
BEÜ Fen Bilimleri Dergisi BEU Journal of Science

4(2), 103-111, 2015 4(2), 103-111, 2015

 103

Araştırma Makalesi / Research Article

An Object- Oriented Approach to Counter-Model Constructions in

A Fragment of Natural Language

Selçuk TOPAL

*

Bitlis Eren University, Faculty of Science and Arts, Department of Mathematics, Bitlis, Türkiye

Abstract

This article presents a technical construction of reasoning and counter-models for some sentences called

fragments as in [9] in English. Speaking English and logical inferences are brought together in computer based

approach to natural language. Not only the inferences in the language [7] are given but also counter-model

constructions in case of no inference from input sentences. Approach of this construction considers usage of

minimal number of set elements.

Keywords: Logic in Computer Science, Logic of Natural Languages, Applications of Logic

Doğal Dilin Bir Parçasındaki Karşıt Model Yapılarına Nesne Yönelimli

Bir Yaklaşım

Özet

Bu makale, İngilizce dili içindeki [9] kaynağındaki gibi parçalar olarak adlandırılan bazı cümleler için türetimler

ve karşıt modellerin bir teknik inşasını sunar. Günlük İngilizce ile mantıksal türetimleri doğal dile bilgisayar

temelli yaklaşım içinde bir araya getirilmiştir. Sadece [7] dil içindeki türetimleri değil aynı zamanda girdi

cümlelerinden bir türetim olmaması durumunda karşıt model inşaları da verilmiştir. Bu inşa yaklaşımı enaz

sayıda küme elemanları kullanmayı göz önünde bulundurur.

Anahtar Kelimeler: Bilgisayar Biliminde Mantık, Doğal Dillerin Mantığı, Mantığın Uygulamaları

1. Introduction

Most of information and computer system focus on checking that queries correct or not. These queries

are responded in the form of yes or no. We give algorithms and an illustrating implementation

regarding the reason of a query is answered yes or no. This fragment has their origins in Aristotle

‘syllogism. Aristotle presented syllogism notion by helping approach of categories [2] and [12].

Aristotelian syllogism was begun to evaluate as an issue of formal logic by Lukasiewicz [6]. Corcoran

gave a completeness theorem for Aristotelian syllogism as named “Completeness of an ancient logic”

[5]. A modern completeness theorem was given by Moss [7]. Some complexity results of syllogistic

sentences of English, completeness results of some syllogistic logics and algorithms and completeness

results of some relational syllogistic logics were given in order of by [9], [7] and [10]. The fragment

we consider in this paper is contained by [9] in view of complexity and by [7] in view of

completeness. We integrate this fragment having efficient time complexity and logical completeness in

to natural language. We give a general construction method in addition to we uploaded an instance of

*
Corresponding Author: s.topal@beu.edu.tr

S. Topal / BEÜ Fen Bilimleri Dergisi 4(2), 103-111, 2015

104

the construction script to sagemathcloud.com [14] to share it. Some algorithms shall be given in the

syntax of Python [11] others in the pseudo-code for readability.

2. Preliminaries

Definition 2.1 [4] A context-free grammar (CFG) is a tuple G = (M, Σ, R, S) where:

 M is a set of non-terminal symbols

 Σ is a set of terminal symbols

 R is a set of rules of the form A→B1 B2 ... Bn such that n ≥ 0, A ∈ M, Bi ∈ (M ∪ Σ)

 S ∈ M is a severalised start symbol

Example 2.2 A basic example in English for CFG:

M = {S, DT, Vt, NP, N}

Σ = {All, cats, are, animals}

S = S

R = : S → NP VP

VP → VBP NP

NP → DT N

DT → All

VBP → are

N → cats

N → animals

Definition 2.3 [7] Language of S starts by set P with p, q, r, ...variables (plural nouns) and a finite

universe M. For every p ∈ P, [[p]] ⊆ M where [[]] is an interpretation function from P to subsets of M.

A model M = (M, [[]], P) has the following truth properties:

M ⊧ All p are q ∶⇔ [[p]]⊆[[q]]

M ⊧ Some p are q ∶⇔ [[p]] ∩ [[q]] ≠ ∅

M ⊧ No p are q ∶⇔ [[p]] ∩ [[q]] = ∅

Table 1. Proof system for S

S. Topal / BEÜ Fen Bilimleri Dergisi 4(2), 103-111, 2015

105

The symbol X in Table 1 means that if Γ ⊢ Some x are y and Γ ⊢ No x are y then model is

inconsistent. Every sentence in S can be derived from the model in the present case and C means any

sentences in S.

