

Fixed Point Theorem Through Ω-distance of Suzuki Type Contraction Condition

K. ABODAYEH^{1, •}, W. SHATANAWI^{1,3}, A. BATAIHAH²

¹Prince Sultan University, Department of Mathematics and General Courses, Riyadh, SAUDI ARABIA ²Irbid National University, Faculty of Science, Department of Mathematics, Irbid, JORDAN ³ Hashemite University, Faculty of Science, Department of Mathematics, Zarqa, JORDAN

Received: 02/01/2016 Accepted: 27/01/2016

ABSTRACT

In this article, we utilize the notion of Ω -distance in the sense of Saadati et al [R. Saadati, S.M. Vaezpour, P. Vetro and B.E. Rhoades, Fixed point theorems in generalized partially ordered G-metric spaces, Mathematical and Computer Modeling, 52, 797-801, 2010] to introduce and prove some fixed point results of self-mapping under contraction conditions of the form Ω -Suzuki-contractions.

Key Words: Ω -Distance, Fixed Point Theory, G-Metric Space.

1. INTRODUCTION

G-metric space was introduced by Mustafa and Sims [1] in 2006, which is a generalization of metric space. Since 2006, many researchers have worked on G-metric spaces; see for example [2]-[10].

Samet et al in [11] and [12] proved that many results in G-metric spaces can be derived from known results of the corresponding usual metric space. Moreover, the notion of Ω -distance related to a complete G-metric space was considered by Saadati *et.al.* [13] in 2010.

Recently, many researchers studied several fixed point results using Ω -distance mappings; see for example, [14]-[17]. It is worth mentioning that the interesting method of Samet et. al. [11] and [12] doesn't work in the fixed point results involving Ω -distance.

In this paper, we prove new results of fixed point theorem using the map Ω in a complete G-metric space under contractive conditions of the form Ω -Suzuki-contraction.

^{*}Corresponding author, e-mail: kamal@psu.edu.sa

Definition 1.1. [1]. Let X be a nonempty set, and let $G: X \times X \times X \rightarrow \mathbb{R}^+$ be a function that satisfies the following conditions:

- (G1) G(x, y, z) = 0 if x = y = z;
- (G2) G(x, x, y) > 0 for all $x, y \in X$ with $x \neq y$;
- (G3) $G(x, y, y) \leq G(x, y, z)$ for all $x, y, z \in X$ with $y \neq z$;
- (G4) $G(x, y, z) = G(p\{x, y, z\})$, for any permutation of x, y, z;
- $(G5) G(x, y, z) \leq G(x, a, a) + G(a, y, z) \text{ for all } x, y, z, a \in X.$

Then the function G is called a generalized metric space, or more specifically G-metric on X, and the pair (X, G) is called a G-metric space.

The notion of convergence and Cauchy sequences in the setting of a G-metric space are given as follows:

Definition 1.2. [1]. Let (X, G) be a G-metric space, and let (x_n) be a sequence of points of X. We say that (x_n) is G-convergent to x if for any $\epsilon > 0$, there exists $k \in$ N such that $G(x, x_n, x_m) < \epsilon$ for all $n, m \ge k$.

Definition 1.3. [1]. Let (X, G) be a *G*-metric space. A sequence (x_n) in *X* is said to be *G*-Cauchy if for every $\epsilon > 0$, there exists $k \in N$ such that $G(x_n, x_m, x_l) < \epsilon$ for all $n, m, l \ge k$.

Definition 1.4. [5]. A *G*-metric space (X, G) is said to be *G*-complete or complete *G*-metric space if every *G*-Cauchy sequence in (X, G) is *G*-convergent in (X, G).

In 2010, Saadati *et. al.* [13] introduced the notion of Ω -distance related to a complete G-metric space and proved many results.

