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Abstract: Food safety is a crucial issue; all countries have struggled against pesticides for years. In this
study, Polypyrrole (PPy)- and Polyacrylonitrile (PAN)-based non-enzymatic electrochemical sensors were
investigated  to  detect  the  pesticide  propamocarb  (PM)  in  food  samples.  Under  the  experimental
conditions, the proposed strategy exhibited a high selectivity of the disposable PPy-based and PAN-
based sensors for the determination of propamocarb pesticide in the concentration of 1 μM with a rapid
detection within 1 min at pH 7.4 and 25 °C. We demonstrated the detection of PM residues on cucumber
and tomato samples with good electrochemical performances towards the real-time usability on real
food samples. PAN-based non-enzymatic electrochemical sensor has good sensitivity, higher selectivity,
and  stability  than  PPy-based  non-enzymatic  electrochemical  sensor.  The  prepared  PAN-based  non-
enzymatic electrochemical sensor is a potential candidate to be used in devices which perform food
safety in agricultural products.
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INTRODUCTION 

Food  safety  is  one  of  the  significant  issues  for
human beings  and  environment  due  to  constant
population  growth  and  industrial  development
(1,2).  The use of  pesticides and fungicides have
toxic effects, which are extensively common to kill
or  control  insects,  mollusks,  weeds,  fungi,  and
bacteria  in  agriculture  (3,4).  Due  to  the  use  of
these  chemicals  at  global  scale,  their  residues
become  a  vital  issue  to  protect  the  natural
environment  (5).  From  this  perspective,  rapid,
sensitive,  and  portable  detection  of  these

chemicals in food products, soil and water in low
concentrations has gained momentum in research
(6–8).

Sensitive, portable, and low-cost biosensors have
started  to  be  preferred  with  nanotechnological
approach  instead  of  expensive  and  not-easy-to-
apply methods such as gas chromatography (GC),
mass  spectrometry  (MS),  and  high-performance
liquid chromatography (HPLC) (9,10). In previous
studies, ultra-highly sensitive nanostructure-based
biosensors  with  different  shapes,  structures,  and
sizes  were  produced  and  their  effectiveness  in
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sensor  applications  was  investigated  for
environmental  pollutants  (11,12).  In  this  regard,
the  performances  of  these  sensors  have  been
developed using different structures such as Ag2O-
ZnO  composite  nanocone  (13),  Pr2O3-ZnO
nanocomposites  (14),  V2O5-doped  ZnO
nanocomposites  (15),  CuO nanocomposites  (11),
TiO2  nanoparticles/  molybdenum disulfide  (MoS2)
nanosheets (16), iron oxide (Fe3O4) nanoparticles
(17),  reduced graphene oxide nanosheets  -  gold
nanoparticles  (18),  reduced  graphene  oxide-
wrapped silver nanoparticles (19), and polypyrrole
(PPy)  nanotubes  (20).  However,  there  are
numerous studies in literature that reported novel
non-enzymatic electrochemical biosensors to give
some information in development of the sensitive
pesticide  sensors.  For  instance,  Zhai  et  al.
developed a highly selective and recyclable sensor
for the electroanalysis of phosphothioate pesticides
using silver - doped arrays of ZnO nanorods (21).
Cesana  et  al.  reported  the  synthesis  and
application  as  electrochemical  sensor  of  the
pesticide  fenitrothion  with  fluorescent  Cdots(N)-
Silica composites (22). Chen et al. investigated the
fluorometric  determination  of  pesticide  ferbam
using the organic-inorganic  manganese(II)  halide
hybrids-based paper sensor (23). Dissanayake et
al.  developed a highly  sensitive  plasmonic  metal
nanoparticle-based  sensors  for  the  detection  of
organophosphorus  pesticides  (24). Recently,  PPy
and  PANI  are  commonly  used  as  the  preferred
conductive polymers due to their unique electrical,
electrochemical,  and  optical  properties  in
diagnostics,  food,  and environmental  applications
(25–31). PPy, which is known to be a conductive
organic polymer, has superior properties such as
the mobility  of  charge carriers  and fast  electron
transfer rate, can be used in electronics, optical,
biological,  and  biomedical  applications  (32,33).
Also,  polyaniline  (PANI)  is  another  kind  of
conductive  polymer  which  is  prepared  using  the
electrochemical  oxidation  of  aniline  in  acidic
medium  (34).  To  the  best  of  our  knowledge,
polyacrylonitrile  (PAN)  and  PPy-based  non-
enzymatic electrochemical sensors have not been
reported  for  the  ultra-sensitive  detection  of  the
pesticide  propamocarb  in  food  samples.
Furthermore,  a  clear  proof  of  the  existence  of
conductive  polymers  and  their  non-enzymatic-
sensing  mechanism  for  propamocarb  pesticide
needs  to  be  experimentally  clarified  in  food
samples. Therefore, the highlight of this study was
to  use  the  electrochemical  activities  of  PPy  and
PAN towards PM detection in tomato and cucumber
samples.  The  goal  of  this  study  was  to
demonstrate  a  sensing  platform  based  on  non-
enzymatic  electrochemical  polymers  for  low-cost,
selective,  and  rapid  detection  of  PM  in  real
samples.

