. Additionally, we will try
to propose a hybrid method that handles the PRE
by combining the powers of existing risk scoring
methods and classical text categorization. One of
the possible scenarios to exemplify is employing
term weighting approaches to compute sensitivity
or visibility calculation of attributes.
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Appendix

A summary of the studies with a focus on privacy
risk scoring over OSNs is given in Table 8, where
the column data indicates the source of OSN data
used in experiments. We clearly specify whether
the data is synthetic or real, and additionally mark
survey-based input data with (S) and textual content
data with (C). Type of information column indicates
what kinds of OSN data are utilized in a study.
Here, profile items refer to basic profile information;
actions refer to user interactions in the form of
posting data, liking someone’s posts, making new
connections and sharing; and content refers to the
actual (typically textual) content of a user’s share.
POV column stands for point-of-view of the corre-
sponding study. We mark studies with a combination
of letters U, O, F and S to respectively imply that
the study is centered on user, OSN, friend(s) and
strangers (i.e., users who are not friends of account
owner). Finally, the PRE column indicates whether
or not the study utilizes a privacy risk estimation
method - a novel method of its own or an existing
method.
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Ö. Çoban et al., Vol. 11, No. 2, pp. 25-51.

[42] H. Simo, H. Shulman, M. Schufrin, S. L. Reynolds, and
J. Kohlhammer, “Privinfervis: Towards enhancing transparency
over attribute inference in online social networks,” in IEEE IN-
FOCOM 2021-IEEE Conference on Computer Communications
Workshops, May 2021, pp. 1–2.

[43] L. Bioglio, S. Capecchi, F. Peiretti, D. Sayed, A. Torasso, and
R. G. Pensa, “A social network simulation game to raise aware-
ness of privacy among school children,” IEEE Transactions on
Learning Technologies, vol. 12, no. 4, pp. 456–469, 2019.

[44] A. Halimi and E. Ayday, “Real-time privacy risk quantification
in online social networks,” Proceedings of the IEEE/ACM Inter-
national Conference on Advances in Social Networks Analysis
and Mining, pp. 74–81, 2021.

[45] O. Coban, A. Inan, and S. A. Ozel, “Towards the design and
implementation of an osn crawler: a case of turkish facebook
users,” International Journal of Information Security Science,
vol. 9, no. 2, pp. 76–93, 2020.

[46] O. Coban, “An exploratory analysis of leaked facebook data:
A case of turkish users,” International Journal of Information
Security Science, vol. 10, no. 4, pp. 119–137, 2021.

[47] C. G. Akcora, B. Carminati, and E. Ferrari, “Risks of friendships
on social networks,” in IEEE 12th International Conference on
Data Mining, December 2012, pp. 810–815.

[48] I. Kahanda and J. Neville, “Using transactional information
to predict link strength in online social networks,” in Third
International AAAI Conference on Weblogs and Social Media,
May 2009, pp. 74–81.

[49] S. Krakan, L. Humski, and Z. Skocir, “Determination of friend-
ship intensity between online social network users based on
their interaction,” Tehnicki vjesnik, vol. 25, no. 3, pp. 655–662,
2018.

[50] Z. Liu, H. Li, and C. Wang, “New: A generic learning model
for tie strength prediction in networks,” Neurocomputing, vol.
406, pp. 282–292, 2020.

[51] Y. D. Seo, Y. G. Kim, E. Lee, and D. K. Baik, “Personalized
recommender system based on friendship strength in social
network services,” Expert Systems with Applications, vol. 69,
pp. 135–148, 2017.

[52] S. S. Rodrıguez, R. P. D. Redondo, A. F. Vilas, and J. J. P. Arias,
“Using facebook activity to infer social ties,” in Proceedings
of the 2nd International Conference on Cloud Computing and
Services Science, April 2012, pp. 325–333.

