Uniqueness of the Solution to the Inverse Problem of Scattering Theory for the Sturm-Liouville Operator System with a Spectral Parameter in the Boundary Condition

Gülen BAȘCANBAZ TUNCA ${ }^{1}$, Esra KIR ARPAT ${ }^{2,}{ }^{\wedge}$
${ }^{1}$ Ankara University, Faculty of Science, Department of Mathematics, Tandoğan, Ankara, Turkey
${ }^{2}$ Gazi University, Faculty of Science, Department of Mathematics, 06500, Teknikokullar, Ankara, Turkey

ABSTRACT

In this paper, we consider the boundary value problem (bvp)
$y_{j}^{\prime \prime}+\lambda^{2} y_{j}=\sum_{k=1}^{n} V_{j k}(x) y_{k}, x \in \mathbb{R}_{+}:=(0, \infty) \quad \mathrm{y}_{j}^{\prime}(0)+\left(\alpha_{0}+i \alpha_{1} \lambda+\alpha_{2} \lambda^{2}\right) y_{j}(0)=0, j=1,2, \ldots, n$
where λ is the spectral parameter and $V(x)=\left|\left|V_{j k}(x)\right|_{1}^{n}\right.$ is a Hermitian matrix such that

$$
\sigma_{1}(x)=\int_{x}^{\infty} t|V(t)| d x<\infty, x \in \mathbb{R}_{+}
$$

and α_{0}, α_{1} and α_{2} are real numbers, $\alpha_{1} \geq 0, \alpha_{2}>0, \alpha_{0}+i \alpha_{1} \lambda+\alpha_{2} \lambda^{2} \neq 0$ for $\lambda=i \mu, \mu>0$.
We have obtained the uniqueness of the solution to the inverse problem of scattering theory on the semiaxis for the boundary value problem with a spectral parameter.
Keywords: scattering theory, inverse problem, spectral parameter