MATERIALS AND METHODS

Materials
Turkish  tomatoes  (Solanum  lycopersicum)  and
cucumbers  (Cucumis  sativus  L.)  were  purchased
from a  local  supermarket  (İstanbul,  Turkey).  All
samples were harvested from Antalya (Turkey) on
July  and  were  stored  at  15  °C  until  use.  PPy
(average Mw ~12,000 g/mol)  and PAN (average
Mw~150,000 g/mol) were purchased from Sigma
Aldrich  Company  (Germany).  N-N-
Dimetylformamide (DMF) (purity (GC), ≥ 99.8 %)
and  ethanol  (purity  (GC),  ≥  99.9  %)  were
purchased  from  Merck  Company  (Germany).
Propamocarb  (PESTANAL®,  analytical  standard,
formula:C9H20N2O2,  molecular  weight:  188.27
g/mol), a carbamate pesticide, was obtained from
Sigma  Aldrich  Company  (Germany).
Electrochemical transducers were purchased from
Ebtro Electronics. All chemicals and reagents were
used without further purification.

Fabrication of PPy and PAN-based electrodes
2  mg of  PPy  powder  was  dissolved  in  5  mL  of
ethanol, 2 mg of PAN powder was dissolved in 5
mL of DMF for 30 min via high stirring at 25 °C.
The  gold  (Au)  electrochemical  transducers  were
rinsed with ethanol, distilled water, and dried with
nitrogen.  The  electrochemical  transducers  were
coated with PPy solution and PAN solution by drop
casting, and then the sensing films were dried at
40  °C.  All  electrochemical  sensor  measurements
were  performed  using  Ebtro  Electronics
voltammetric electrochemical workstation. 1 µM of
PM  analyte  was  prepared.  All  sensor
measurements  were  carried  out  at  room
temperature. 

RESULTS AND DISCUSSION

There  is  a  growing  concern  about  extremely
hazardous chemical pesticides and their influence
on  human health  and  the  environment  (35–37).
For  this  purpose,  in  this  study,  it  was aimed to
selectively  detect  different  pesticides  such  as
malathion,  deltamethrin,  cypermethrin,  and
propamocarb  (PM)  by  comparing  them  with
different  PPy  and  PAN-based  sensors  in  food
samples (tomato and cucumber). Measurements of
PPy-  and  PAN-based  non-enzymatic
electrochemical  sensors  were  performed  at  [−1,
+1]  V  with  a  scanning  rate  of  50  mV/s.
Comparative current density-voltage graphs of PPy
and  PAN-based  non-enzymatic  electrochemical
sensors  against  pesticides  were  presented  (see
Figure  1).  Figure  1  showed  the  non-enzymatic
electrochemical  responses  of  the  PPy-  and  PAN-
based  non-enzymatic  electrochemical  sensors  for
the  presence  of  1μM  pesticides  (malathion,
deltamethrin, cypermethrin, and PM) at a scanning
rate of 50 mV/s.
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The peaks seen in  Figure  1a-b are  attributed  to
redox  reactions  resulting  from  interactions
between  the  polymers  and  PM.  According  to
experimental results, the PPy and PAN-based non-
enzymatic electrochemical sensors did not show a
noticeable response in the presence of malathion,
deltamethrin,  and  cypermethrin;  however,  the
prepared sensors were only selective against PM.
The  results  were  statistically  significant  when

compared with the experimental results. Both PPy-
and  PAN-based  non-enzymatic  electrochemical
sensors  have  high  selectivity  against  1  μM  PM
within 1-minute cyclic voltammetry measurement.
Additionally,  the  experimental results  were
confirmed  by  the  selective  pesticide  detection-
based assessment of the vegetable, and therefore
proving the sensor’s  application potential  for  the
rapid detection for the vegetable quality.

Figure 1: (a) Current density-voltage graphs of PPy-based non-enzymatic electrochemical sensor, and
(b) Current density-voltage graphs of PAN-based non-enzymatic electrochemical sensor against

pesticides.