[53] J. Ilic, L. Humski, D. Pintar, M. Vranic, and Z. Skocir, “Proof
of concept for comparison and classification of online social
network friends based on tie strength calculation model,” in 6th
interantional conference on information society and technology,
March 2016, pp. 159–164.

[54] Y. Kılıç and A. I. A, “Qpr-eval: A quantitative framework for
privacy risk score evaluation,” unpublished.

[55] O. Coban, “Attribute inference over real-world online social
networks: a comprehensive privacy analysis,” Ph.D. dissertation,
Dept. of Comp. Sci., Cukurova Univ., Adana, Turkey, 2021.

[56] O. Coban, A. Inan, and S. A. Özel, “Facebook tells me your
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Table 8.
An overview of studies devoted to evaluate and measure the privacy in OSNs. The POV and PRE

stand for the point of view and privacy risk estimation respectively.

Study Data
Type of Information

Method / Framework POV PRE YearProfile
Items

Actions Content

[1] Synthetic & Survey Data 3 IRT and Naive Models U 3 2009
[2] Item Response Matrix (S) 3 3 Privacy Quotient based on [1] U 3 2013
[3] Real & Multiple OSNs Data 3 3 Extended Concept of [1] U 3 2015
[4] Real Facebook Data 3 3 3 Sight S 3 2012
[5] Real & Multiple OSNs Data IPAM O 3 2019
[6] Synthetic Facebook & Twitter Data 3 Privacy-Enhanced Friending U 3 2018
[7] Real OSN Data 3 Privacy-aware UML profile O 7 2010
[8] Real LinkedIn & Phonebook Data 3 Two Attacker Models U 7 2012
[9] Synthetic & Real Twitter (PHEME) 3 PRS U 3 2018
[10] Real & Multiple OSNs Data 3 PDS U 3 2017
[11] Real Facebook Data 3 Privometer F 3 2010
[14] Real Facebook Data 3 A Privacy Service Model O 7 2014
[15] Real & Multiple OSNs Data 3 Informativeness Score U 7 2016
[17] Synthetic Facebook Data 3 3 3 PS based on FACT F 3 2015
[18] Synthetic Facebook Network 3 Extension of SIR model U 7 2017
[20] Surveyed Facebook Data (S) 3 Extension of method from [35] U 3 2014
[19] Real Facebook Data 3 3 I-Index U 3 2011
[22] Real Twitter Data (C) 3 3 Privscore U 3 2019
[23] Real & Multiple Communities Data (C) 3 R-Susceptibility U 3 2016
[24] Real Twitter Data (C) 3 TOKEN U 3 2018
[25] Real Twitter Data (C) 3 Privay Detective U 3 2014
[26] Survey, Real & Multiple OSNs Data 3 3 Privacy score based on [1] U 3 2018
[27] Real Twitter Data (C) 3 Based on Machine Learning 7 7 2011
[28] Real Facebook Data (C) 3 3 Based on Machine Learning 7 7 2010
[30] Real Facebook Data (S) 3 3 Extension of method from [1] U 3 2017
[31] Simulated & Real Facebook Data (S) 3 3 Extension of method from [1] U 3 2019
[34] Simulated Data 3 PFS based on [1] U 3 2010
[35] Survey Data (S) 3 PaaS (Naive model from [1]) O 3 2009
[36] Real Facebook Data 3 PET based on [1] U 3 2015
[37] Real & Synthetic Data 3 IDF-based scoring U 3 2022
[38] Survey Data (S) 3 3 Statistical Methods U 7 2011
[39] Enron Email Data 3 Contagion Process Model U 3 2019
[21] Real Facebook Data 3 3 PrPu F 3 2014
[40] Real Facebook Data 3 PrivAware U 3 2009
[41] Real Facebook Datasets 3 3 3 TAPE U 3 2015
[42] Real Data 3 3 PrivInferVis U 3 2021
[43] Predefined Set of Posts 3 Social4school U 2018

Ours Real Facebook Data 3 3 3
Extension of network-aware risk
scoring from [31] (see Figure 1)

U 3 2022
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