Definition 1.5. [13]. Let (X, G) be a *G*-metric space. Then a function $\Omega : X \times X \times X \rightarrow [0, \infty)$ is called an Ω distance on X if the following conditions are satisfied:

- (a) $\Omega(x, y, z) \leq \Omega(x, a, a) + \Omega(a, y, z)$ for all $x, y, z, a \in X$,
- (b) for any $x, y \in X$, the functions $\Omega(x, y, .), \Omega(x, ., y)$: $X \to [0, \infty)$ are lower semi continuous,
- (c) for each $\epsilon > 0$, there exists $\delta > 0$ such that if $\Omega(x, a, a) \le \delta$ and $\Omega(a, y, z) \le \delta$, then $\Omega(x, y, z) \le \epsilon$.

Definition 1.6. [13]. Let (X,G) be a *G*-metric space and Ω be an Ω -distance on *X*. Then we say that *X* is Ω -bounded if there exists M > 0 such that $\Omega(x, y, z) \leq M$ for all $x, y, x \in X$.

The following lemma plays an important role in the development of the results in this article.

Lemma 1.1. [13]. Let X be a metric space with metric G and Ω be an Ω -distance on X. Let $(x_n), (y_n)$ be sequences in X, and $(\alpha_n), (\beta_n)$ be sequences in $[0, \infty)$ converging to zero. Then for all x, y, z, $a \in X$, we have the following:

- (1) If $\Omega(y, x_n, x_n) \le \alpha_n$ and $\Omega(x_n, y, z) \le \beta_n$ for $n \in \mathbb{N}$, then $\Omega(y, y, z) < s$ and hence y = z;
- (2) If $\Omega(y_n, x_n, x_n) \le \alpha_n$ and $\Omega(x_n, y_m, z) \le \beta_n$ for all m

> $n \in \mathbb{N}$, then $\Omega(y_n, y_m, z) \rightarrow 0$ and hence $y_n \rightarrow z$;

- (3) If $\Omega(x_n, x_m, x_l) \le \alpha_n$ then the sequence (x_n) is a *G*-Cauchy sequence, for all $m, n, l \in \mathbb{N}$ with $n \le m \le l,;$
- (4) If $\Omega(x_n, a, a) \leq \alpha_n$ for any $n \in \mathbb{N}$, then (x_n) is a *G*-Cauchy sequence.

2. MAIN RESULT

Definition 2.7. [19] A nondecreasing continuous function $\varphi : [0, \infty) \rightarrow [0, \infty)$ is called an altering distance function if the following condition holds; $\varphi(t) = 0$ if and only if t = 0.

Definition 2.8. A mapping $T : X \to X$ of a *G*-metric space (X,G) is called an Ω -Suzuki-contraction if there exists $k \in [0, 1)$ and an altering distance function φ such that for all $x, y, z \in X$ and $p, q \in \mathbb{N}$ with $q \ge p$, the following condition holds

if $(1-k) \Omega(x, T^p x, T^q x) \leq \Omega(x, y, z)$, then $\varphi \Omega(Tx, Ty, Tz) \leq k \varphi \Omega(x, y, z)$.

Theorem 2.2. Let (X, G) be a complete *G*-metric space and Ω be an Ω -distance on *X* such that *X* is Ω bounded. Let $T : X \to X$ be an Ω -Suzuki-contraction mapping that satisfies the following condition:

for all $u \in X$ if $Tu \neq u$, then

$$\inf\{\Omega(x, Tx, u): x \in X\} > 0.$$
(2.1)

Then T has a fixed point in X. Moreover, for any fixed Point $z \in X$ of T, we have $\Omega(z, z, z) = 0$.

Proof. Let $x_0 \in X$ and define a sequence (x_n) in X inductively by setting $x_n = T x_{n-1}$, $n \in \mathbb{N}$.