PPy and PAN polymer--based PM sensors have not
been previously reported in the literature. This is
the first report presenting the preparation and PM
tests  of  PPy  and  PAN-based  non-enzymatic
electrochemical  sensors.  The  sensors  are  facile,
selective, low-cost, and repeatable for agricultural
usage.  For  food  safety  in  agriculture  this  study
highlighted  the  application  of  the  sensor  in
detection of the pesticide PM on real cucumber and
tomato samples. Current density-voltage graphs of
repeated  2  tests  of  PPy-  and  PAN-based  non-
enzymatic  electrochemical  sensors  against  1  μM
PM applied real cucumber and tomato samples are
presented (see Figure 2).

Various  studies  in  literature  have  proven  that
biosensors  had  an  excellent  electrochemical
performance  against  pesticides.  We  compared
these  experimental  results  with  previous  studies
reported  based  on  non-enzymatic/  enzymatic
electrochemical sensors for pesticide determination
in Table 1. The experimental results showed that
the  fabricated  PAN-based  electrodes  had  unique
electrochemical properties and these results were
appreciable from the comparison with the results
of previous reports in the literature (Table 1). The
proposed  PAN-based  sensor  showed  good
sensitivity for rapid detection of PM. Moreover, the
proposed sensor has different advantages such as
easy to prepare, disposable, and portable.
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Figure 2: (Top) Current density-voltage graphs of PPy-based non-enzymatic electrochemical sensor,
and (bottom) PAN-based non-enzymatic electrochemical sensor against 1 μM PM applied cucumber and

tomato.

Figure 3: The schematic diagram of polymer-based non-enzymatic electrochemical sensors for the
detection of pesticides from foods.
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In  Figure 3, the schematic diagram of polymer-based non-enzymatic  electrochemical  sensors for the
detection of pesticides from foods was presented.

Table 1: The comparison of electrochemical experimental results of various biosensors for the detection
of pesticide.

Sample Analyte Platform References
Tyrosinase/poly(2-
hydroxybenzamide)-modified
graphite electrode

Fenitrothion Enzymatic, 
electrochemical

(38)

PPy nanocomposite Carbaryl Pesticide Enzymatic, 
electrochemical

(39)

Boron dipyrromethene-
phthalocyanine-single walled
carbon nanotube hybrid

Methyl Parathion, 
Deltamethrin, Chlorpyrifos 
and Spinosad

Non-enzymatic, 
electrochemical

(40)

CuO microspheres Endosulfan Non-enzymatic, 
electrochemical

(41)

Reduced graphene oxide 
decorated on Cu/CuO-Ag 
nanocomposite

Carbaryl And Fenamiphos 
Pesticides

Non-enzymatic, 
electrochemical

(42)

Boronic acid functionalized 
nanocomposites

Glycoside Toxins Non-enzymatic, 
electrochemical

(43)

Nickel oxide modified screen-
printed electrodes

Parathion Pesticide Non-enzymatic, 
electrochemical

(44)

Cu nanoparticles Phorate Non-enzymatic, 
electrochemical

(45)

PPy and PAN-based 
electrodes

Malathion, Deltamethrin, 
Cypermethrin, And 
Propamocarb

Non-enzymatic, 
electrochemical

This study

PPy-  and  PAN-based  non-enzymatic
electrochemical sensors detected 1 μM PM residue
on real cucumber and tomato samples. Figure 2a-b
shows the result of the sensor tests, the sensors
detected 1 μM PM residue on food (cucumber and
tomato)  samples  within  a  1-minute  cycle.  PAN-
based  non-enzymatic  electrochemical  sensor  has
higher  stability.  PAN-based  non-enzymatic
electrochemical sensor has a significant potential in
the field of the PM pesticide detection. According to
the experimental results, we can provide the basis
study for the selective and efficient processing of
the  polymer--based  sensor  with  excellent
electrochemical performances with food analytical
methods  for  the  monitoring  of  food  safety  and
quality.  Future  studies  will  focus  on  integrating
advanced  sensor  applications  using  the  latest
analytical  methods  to  design  and  optimize  the
conductive  polymer--based  sensors  for  the
monitoring of pesticide residues in food samples.

CONCLUSION

In this study, PPy and PAN-based non-enzymatic
electrochemical  sensors  were  investigated  to
detect  the  pesticide  propamocarb  (PM)  in  food
samples.  The  PPy-based  sensor  and  PAN-based
sensor  detected  1 μM  propamocarb  pesticide  on
cucumber and tomato with high selectivity within 1
min.  We  demonstrated  the  detection  of  PM
residues  on  cucumber  and  tomato  samples  with

good  electrochemical  performances  towards  the
real-time  usability  on  real  agricultural  samples.
PAN-based  non-enzymatic  electrochemical  sensor
has  good  sensitivity,  and  higher  selectivity  and
stability  than  PPy-based  non-enzymatic
electrochemical  sensor.  The  prepared  PAN-based
non-enzymatic electrochemical PM sensor may be
used in a portable detector kit for detection of PM
type pesticide in food samples.
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