[^0]
1. INTRODUCTION

The inverse problem of scattering theory for
$-y^{\prime \prime}+q(x) y=\lambda^{2} y$
with boundary condition not containing a spectral parameter were studied in [1-3]. The direct and inverse scattering problems for a selfadjoint infinite system second-order difference equations with operator-valued coefficients are considered in [4]. The uniqueness of the solution to the inverse problem of scattering theory for the following equation
$-y^{\prime \prime}+q(x) y=\lambda^{2} y$
with a spectral parameter in the boundary condition
$y^{\prime}(0)+\left(\alpha_{0}+i \alpha_{1} \lambda+\alpha_{2} \lambda^{2}\right) y(0)=0$
was studied by Kh.R.Mamedov [5].
We consider the bvp
$y_{j}^{\prime \prime}+\lambda^{2} y_{j}=\sum_{k=1}^{n} V_{j k}(x) y_{k}, \quad x \in \mathbb{R}_{+}:=(0, \infty)$
$y_{j}^{\prime}(0)+\left(\alpha_{0}+i \alpha_{1} \lambda+\alpha_{2} \lambda^{2}\right) y_{j}(0)=0, j=1,2, \ldots, n$
(5)
where λ is the spectral parameter and
$V(x)=\left|\left|V_{j k}(x)\right|\right|_{1}^{n}$ is a Hermitian matrix such that
$\sigma_{1}(x)=\int_{x}^{\infty} t|V(t)| d x<\infty, x \in \mathbb{R}_{+}$
and α_{0}, α_{1} and α_{2} are real numbers, $\alpha_{1} \geq 0, \alpha_{2}>$
$0, \alpha_{0}+i \alpha_{1} \lambda+\alpha_{2} \lambda^{2} \neq 0$ for $\lambda=i \mu, \mu>0$.
Clearly we can study the matrix differential equation
$\mathrm{Y}^{\prime \prime}+\lambda^{2} Y=V(x) Y, x \in \mathbb{R}_{+}$
instead of the system (4). It is well known that (see [2]) under the condition (6) Equation (7) has a solution $E(x, \lambda)$ given by
$E(x, \lambda)=e^{i \lambda x} I+\int_{x}^{\infty} K(x, t) e^{i \lambda t} d t$,
where the matrix $K(x, t)$ satisfies the inequality
$|K(x, t)| \leq \frac{1}{2} e^{\sigma_{1}(x)} \sigma\left(\frac{x+t}{2}\right)$
$\sigma(x)=\int_{x}^{\infty}|V(t)| d t$.
for
$x \in \mathbb{R}_{+}$(and for $x=$
0 as well, in the event that $\left.\sigma_{1}(0)<\infty\right), E(x, \lambda)$ is
regular in \mathbb{C}_{+}and continuous on $\overline{\mathbb{C}}_{+}$. Moreover, the matrix $K(x, t)$ and potential are related to
$K(x, x)=\frac{1}{2} \int_{x}^{\infty} V(t) d t$.
In this paper we shall use the following notations:
$\mathbb{C}_{+}=\{\lambda: \lambda \in \mathbb{C}, \operatorname{Im} \lambda>0\}$
$\overline{\mathbb{C}}_{+}=\{\lambda: \lambda \in \mathbb{C}, \operatorname{Im} \lambda \geq 0\}$
I is the identity matrix,
A^{*} is the complex conjugate transpose of the matrix A.
$|A|=\max _{j} \sum_{k}\left|a_{j k}\right|$
denotes absolute value of a matrix $A=\left\|a_{j k}\right\|$.
A matrix is said to be continuous if all its elements are continuous functions. In the same sense, we shall refer to a matrix as being summable, differentiable, regular, etc.
$L_{(n)}^{2}(\alpha, \beta)$ denotes the Hilbert space of vector functions $f(x)=\left\{f_{1}(x), \ldots, f_{n}(x)\right\}$ with components square summable over (α, β) and with scaler product defined by
$(f, g)_{\langle\alpha, \beta\rangle}=\int_{\alpha}^{\beta} \sum_{k=1}^{n} f_{k}(x) \overline{g_{k}(x)} d x$
Moreover we have
$W\left\{E^{*}(x, \lambda), E(x, \lambda)\right\}=\left\{\begin{array}{c}2 i \lambda I \text { for } \operatorname{Im} \lambda=0 \\ 0 \text { for Re } \lambda=0, \operatorname{Im} \lambda>0\end{array}\right\}(11)$
Here W denotes the Wronskian of E^{*} and E. As λ is real and nonzero $E(x, \lambda)$ and $E(x,-\lambda)$ form the fundamental system of solutions of the equation (4) and the Wronskian of this system is
$W\{E(x, \lambda), E(x,-\lambda)\}=-2 i \lambda I$ for $\operatorname{Im} \lambda=0$
Consider the solution $\mathrm{w}(x, \lambda)$ of equation (4) satisfying the initial conditions
$w(0, \lambda)=I, w(0, \lambda)=-\left(\alpha_{0}+i \alpha_{1} \lambda+\alpha_{2} \lambda^{2}\right) I$.
Now we have the following:
Lemma 1:
For $\lambda \epsilon R \backslash\{0\}$ the following expression for $\mathrm{w}(x, \lambda)$ is valid

$$
\begin{equation*}
\mathrm{w}(x, \lambda)=\frac{1}{2}[E(x,-\lambda)-E(x, \lambda) S(\lambda)]\left[E^{*^{\prime}}(-\lambda)+\left(\alpha_{0}+i \alpha_{1} \lambda+\alpha_{2} \lambda^{2}\right) E^{*}(-\lambda)\right] \tag{12}
\end{equation*}
$$

where
$S(\lambda)=\left[E^{*^{\prime}}(\lambda)+\left(\alpha_{0}+i \alpha_{1} \lambda+\alpha_{2} \lambda^{2}\right) E^{*}(\lambda)\right]\left[E^{*^{\prime}}(-\lambda)+\left(\alpha_{0}+i \alpha_{1} \lambda+\alpha_{2} \lambda^{2}\right) E^{*}(-\lambda)\right]^{-1}$
with $S^{*}(\lambda)=S(-\lambda)$
Proof:

