Araştırma Makalesi / Research Article

A New Regular Matrix Defined By Fibonacci Numbers And Its Applications

Murat KARAKAŞ*
Bitlis Eren Üniversitesi, Fen Edebiyat Fakültesi, İstatistik Bölümü, 13000,Bitlis

Abstract

The main goal of this paper is to define a new infinite Toeplitz matrix and to examine some algebraic and topological properties of the sequence spaces l_{p}, l_{∞}, c and c_{0} where $1 \leq p<\infty$ by means of this matrix.

Keywords: Regular matrix, Fibonacci numbers, Sequence space

Fibonacci Sayıları Yardımıyla Tanımlanan Yeni Bir Regüler Matris ve Uygulamaları

Özet
 Bu çalışmanın temel amacı, Fibonacci sayılarını kullanarak bir sonsuz Toeplitz matrisi tanımlamak ve bu matris yardımıyla $1 \leq p<\infty$ olmak üzere l_{p}, l_{∞}, c ve c_{0} dizi uzaylarının bazı cebirsel ve topolojik özelliklerini incelemektir.

Anahtar Kelimeler: Regüler matris, Fibonacci sayıları, Dizi uzayı

1. Introduction

By w, we shall denote the space of all real valued sequences. Each linear subspace of w is called a sequence space. Let l_{∞}, c, c_{0} and $l_{p}(1 \leq p<\infty)$ be the linear spaces of bounded, convergent, null sequences and p-absolutely convergent series, respectively.

Suppose $A=\left(a_{n k}\right)$ is an infinite matrix of real numbers $a_{n k}$, where $n, k \in I N$ and $x=\left(x_{k}\right) \in w . \quad$ We write $\quad A x=\left(A_{n}(x)\right) \quad$ if $\quad A_{n}(x)=\sum_{k} a_{n k} x_{k}$ converges for each $n \in I N$. If $A x=\left(A_{n}(x)\right) \in Y$ for each $x=\left(x_{k}\right) \in X$, then A defines a matrix mapping from X into Y and we denote it by $A: X \rightarrow Y .(X: Y)$ is the class of all matrices A such that $A: X \rightarrow Y$. The domain X_{A} is defined by

$$
\begin{equation*}
X_{A}=\{x \in w: A x \in X\} \tag{1.1}
\end{equation*}
$$

which is a sequence space. If A is triangle, then it can be easily shown that the sequence spaces X_{A} and X are linearly isomorphic, i.e., $X_{A} \cong X$ [1].

[^0]A sequence space X with a linear topology is called a K-space provided each of the maps $p_{n}: X \rightarrow C$ defined by $p_{n}(x)=x_{n}$ is continuous for all $n \in I N$, where C denotes the complex field and $I N=\{0,1,2, \ldots\}$. A K-space X is called an $F K$-space provided X is a complete linear metric space. An $F K$-space whose topology is normable is called a $B K$-space [2]. The spaces l_{∞}, c, c_{0} are $B K$-spaces with the sup-norm $\|x\|_{\infty}=\sup _{k}\left|x_{k}\right|$ and the space $l_{p}(1 \leq p<\infty)$ is $B K$-space with $\|x\|_{p}=\left(\sum_{k=0}^{\infty}\left|x_{k}\right|^{p}\right)^{1 / p}$.

The Fibonacci numbers are famous for possessing wonderful and amazing properties. Some of these properties are well-known. For instance, the sums and differences of Fibonacci numbers are Fibonacci numbers, and the ratios of Fibonacci numbers converge to the golden section, $\tau=\frac{1+\sqrt{5}}{2}$, which is important in Architecture, Nature and Art, physics [3].

The Fibonacci numbers f_{n} are the terms of the sequence $0,1,1,2,3,5, \ldots$ where in each term is the sum of the preceding terms, beginning with the values $f_{0}=0$ and $f_{1}=1$. However, some fundamental properties of Fibonacci numbers are given as follows [4]:

$$
\begin{gather*}
\sum_{k=1}^{n} f_{k}=f_{n+2}-1 ; n \geq 1 \\
\sum_{k=1}^{n} f_{k}^{2}=f_{n} f_{n+1} \tag{1.2}\\
\left\{f_{k}\right\}_{k=1}^{\infty} \text { converges }
\end{gather*}
$$

In the present study, we define the matrix $F=\left(f_{n k}\right)_{n, k=1}^{\infty}$ using Fibonacci numbers f_{n} and establish the sequence spaces $l_{p}(F), l_{\infty}(F), c(F)$ and $c_{0}(F)$ where $1 \leq p<\infty$. These spaces were also studied by different matrix in [5].

2. Main Results

Now, we state the well known Toeplitz theorem which gives the necessary and sufficient conditions for regularity of a matrix.