For p = q = 1, since $(1 - k) \Omega(x, Tx, Tx) \le \Omega(x, Tx, Tx)$ holds for every $x \in X$, we have

$$\varphi \Omega(Tx, T^2x, T^2x) \le k \varphi \Omega(x, Tx, Tx).$$
(2.2)

Substituting $x = x_{n-1}$ in the inequality (2.2), gives us

 $\varphi \Omega(x_n, x_{n+1}, x_{n+1}) = \varphi \Omega(\mathsf{T} x_{n-1}, \mathsf{T} x_n, \mathsf{T} x_n) \le k \varphi \Omega(x_{n-1}, x_{n-1}, x_n).$ (2.3)

Since k < 1 and φ is an altering distance function, the sequence $(\Omega(x_n, x_{n+1}, x_{n+1}): n \in \mathbb{N})$ is a non-increasing sequence of nonnegative real numbers. Therefore, there is $r \ge 0$ such that

 $\lim_{n\to\infty} \Omega(x_n, x_{n+1}, x_{n+1}) = r.$

Taking the limit as $n \to \infty$ in 2.3, implies that $\varphi r \le k \varphi r$ and thus r = 0, since k < 1. Hence

$$\lim_{n \to \infty} \Omega(x_n, x_{n+1}, x_{n+1}) = 0.$$
(2.4)

Moreover, for p = 1, and $q \ge 1$, since $(1-k)\Omega(x, Tx, T^q x)$ $\le \Omega(x, Tx, T^q x)$ holds for every $x \in X$, then

$$\varphi \Omega(Tx, T^2x, T^{q+1}x) \le k \, \varphi \Omega(x, Tx, T^qx). \tag{2.5}$$

For $n, s \in \mathbb{N}$ with $s \ge 1$, substituting $x = x_{n-1}$ in (2.5), implies that

 $\varphi \Omega(x_n, x_{n+1}, x_{n+s}) = \varphi \Omega(Tx_{n-1}, Tx_n, Tx_{n+s-1})$

$$\leq k \varphi \Omega(x_{n-1}, x_n, x_{n+s-1}). \tag{2.6}$$

Since k < 1 and φ is an altering distance function, the sequence $(\Omega(x_n, x_{n+1}, x_{n+s}): n \in \mathbb{N})$ is a non-increasing sequence of nonnegative real numbers. Therefore, there is $r \ge 0$ such that

 $\lim_{n\to\infty} \Omega(x_n, x_{n+1}, x_{n+s}) = r.$

Applying the limit as $n \to \infty$ to the inequality 2.6, gives us $\varphi r \le k \varphi r$. Since k < 1, we have r = 0 and hence

 $\lim_{n \to \infty} \Omega(x_n, x_{n+1}, x_{n+s}) = 0, \text{ for all } s \ge 1.$ (2.7)

Considering the Definition 1.5, implies that

 $\Omega(x_n, x_m, x_l) \le \Omega(x_n, x_{n+1}, x_{n+1}) + \Omega(x_{n+1}, x_{n+2}, x_{n+2}) + \dots + \Omega(x_{m-1}, x_m, x_l),$

for all $l, m, n \in \mathbb{N}$ with $l \ge m \ge n, m = n + s$ and l = m + t.

By taking the limit of the above inequality as $n \rightarrow \infty$, we get

 $\lim_{n,m,l\to\infty} \Omega(x_n,x_m,x_l) = 0.$

Lemma 1.1 implies that (x_n) is a G-Cauchy sequence and hence (x_n) converges to an element $u \in X$. For all $\epsilon > 0$, since (x_n) is a G-Cauchy sequence, there exists $N \in \mathbb{N}$ such that $\Omega(x_n, x_m, x_l) < \epsilon$, for all $n, m, l \ge N$. Thus,

 $\lim_{l \to \infty} \inf \Omega(x_n, x_m, x_l) \leq \epsilon, \text{ for all } n, m \geq N.$

The lower semi-continuity of Ω implies that

 $\Omega(x_n, x_m, u) \leq \liminf_{l \to \infty} \Omega(x_n, x_m, x_l) \leq \epsilon, \text{ for all } n, m \geq N.$

Considering m = n + 1 in (2.8), gives us $\Omega(x_n, x_{n+1}, u) \le \epsilon$, for all $n \ge N$.

Assume that $Tu \neq u$. Then 2.1 implies that

 $0 < \inf\{\Omega(x, Tx, u) : x \in X\} \le \inf\{\Omega(x_n, x_{n+1}, u) :$

 $n \ge N \le \epsilon$, for all $\epsilon > 0$ which is a contradiction.