Since $E(x, \lambda)$ and $E(x,-\lambda)$ form the fundamental solution system of equation (4) for $\lambda \in R \backslash\{0\}$ then (12) can be obtained easily. From the initial conditions we deduce the following result

$$
\begin{align*}
E^{\prime}(-\lambda)+\left(\alpha_{0}\right. & \left.\left.+i \alpha_{1} \lambda+\alpha_{2} \lambda^{2}\right) E(-\lambda)\right]\left[E^{*^{\prime}}(-\lambda)+\left(\alpha_{0}+i \alpha_{1} \lambda+\alpha_{2} \lambda^{2}\right) E^{*}(-\lambda)\right] \\
& \left.=E^{\prime}(\lambda)+\left(\alpha_{0}+i \alpha_{1} \lambda+\alpha_{2} \lambda^{2}\right) E(\lambda)\right]\left[E^{*^{\prime}}(\lambda)+\left(\alpha_{0}+i \alpha_{1} \lambda+\alpha_{2} \lambda^{2}\right) E^{*}(\lambda)\right] \tag{14}
\end{align*}
$$

By (14) we obtain that $S^{*}(\lambda)=S(-\lambda)$.
Lemma 2:
The function $\operatorname{det} F(\lambda)$,
in which
$F(\lambda):=E^{\prime}(0, \lambda)+\left(\alpha_{0}+i \alpha_{1} \lambda+\alpha_{2} \lambda^{2}\right) E(0, \lambda)$
can have only a finite number of zeros in C_{+}. Moreover, all these zeros are simple and lie on the imaginary axis.
Proof:
From (8), (9) we obtain that
$F(\lambda)=\alpha_{2} \lambda^{2} I+O(\lambda)$
when $|\lambda| \rightarrow \infty, \lambda \epsilon \overline{\mathbb{C}}$, so that the zeros of $\operatorname{det} F(\lambda)$ form a bounded set with at most one possible limiting point $\lambda=0$. (Since $F(x, \lambda)$ is nonsingular $\operatorname{det} F(\lambda) \neq 0$ for $\lambda \in \mathbb{R}$). We can show the method given in [2] that the number of zeros of $\operatorname{det} F(\lambda)$ is finite even if $\operatorname{det} F(\lambda)=0$. So we get that the matrix function $F^{-1}(\lambda)$ is regular in \mathbb{C}_{+}with the possible exception of a finite number of points where $\operatorname{det} F(\lambda)=0$. (i.e. $F^{-1}(\lambda)$ has poles). Let us now show that all the singularities of the matrix function $F^{-1}(\lambda)$ lie on the imaginary axis: Let λ_{1} and λ_{2} be some poles of $F^{-1}(\lambda)$.
Consider the following differential equation for λ_{1}
$E^{\prime \prime}\left(x, \lambda_{1}\right)+\lambda_{1}^{2} E\left(x, \lambda_{1}\right)=V(x) E\left(x, \lambda_{1}\right)$
and its complex conjugate transpose for λ_{2}
$\left(E^{*}\right)^{\prime \prime}\left(x, \lambda_{2}\right)+\left(\bar{\lambda}_{2}\right)^{2} E^{*}\left(x, \lambda_{2}\right)=V(x) E^{*}\left(x, \lambda_{2}\right)$
Multiplying the first equation by $E^{*}\left(x, \lambda_{2}\right)$ and the second equation by $E\left(x, \lambda_{1}\right)$, subtracting the second resulting relation from the first, and integrating the result from zero to infinity, we get

$$
\begin{equation*}
\left(\lambda_{1-}^{2}\left(\bar{\lambda}_{2}\right)^{2}\right) \int_{0}^{\infty} E^{*}\left(x, \lambda_{2}\right) E\left(x, \lambda_{1}\right) d x-W\left\{E^{*}\left(x, \lambda_{1}\right) E\left(x, \lambda_{2}\right)\right\}_{x=0}=0 \tag{15}
\end{equation*}
$$

where λ_{1}, λ_{2} are the points for which the inverse of $F(\lambda)$ does not exist. Hence obviously there exists a nonzero vector a such that
$F\left(\lambda_{i}\right) a=0, \quad \mathrm{i}=1,2$
Thus the solution $E\left(x, \lambda_{i}\right) a$ of the system (4) satisfies (5).
Therefore Wronskian in (15) takes the form

$$
W\left\{E^{*}\left(x, \lambda_{1}\right) E\left(x, \lambda_{2}\right)\right\}_{x=0}=E^{*}\left(0, \lambda_{1}\right) E^{\prime}\left(0, \lambda_{2}\right)-\left(E^{*}\right)^{\prime}\left(0, \lambda_{1}\right) E\left(0, \lambda_{2}\right) .
$$