Theorem 2.1 [6, Lemma 2.1]. A matrix $A=\left(a_{n k}\right)_{n, k=1}^{\infty}$ is regular if and only if the following three conditions hold:
i. There exists $M>0$ such that for every $n=1,2,3, \ldots$ the inequality $\sum_{k=1}^{\infty}\left|a_{n k}\right| \leq M$ holds;
ii. $\quad \lim _{n \rightarrow \infty} a_{n k}=0$ for every $k=1,2, \ldots$;
iii. $\quad \lim _{n \rightarrow \infty} \sum_{k=1}^{\infty} a_{n k}=1$.

In consideration of the above information, we define the Fibonacci matrix $F=\left(f_{n k}\right)_{n, k=1}^{\infty}$ as follows:

$$
\begin{aligned}
& f_{n k}=\left\{\begin{array}{l}
\frac{f_{2 k}}{f_{2 n+1}-1}, 1 \leq k \leq n, \text { that is, } \\
0, \text { otherwise }
\end{array}\right. \\
& F=\left[\begin{array}{ccccccc}
1 & 0 & 0 & 0 & 0 & 0 & \ldots \\
\frac{1}{4} & \frac{3}{4} & 0 & 0 & 0 & 0 & \ldots \\
\frac{1}{12} & \frac{3}{12} & \frac{8}{12} & 0 & 0 & 0 & \ldots \\
\frac{1}{33} & \frac{3}{33} & \frac{8}{33} & \frac{21}{33} & 0 & 0 & \ldots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right] .
\end{aligned}
$$

In connection with $f_{n n} \neq 0$ and $f_{n k}=0$ for $k>n$, the above matrix F is triangle and also it can be easily seen by the Toeplitz theorem that the method F is regular.

Hereby, we introduce the following Fibonacci sequence space where the sequence

$$
\begin{equation*}
y=\left(y_{k}\right)=F_{k}(x)=\frac{1}{f_{2 k+1}-1} \sum_{i=1}^{k} f_{2 i} x_{i} \tag{2.1}
\end{equation*}
$$

is the F-transform of a sequence $x=\left(x_{k}\right)$ for all $k \in I N^{0}$:

$$
X(F)=\left\{x \in w: F x=y=\left(y_{k}\right) \in X\right\} .
$$

Here and in the sequel, X denotes any of the sequence spaces l_{∞}, c, c_{0} and $l_{p}(1 \leq p<\infty)$. We can redefine the space $X(F)$ with the notation (1.1) as follows:

$$
\begin{equation*}
X(F)=X_{F} . \tag{2.2}
\end{equation*}
$$

Theorem 2.2. The space $X(F)$ is a $B K$ space with the norm

$$
\begin{equation*}
\|x\|_{X(F)}=\|F x\|_{X}=\|y\|_{X}=\sup _{k}\left|y_{k}\right| \text { for } X \in\left\{l_{\infty}, c, c_{0}\right\} \tag{2.3}
\end{equation*}
$$

and also

$$
\begin{equation*}
\|x\|_{X(F)}=\|F x\|_{X}=\|y\|_{X}=\left(\sum_{k=1}^{\infty}\left|y_{k}\right|^{p}\right)^{1 / p} \text { for } X=l_{p}(1 \leq p<\infty) . \tag{2.4}
\end{equation*}
$$

Proof: Since the matrix F is triangle, (2.2) and Theorem 4.3 .12 of Wilansky [7] gives the fact that the space $X(F)$ is $B K$-space with the above norms.

Theorem 2.3. The Fibonacci sequence space $X(F)$ is isometrically isomorphic to space X.
Proof: We should show the existence of an isometric isomorphism between the spaces $X(F)$ and X.
Let us take in consideration the transformation P defined from $X(F)$ to X by $P: X(F) \rightarrow X, x \rightarrow P x=y, y=\left(y_{k}\right)=F_{k}(x)=\frac{1}{f_{2 k+1}-1} \sum_{i=1}^{k} f_{2 i} x_{i}$. In that case, for every $x \in X(F)$ we have $P x=y=F(x) \in X$. In addition, it is clear that P is linear. Then, it can be easily seen that $P x=0 \Rightarrow x=0$ and so P is injective.
Besides, let us define the sequence $x=\left(x_{k}\right)$ as follows:

$$
\begin{equation*}
x_{k}=\frac{f_{2 k+1}-1}{f_{2 k}} y_{k}-\frac{f_{2 k-1}-1}{f_{2 k}} y_{k-1} ; k \in I N^{0}, y=\left(y_{k}\right) \in X . \tag{2.5}
\end{equation*}
$$