Definition 2.4 [13] Reachability Problem in Directed Graph: Given a directed graph G = (V, E) and a

vertex v in G which other vertices can be reached by a path starting from v.

Definition 2.5 [7] Let Γ be a set of sentences in S. A proof tree over Γ is a finite tree T whose nodes

are labeled with sentences, and each node is either a leaf node labeled with an element of Γ, or else

matches one of the rules in the proof system S in Table 1. Γ ⊢ Φ means that there is a proof tree T for

over Γ whose root is labeled Φ. We read this as Γ proves Φ, or Γ derives Φ or that Φ follows from Γ in

our proof system S.

Example 2.6 A proof tree for given Γ = { Some p are q, All p are h, All h are m, All m are t } ⊢ Some

p are t:

Definition 2.7 [7] Let Γ be a finite set of All sentences. We say p →

All
 q ∶⇔ Γ ⊢ All p are q. In other

saying, there is a path from node p to node q if taking variables as nodes of graph obtained from Γ and

p→
All

q is a directed edge from p to q of the graph.

3. Derivation Algorithms in S

We take a set of input sentences Γ as a set of premises and Γ ⊢ Φ means that query sentence Φ is

derivable from Γ. On the other hand, Γ ⊬ Φ means that Φ is not derivable from Γ.

Algorithm 1 An algorithm to check Γ ⊢ All p are q for given a finite set Γ ⊆ S.

1: If there is a path from node p to q Then Print the path

2: If No p are p in Γ Then Print All p are q from the rule (no1)

3: If Γ is inconsistent Then Print Γ⊢ All p are q from the rule X

4: Else Counter-Model

Algorithm 2 An algorithm to check Γ ⊢ Some p are q for given a finite set Γ ⊆ S.

1: If {All n are p ∈ Γ or Γ ⊢ All n are p} and {Γ ⊢ All m are q or All m are q ∈ Γ} and

{Some m are n ∈ Γ or Some n are m ∈ Γ} Then Print Some p are q from the rule (All, Some)

[11].

2: If Γ is inconsistent Then Print Γ⊢ Some p are q from the rule X

3: Else Counter-Model

Algorithm 3 An algorithm to check Γ ⊢ No p are q for given a finite set Γ ⊆ S.

1: If {All p are n ∈ Γ or Γ ⊢ All p are n} and {Γ ⊢ All q are m or All q are m ∈ Γ} and

{No m are n ∈ Γ or No n are m ∈ Γ} Then Print No p are q from the rule (All, No) [11]

2: If Γ is inconsistent Then Print Γ ⊢ No p are q from the rule X

3: Else Counter-Model

Algorithm 4 An algorithm to check Γ ⊢ No p are q and Γ ⊢ Some p are q for given a finite set Γ ⊆ S.

S. Topal / BEÜ Fen Bilimleri Dergisi 4(2), 103-111, 2015

106

1: If Algorithm 2 satisfies Γ ⊢ Some p are q and Algorithm 3 satisfies Γ ⊢ No p are q except

inconsistencies Then Print Γ is inconsistent.

4. Counter-Model Constructions in S

We use sets in order to construct counter-models since S logic has set-theoretic model. [[p]] and [[q]]

have to have at least one common element since Some p are q means [[p]] ∩ [[q]] ≠ ∅.We prefer to

assign {p,q} to both [[p]] and [[q]] in order that they have a common element (see Algorithm 5).

Algorithm 5 An algorithm for assigning set values to variables of input sentences in S.

1: If the input is All p are q then [[p]] ← ∅ and [[q]] ← ∅

2: If the input is Some p are q then [[p]] ← { p1, p2 ,{p,q}} and [[q]] ← {q1, q2 ,{p,q}}

3: If the input is No p are q then, if p = q then [[p]] = [[q]] ← ∅ Else [[p]] ← {p1} and

[[q]] ← {q1}.

[[p]] and [[q]] has not any common elements since No p are q means [[p]] ∩ [[q]] = ∅. If not Γ ⊢ No p

are p or not Γ ⊢ then we do not know [[p]] = ∅ or [[q]] = ∅ accurately. Thus we make assignment [[p]]

= {p1} and [[p]] = {p2} (see Algorithm 6).

Algorithm 6 An algorithm for constructing steps of counter-models for queries that are not derived

from input set in S.