Therefore Tu = u. Let z = Tz. Then by (2.2), we have

$$\Omega(z, z, z) = \Omega(Tz, T^2 z, T^2 z) \le k \varphi \Omega(z, Tz, Tz) =$$

 $k \varphi \Omega(z, z, z).$

Since k < 1 and φ is an altering distance function, we have $\Omega(z, z, z) = 0$.

Definition 2.9. A mapping $T : X \to X$ of a *G*-metric space (X,G) is called a generalized Ω -Suzuki-contraction if there exists $k \in [0, 1)$ and an altering distance function φ such that the following condition holds:

If for all $p, q \in \mathbb{N}$ with $q \ge p$,

$$(1-k) \Omega(x, T^{p}x, T^{q}x) \leq \Omega(x, y, z)$$

then we have

 $\begin{aligned} \Omega(Tx, Ty, Tz) &\leq k \max\{\Omega(x, Tx, Tx), \Omega(y, Ty, Ty), \\ \Omega(z, Tz, Tz)\} \end{aligned}$

for all $x, y, z \in X$.

Lemma 2.3. Let $T : X \to X$ be a generalized Ω -Suzukicontraction. Then

$$\Omega(Tx, T^2x, T^2x) \le k \,\Omega(x, Tx, Tx) \text{ for all } x \in X.$$
(2.9)

Proof. Assume p = q = 1. Since $(1 - k)\Omega(x, Tx, Tx) \le \Omega(x, Tx, Tx)$ holds for every $x \in X$, then we have

If $\max{\{\Omega(x, Tx, Tx), \Omega(x, T^2x, T^2x)\}} = \Omega(x, T^2x, T^2x)$, T^2x , then $\Omega(x, T^2x, T^2x) \le k\Omega(x, T^2x, T^2x)$ which is a contradiction, since k < 1. Therefore, $\max{\{\Omega(x, Tx, Tx), \Omega(x, T^2x, T^2x)\}} = \Omega(x, Tx, Tx)$ and hence

 $\Omega(Tx, T^2x, T^2x) \le k \,\Omega(x, Tx, Tx) \text{ for all } x \in X.$ (2.10)

Lemma 2.4. Let $q \ge 1$ and $T: X \to X$ be a generalized Ω -Suzuki-contraction. Then

 $\Omega(T^q x, T^{q+1}x, T^{q+1}x) \le k^q \ \Omega(x, Tx, Tx) \ for \ all \\ x \in X.$

Proof. By substituting x in Lemma (2.3) by $T^{q-1}x$, we get

 $\Omega(T^{q}x, T^{q+1}x, T^{q+1}x) = \Omega(T (T^{q-1}x), T (T^{q}x), T(T^{q}x), T(T^{q}x))$

$$\leq k \Omega(T^{q-1}x, T^qx, T^qx)$$

 $\leq k^{q} \Omega(x, Tx, Tx).$

Thus

(2.8)

 $\Omega(T^{q}x, T^{q+1}x, T^{q+1}x) \le k^{q} \Omega(x, Tx, Tx).$ (2.11)

Theorem 2.5. Let (X, G) be a complete *G*-metric space and Ω be an Ω -distance on *X* such that *X* is Ω bounded. Let *T* be a self-mapping on *X* that satisfies the following conditions:

- (1) T is a generalized Ω -Suzuki-contraction;
- (2) *if for all* $u \in X$, $Tu \neq u$, then
- $\inf\{\Omega(x, Tx, u) : x \in X\} > 0.$ (2.12)

Then T has a fixed point in X.

Proof. Let $x_0 \in X$ and define a sequence (x_n) in X inductively by taking $x_n = Tx_{n-1}$ for $n \in \mathbb{N}$.