Then, for every $k \in I N^{0}$ the following equality is obtained from (2.1) and (2.5):

$$
F_{k}(x)=\frac{1}{f_{2 k+1}-1} \sum_{i=1}^{k} f_{2 i} x_{i}=\frac{1}{f_{2 k+1}-1} \sum_{i=1}^{k}\left[\left(f_{2 i+1}-1\right) y_{i}-\left(f_{2 i-1}-1\right) y_{i-1}\right]=y_{k} .
$$

It means that $F x=y$ and thus we get that $F x \in X$ as $y \in X$. By this way, we conclude that $x \in X(F)$ and $P x=y$. As a consequence, P is surjective. Additionally, it follows from (2.3) and (2.4) that P is norm preserving, that is,

$$
\|P x\|_{X}=\|y\|_{X}=\|F(x)\|_{X}=\|x\|_{X(F)}
$$

for any $x \in X(F)$. Hence P is isometry. Accordingly, the spaces $X(F)$ and X are isometrically isomorphic, that is, $X(F) \cong X$.

Lemma 2.4. Let $\left\{f_{k}\right\}_{k=1}^{\infty}$ be Fibonacci number sequence. If the sequence $\left(\frac{1}{f_{2 k+1}-1}\right)$ is in l_{1}, then $\sup _{i}\left(f_{2 i} \sum_{k=i}^{\infty} \frac{1}{f_{2 k+1}-1}\right)<\infty$.
Proof: It can be easily seen that the sequence $\left(\frac{1}{f_{2 k+1}-1}\right)$ is in l_{1}. So, the result follows from Lemma 4.11 of Mursaleen and Noman [8].

Theorem 2.5. For $X=c_{0}, c, l_{\infty}$ the inclusion $c_{0}(F) \subset c(F) \subset l_{\infty}(F)$ strictly holds.
Proof: It is clear that the inclusion $c_{0}(F) \subset c(F) \subset l_{\infty}(F)$ holds. Consider the sequence $x=\left(x_{i}\right)$ defined by $x_{i}=1$ for all $i \in I N^{0}$. Then we have for every $k \in I N^{0}, F_{k}(x)=\frac{1}{f_{2 k+1}-1} \sum_{i=1}^{k} f_{2 i}=1$. Hence, it is obvious that $F x \in c$ but it is not in c_{0}. So the sequence x is in $c(F)$ but $x \notin c_{0}(F)$. Consequently, the inclusion $c_{0}(F) \subset c(F)$ is strict. Now, let us consider the sequence $x_{i}=\frac{(-1)^{i}\left(f_{2 i+1}+f_{2 i-1}-1\right)}{f_{2 i}}$ for all $i \in I N^{0} . \quad$ By this way, we have $F_{k}(x)=\frac{1}{f_{2 k+1}-1} \sum_{i=1}^{k} f_{2 i} x_{i}=(-1)^{k}$ for every $k \in I N^{0}$. This shows that $F x \in l_{\infty}$ but not in c. Thus, it is clear that $x \in l_{\infty}(F)$ but $x \notin c(F)$. Hereby, the inclusion $c(F) \subset l_{\infty}(F)$ is strict.

Theorem 2.6. The inclusion $X \subset X(F)$ holds.
Proof: Since the matrix F is regular, the inclusion is obvious for $X=c_{0}, c$. If we take $x=\left(x_{i}\right) \in l_{\infty}$, then there is a constant $M>0$ such that $\left|x_{i}\right| \leq M$ for all $i \in I N^{0}$. Thus, we obtain the following inequality which gives that $F x \in l_{\infty}$:

$$
\left|F_{k}(x)\right| \leq \frac{1}{f_{2 k+1}-1} \sum_{i=1}^{k} f_{2 i}\left|x_{i}\right| \leq \frac{M}{f_{2 k+1}-1} \sum_{i=1}^{k} f_{2 i}=M .
$$

Hence, we conclude that $x=\left(x_{i}\right) \in l_{\infty} \Rightarrow x=\left(x_{i}\right) \in l_{\infty}(F)$. Now let us take $x=\left(x_{i}\right) \in l_{p}$, $1<p<\infty$. By using the Hölder's inequality, we have for every $k \in I N^{0}$ the following inequality:

$$
\begin{equation*}
\left|F_{k}(x)\right|^{p} \leq\left[\sum_{i=1}^{k} \frac{f_{2 i}}{f_{2 k+1}-1}\left|x_{i}\right|\right]^{p} \leq\left[\sum_{i=1}^{k} \frac{f_{2 i}}{f_{2 k+1}-1}\left|x_{i}\right|\right]^{p}\left[\sum_{i=1}^{k} \frac{f_{2 i}}{f_{2 k+1}-1}\right]^{p-1}=\frac{1}{f_{2 k+1}-1} \sum_{i=1}^{k} f_{2 i}\left|x_{i}\right|^{p} . \tag{2.6}
\end{equation*}
$$