1: If Γ ⊬ All p are q Then [[q]] ← [[q]] ∪ {q1} and [[p]] ← [[p]] ∪ ∅

2: If Γ ⊬ No p are q Then [[q]] ← [[q]] ∪ {q1, q2, {p,q}} and [[p]] ← [[p]] ∪ {p1,p2,{p,q}}

3: If Γ ⊬ Some p are q Then [[q]] ← [[q]] ∪ ∅ and [[p]] ← [[p]] ∪ ∅

4:

Algorithm 7 An algorithm for updating process of model to construct counter-model in S.

1: [[q]] ← [[q]]∪[[p]] for all variable p ∈ PAll ∩ PSome and for all variable q ∈ P where Γ ⊢ All p

are q If Γ ⊬ No p are q Then [[q]] ← [[q]] ∪ {q1, q2, {p,q}} and [[p]] ← [[p]] ∪

{p1,p2,{p,q}}

2: [[q]] ← [[q]]∪[[p]] for all p ∈ PAll ∩ PNo and for all variable q ∈ P where Γ ⊢ All p are q

3: [[q]] ← [[q]] ∪ [[p]] for all variable p ∈ PSome but p ∉ PAll and for all variable q ∈ P where

Γ ⊢ All p are q

4: [[q]] ← ∅ for all variables p ∈ P but p ∉ PNo and for all variable q ∈ P where Γ ⊢ No p are p

and Γ ⊢ All q are p

5. Integrating Algorithms of S with Natural Language

In this section, we consider how to be detected whether a sentence is or not in the grammar of

language of S. We use certain properties of NLTK module of Python Program [3] to do this. We prefer

to utilize the tools of POS-tagger function and WordNet package in NLTK for the purpose of checking

sentences whether to be or not in natural spoken English and the grammar of language of S.

The function POS-tagger determines syntactic symbols of words of a sentence. Therefore the

function provides to specify the grammar of intended sentences which are as in Figure 1 by using tree

and tagging functions of part of speech tagging as in Table 2. WordNet is a lexical database for

English. We use WordNet in order to test whether words of input sentences in language of S is or not

in English. WordNet package which is provided by NLTK serves online query for English words.

S. Topal / BEÜ Fen Bilimleri Dergisi 4(2), 103-111, 2015

107

Figure 1. A tree for the grammar

In Algorithm 8, input sentences are strings and text ← nltk.word.tokenize (Φ) means that the

program turns the string Φ into a list text such that a list is a data structure in Python (see Figure 2).

tagging ← nltk.postag (text) means that the program turns the list text into the nested tagging such

that nested list is a list data structure in Python (see Figure 3). If a input string belongs to WordNet, it

belongs to spoken English, in other saying, natural English. Equivalent of this fact is that the function

wn.synset (α) returns a list data structure if it finds a data for the string α in WordNet and bool value

of a list is True in Python (see figure 4).

Table 2. Part of speech for the grammar

Algorithm 8 An algorithm for detections of sentences by using NLTK module.

1: While True do

2: Read the sentence Φ

3: Φ ← ``sentence `` ▷ sentence is a string

4: If Φ==``no`` Then Break ▷ == means equality testing in Python

5: text ← nltk.word tokenize(Φ) ▷ parsing the sentence word by Word

6: tagging ← nltk.pos tag(text) ▷ labeling each words by POS-tagger

7: If tagging[0][1] != ``DT`` Or bool(wn.synsets(tagging[0][0]))!=True Or tagging[0][0] in

(``all``, ``some``, ``no``) Then Break ▷ != means non-equality testing in Python

8: If tagging[1][1] !=``NNS `` Or bool(wn.synsets(tagging[1][0])) !=True Then Break

9: If tagging[2][1]!=``VBP`` Or bool(wn.synsets(tagging[2][0])) !=True Then Break

10: If tagging[3][1] !=``NNS`` Or bool(wn.synsets(tagging[3][0])) !=True Then Break

11: End While

Figure 2 illustrates how Algorithm 8 works for an input sentence all cats are animals. The

sentence all cats are animals is segmented word by word. Words all, cats, are and animals are

S. Topal / BEÜ Fen Bilimleri Dergisi 4(2), 103-111, 2015

108

tagged with non-terminal symbols. The words cats and animals are checked with WordNet whether

they are in English or not.