Substitute $x = x_n - 1$ in (2.10), implies that

$$\Omega(x_n, x_{n+1}, x_{n+1}) = \Omega(Tx_{n-1}, Tx_n, Tx_n)$$

$$\leq k \Omega(x_{n-1}, x_{n-1}, x_n)$$

$\leq k^n \Omega(x_0, x_1, x_1).$

Since *X* is Ω -bounded, there exists M > 0 such that $\Omega(x, y, z) \le M$ for all $x, y, z \in X$. Hence

 $\Omega(x_n, x_{n+1}, x_{n+1}) \le k^n M.$

By taking the limit as $n \rightarrow \infty$ for both sides, we get

 $\lim_{n \to \infty} \Omega(x_n, x_{n+1}, x_{n+1}) = 0.$ (2.13)

since k < 1. Also, for p = 1, and $q \ge 1$, since $(1 - k)\Omega(x, Tx, T^q x) \le \Omega(x, Tx, T^q x)$ holds for every $x \in X$, we have

$$\Omega(Tx, T^2x, T^{q+1}x) \leq k \max\{\Omega(x, Tx, Tx), \Omega(Tx, T^2x, T^2x), \Omega(T^qx, T^{q+1}x, T^{q+1}x)\}$$
$$= k \max\{\Omega(x, Tx, Tx), \Omega(T^qx, T^{q+1}x), \Omega(T^qx, T^{q+1}x))$$

$$= k \max \{ \Omega(x, Ix, Ix), \Omega(I^{q}) \}$$
$$T^{q+1}x, T^{q+1}x \}.$$

But from 2.11, we have $\Omega(T^q x, T^{q+1}x, T^{q+1}x) \le k^q$ $\Omega(x, Tx, Tx)$ and thus,

 $\Omega(Tx, T^2x, T^{q+1}x) \le k \max\{\Omega(x, Tx, Tx), k^q \Omega(x, Tx, Tx)\}.$

Since k < 1, we have

$$\Omega(Tx, T^2x, T^{q+1}x) \le k \ \Omega(x, Tx, Tx).$$
(2.14)

For *n*, *s* \in **N** with *s* \ge 1 substitute *x* = *x*_{*n*-1} in (2.14), implies that

 $\Omega(x_n, x_{n+1}, x_{n+s}) = \Omega(Tx_{n-1}, T^2 x_{n-1}, T x_{n+s-1})$ $\leq k \Omega(x_{n-1}, x_n, x_n).$

Taking the limit as $n \to \infty$ for both sides and using 2.13, we get

$$\lim_{n \to \infty} \Omega(x_n, x_{n+1}, x_{n+s}) = 0.$$
 (2.15)

The Definition 1.5 implies that

 $\Omega(x_n, x_m, x_l) \leq \Omega(x_n, x_{n+1}, x_{n+1}) + \Omega(x_{n+1}, x_{n+2}, x_{n+2}) + \dots + \Omega(x_{m-1}, x_m, x_l),$

for all $l, m, n \in \mathbb{N}$ with $l \ge m \ge n, m = n + s$ and l = m + t.

Applying the limit as $n \to \infty$ and using 2.13 and 2.15, we get that

 $\lim_{n,m,l\to\infty} \Omega(x_n,x_m,x_l) = 0.$

Lemma 1.1 implies that (x_n) is a G-Cauchy sequence and so (x_n) converges to some $u \in X$. Since (x_n) is a G-Cauchy sequence, then for all $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that $\Omega(x_n, x_m, x_l) \le \epsilon$, for all $n, m, l \ge N$. Thus

 $\lim_{l \to \infty} \inf \Omega(x_n, x_m, x_l) \le \epsilon.$ Since Ω is lower semi-continuous, we have

Since 22 is lower serie continuous, we have

 $\Omega(x_n, x_m, u) \le \liminf_{l \to \infty} \Omega(x_n, x_m, x_l) \le \epsilon,$ (2.16) for all $n, m \ge N$.

Considering m = n + 1 in (2.16), we get $\Omega(x_n, x_{n+1}, u) \le \epsilon$, for all $n \ge N$. Suppose that $Tu \ne u$. Then Condition 2.12 implies that

 $0 < \inf \{ \Omega(x, Tx, u): x \in X \} \le \inf \{ \Omega(x_n, x_{n+1}, u): n \ge N \} \le \epsilon$, for all $\epsilon > 0$ which is a contradiction. Therefore Tu = u.

CONFLICT OF INTEREST

No conflict of interest was declared by the authors.