The inequality (2.6) gives the fact that

$$
\sum_{k=1}^{\infty}\left|F_{k}(x)\right|^{p} \leq \sum_{k=1}^{\infty} \frac{1}{f_{2 k+1}-1} \sum_{i=1}^{k} f_{2 i}\left|x_{i}\right|^{p}=\sum_{i=1}^{\infty}\left|x_{i}\right|^{p} f_{2 i} \sum_{k=i}^{\infty} \frac{1}{f_{2 k+1}-1} .
$$

For $\sup _{i}\left(f_{2 i} \sum_{k=i}^{\infty} \frac{1}{f_{2 k+1}-1}\right)<\infty$, it follows from lemma 2.4 that

$$
\begin{equation*}
\|x\|_{l_{p}(F)}^{p} \leq M \sum_{k=1}^{\infty}\left|x_{i}\right|^{p}=M\|x\|_{l_{p}}^{p} . \tag{2.7}
\end{equation*}
$$

Hence, we have $x \in l_{p}(F)$ and so $l_{p} \subset l_{p}(F)$ for $1<p<\infty$. For $p=1$, it can be similarly shown that (2.7) holds. To prove that the converse of Theorem 2.6 holds, we'll use the matrix $\Lambda=\left(\lambda_{n k}\right)$ defined by $\lambda_{n k}=\left\{\begin{array}{c}\frac{\lambda_{k}-\lambda_{k-1}}{\lambda_{n}},(1 \leq k \leq n) \\ 0,(k>n)\end{array}\right.$ where $\lambda=\left(\lambda_{k}\right)_{k=0}^{\infty}$ is strictly increasing sequence of positive reals tending to infinity in [9]. In the special case $\lambda_{n}=f_{2 n+1}-1$, we have $\lambda_{k}-\lambda_{k-1}=f_{2 k}$ and so $F=\Lambda$ for every $k \in I N^{0}$. In these premises, we have that

$$
\lim _{n \rightarrow \infty} \frac{\lambda_{n+1}}{\lambda_{n}}=\lim _{n \rightarrow \infty} \frac{f_{2 n+3}-1}{f_{2 n+1}-1}=\lim _{n \rightarrow \infty}\left(1+\frac{f_{2 n+2}}{f_{2 n+1}-1}\right)=1+\lim _{n \rightarrow \infty} \frac{f_{2 n+2}}{f_{2 n+1}-1}>1 .
$$

Consequently, we obtain from [9, corollary 4.7] that $X(F) \subset X$ for $X=\left\{c_{0}, c, l_{p}\right\} \quad$ where $1 \leq p \leq \infty$.
Since the inclusions $X(F) \subset X$ and $X \subset X(F)$ hold, we can give the following result:
Corollary 2.7. $X=X(F)$.

References

1. Başar F, 2011. Summability Theory and Its Applications, Bentham e-Books, 410s. İstanbul.
2. Choudary B, Nanda S, 1989. Functional Analysis with Applications, John Wiley \& Sons Inc, New Delhi, India, 272-273.
3. Kalman D, Mena R, 2003. The Fibonacci Numbers: Exposed, Mathematics Magazine, 76 (3): 167-181.
4. Vajda S, 1989. Fibonacci and Lucas Numbers, and the Golden Section: Theory and Applications, Dover Publications Inc., 190 s. New York.
5. Kara EE, Basarir M, Mursaleen M, 2012. Compact Operators on the Fibonacci Difference Sequence Spaces $\ell_{p}(\hat{F})$ and $\ell_{\infty}(\hat{F})$, 1st International Eurasian Conference on Mathematical Sciences and Applications, pp 45, September 3-7, Prishtine, Kosovo.
6. Kara EE, Basarir M, 2012. An Application of Fibonacci Numbers into Infinite Toeplitz Matrices, Caspian Journal of Mathematics Sciences, 1 (1): 1-6.
7. Wilansky A, 1984. Summability Through Functional Analysis, Elsevier Science Publishers B.V., 309 s. Amsterdam.
8. Mursaleen M, Noman AK, 2011. On Some New Sequence Spaces of Non-absolute Type Related to the Spaces l_{p} and l_{∞} I, Filomat, 25 (2): 33-51.
9. Mursaleen M, Noman AK, 2010. On the Space of λ-Convergent and Bounded Sequences, Thai Journal of Mathematics, 8 (2): 311-329.

Geliş Tarihi: 21/10/2015
Kabul Tarihi: 09/12/2015

[^0]: *Corresponding Author: mkarakas@beu.edu.tr