Figure 2. An Illustration of Algorithm 8 for ``all cats are animals``

Figure 3. Flow-chart with algorithms for the system

S. Topal / BEÜ Fen Bilimleri Dergisi 4(2), 103-111, 2015

109

Figure 3 illustrates how entire system works. Arrows in the figure provides transition among used

algorithms and decisions. Algorithm 8 is used two times in order to check the grammar of input

sentences and query sentence. Tasks of the arrows are the following in detail:

Arrow 1: Sending input sentences to NLTK module.

Arrow 2: Asking back a sentence due to unaccepted sentences format.

Arrow 3: Sending accepted sentences for asking a query and checking for a derivation.

Arrow 4: If the derivation occur then sending it to output for visualization of proof.

Arrow 5: If the derivation does not occur then sending variables to the constructing process to

assign set values to them.

Arrow 6: Sending the input and the query to counter-model construction for updating set values

and entire model.

Arrow 7: Sending updated model for visualization.

5.1. Technical Details

In this section, we consider a graph of input number-time (seconds) comparison of the implementation

that is implemented for this research. The implementation can be found as a project S Logic with

Counter-Model and NLTK on Sagemath Cloud [14] if request an access to the project. We here test

the script how much time (in seconds) to run for 10, 100 and 1000 input. We take the script as a

Python function to test on 8GB RAM, 64-bit operating system and 2.40 Ghz CPU.

Table 3. Running time of the script for 10, 100 and 1000 input number

Ordered pairs of input number - time values are (10, 1.55298509697), (100, 9.31559195193),

(1000, 82.3807380957) as can be seen in Table 3. Function from these ordered pairs is approximated

the function f(x) ≈ −0.001x
2
+0.086x+0.682 obtained by using Lagrange interpolation for three points.

S. Topal / BEÜ Fen Bilimleri Dergisi 4(2), 103-111, 2015

110

Figure 4. Input number-time match graph for SLogicWithNLTK implementation

Graph of the function in Figure 4 shows that the function behaves nearly f(x) ≈ 10x + 12. The

script has a very efficient run time under reasonable input number.

Remark 1 We could not find any comparable work to compare to or with our work in literature since

this research is in a very new research area and multidiscipline.

6. Future Work

We will implement a logic [8] which has richer language, grammar and expressive power than S logic

has.

References

1. Andrade EJ, Becerra E, 2007. Corcoran’s Aristotelian syllogistic as a subsystem of first-order

logic. Revista Colombiana de Matem`aticas, 41(1): 67-80.

2. Aristotle Categories, 1984. The complete works of Aristotle, Princeton University Press, vol. 1,

1256 p.

3. Bird S, 2006. NLTK: the natural language toolkit. In Proceedings of the COLING/ACL on

Interactive presentation sessions, Association for Computational Linguistics, pp. 69-72.

4. Hopcroft JE, Motwani R, Ullman JD, 2001. Introduction to Automata Theory, Languages and

Computation. ACM SIGACT News, 32 (1): 60-65.

5. Corcoran J, 1972. Completeness of an ancient logic. Journal of Symbolic Logic, 37: 696-702.

6. Lukasiewicz J, 1951. Aristotle’s syllogistic from the standpoint of modern formal logic.

Clarendon Press, Oxford.

S. Topal / BEÜ Fen Bilimleri Dergisi 4(2), 103-111, 2015

111

7. Moss LS, 2008. Completeness theorems for syllogistic fragments, eds. Logics for linguistic

structures, Walter de Gruyter, 201: 143-175.

8. Moss LS, 2011. Syllogistic logic with complements, Games, Norms and Reasons. Springer

Netherlands, 179-197.

9. Pratt-Hartmann I, 2004. Fragments of language, Journal of Logic, Language and Information,

13.2: 207-223.

10. Pratt-Hartmann I, Moss LS, 2009. Logics for the Relational Syllogistic, The Review of Symbolic

Logic, 2.04: 647-683.

11. Python Software Foundation, Python Language Reference, version 2.7. Available at

http://www.python.org.

12. Smith R, 1989. Categories, Aristotle’s Prior Analytics, Hackett Publishing Company, 320p.

13. Cormen TH, Leiserson CE, Rivest RL, 1989. Introduction to Algorithms. The MIT Press and

McGraw-Hill Book Company, 597p.

14. Sage Mathematics Software, 2015. The Sage Development Team, http://www.sagemath.org

Geliş Tarihi: 20/04/2015

Kabul Tarihi: 31/07/2015