REFERENCES

- [1] Mustafa, Z. and Sims, B., "A new approach to generalized metric spaces", *J. Nonlinear Convex Anal.*,7, no. 2: 289-297, (2006).
- [2] Abbas, M., Shatanawi, W. and Nazir, T., "Common coupled coincidence and coupled fixed point of Ccontractive mappings in generalized metric spaces", *Thai Journal of Mathematics*, 13 (2): 339-353 (2015).
- [3] Gu, F. and Shatanawi, W., "Common fixed point for generalized weakly G-contraction mappings satisfying com- mon (E.A) property in G-metric spaces", *Fixed Point Theory and Applications*, 2013:309, 1-15, (2013).
- [4] Aydi, H., Shatanawi, W. and Vetro, G., "On generalized weakly G-contraction mapping in Gmetric spaces", *Comput.Math. Appl.*, 62:4222– 4229, (2011).
- [5] Mustafa, Z. and Sims, B., "Fixed Point Theorems for contractive Mappings in Complete G-Metric Spaces", *Fixed Point Theory Appl.*, Hindawi Publishing Corporation, ID 917175, 10 pages, (2009).
- [6] Mustafa, Z., Obedat, H. and Awawdeh, F., "Some fixed point theorems for mapping on complete Gmetric spaces", *Fixed Point Theory and Applications*, 2008, Artcle ID 189870, 12 pages, (2008).
- [7] Mustafa, Z., Shatanawi, W. and Bataineh, M., "Existence of fixed point results in G-metric spaces", *International Jornal of Mathematics and Mathematical Sciences*, Artcle ID 283028, 10 pages, (2009).
- [8] Shatanawi, W., Chauhan, S., Postolache, M., Abbas, M. and Radenovic, S., "Common fixed points for contractive mappings of integral type in G-metric space", J. Adv. Math. Stud., 6(1): 53–72, (2013).
- [9] Shatanawi, W. and Abbas, M., "Some fixed point results for multi valued mappings in ordered Gmetric spaces", *Gazi University Journal of Science*, 25: 385-392 (2012) (2.16)
- [10] Shatanawi, W. and Postolache, M., "Some fixed point results for a G-weak contraction in G-metric spaces", *Abstract and Applied Analysis*, Article ID 815870, 19 pages, (2012).
- [11] Jleli, M. and Samet, B., "Remarks on G -metric spaces and fixed point theorems", *Fixed Point Theory Appl.*, Article ID 210, (2012).
- [12] Samet, B., Vetro, C. and Vetro, F., "Remarks on G -metric spaces", *Int. J. Anal.*, Article ID 917158 (2013).

- [13] Saadati, R., Vaezpour, S. M., Vetro, P. and Rhoades, B. E., "Fixed point theorems in generalized partially ordered G-metric spaces", *Mathematical and Computer Modeling*, 52: 797– 801, (2010).
- [14] Gholizadeh, L., Saadati, R., Shatanawi, W. and Vaezpour, S. M., "Contractive mapping in generalized, ordered metric spaces with application in integral equations", *Math. Probl. Eng.*, Article ID 380784 (2011).
- [15] Shatanawi, W. and Pitea, A., "Fixed and coupled fixed point theorems of Ω -distance for nonlinear contraction", *Fixed Point Theory and Applications*, 2013:275, (2013).
- [16] Shatanawi, W., Bataihah, A. and Pitea, A., "Fixed and common fixed point results for cyclic mappings of Ω-distance", *J. Nonlinear Sci. Appl.*, 9: 727– 735, (2016).
- [17] Shatanawi, W. and Pitea, A., "Ω-Distance and coupled fixed point in G-metric spaces", *Fixed Point Theory and Applications*, 2013:208, (2013).
- [18] Suzuki, T., "A generalized Banach contraction principle that characterizes metric completeness", *Proc. Amer. Math.Soc.*, bf 136, 1861–1869,(2008).
- [19] Khan, M. S., Swaleh, M. and Sessa, S., "Fixed point theorems by altering distances between the points", *Bull. Aust.Math. Soc.*, 30:1–9, (1984).