Multiplying the last equation from the right by a vector a and from the left by a^{*} and using the fact that $F\left(\lambda_{i}\right) a=0$ for $\mathrm{i}=1,2$. Therefore follows that

$$
W\left\{E^{*}\left(x, \lambda_{1}\right) E\left(x, \lambda_{2}\right)\right\}_{x=0}=\left[-i \alpha_{1}\left(\overline{\lambda_{1}}+\lambda_{1}\right)+\alpha_{2}\left(\left(\bar{\lambda}_{1}\right)^{2}-\lambda_{1}^{2}\right)\right] a^{*} E^{*}\left(0, \lambda_{1}\right) E\left(x, \lambda_{1}\right) a
$$

for $\lambda_{1}=\lambda_{2}$. Hence substituting the last equation into equation (15) we obtain that

$$
\begin{align*}
& \left.\left.\frac{\left(\lambda_{1}+\right.}{\left.\overline{\lambda_{1}}\right)\left[\left(\lambda_{1}-\overline{\lambda_{1}}\right) \int_{0}^{\infty} E^{*}\left(x, \lambda_{1}\right) E\left(x, \lambda_{1}\right) d x+i \alpha_{1} a^{*} E^{*}\left(0, \lambda_{1}\right) E\left(0, \lambda_{1}\right) a+\alpha_{2}\left(\lambda_{1}-\right.\right.} \overline{\lambda_{1}}\right) a^{*} E^{*}\left(0, \lambda_{1}\right) E\left(0, \lambda_{1}\right) a\right]=0
\end{align*}
$$

It follows from (16) that the zeros of $\operatorname{det} F(\lambda)$ are of the form $\lambda=i \mu, \mu>0$.
Now let us show that all the singularities of the matrix function $F^{-1}(\lambda)$ in \mathbb{C}_{+}are
simple poles.

Differentiating the equation
$E^{\prime \prime}(x, \lambda)+\lambda^{2} E(x, \lambda)=V(x) E(x, \lambda)$
with respect to λ and then taking the complex conjugate transpose of both sides of the resulting equation, we deduce
$\left(\dot{E}^{*}(x, \lambda)\right)^{\prime \prime}+2 \bar{\lambda} E^{*}(x, \lambda)+(\bar{\lambda})^{2} \dot{E}^{*}(x, \lambda)=\dot{E}^{*}(x, \lambda) V(x)$
for $\lambda \in \mathbb{C}_{+}$. Postmultiplying the last equation by $E(x, \lambda)$ and subtracting the first resulting equation from the second, after first premultiplying it by $E^{*}(x, \lambda)$ we obtain that
$\dot{E}^{*}(x, \lambda) E^{\prime \prime}(x, \lambda)-\left(\dot{E}^{*}(x, \lambda)\right)^{\prime \prime} E(x, \lambda)=2 \lambda E^{*}(x, \lambda) E(x, \lambda)$
Integrating both sides of the last equation from 0 to ∞ we obtain that

$$
\begin{equation*}
\dot{E}^{*}(x, \lambda) E^{\prime}(x, \lambda)-\left(\dot{E}^{*}(x, \lambda)\right)^{\prime} E(x, \lambda)=2 \lambda \int_{x}^{\infty} E^{*}(x, \lambda) E(x, \lambda) d x \tag{17}
\end{equation*}
$$

for $\lambda \in \mathbb{C}_{+}$.
Let $\lambda_{0=} i \mu_{0}, \mu_{0} \in \mathbb{C}_{+}$be a pole of $F^{-1}(\lambda)$. Then we have $\operatorname{det} F\left(\lambda_{0}\right)=0$ and hence there exists a nonzero vector a such that

$$
\begin{equation*}
F\left(\lambda_{0}\right) a=0 \tag{18}
\end{equation*}
$$

Thus the solution $E\left(x, \lambda_{0}\right) a$ of the system (1) satisfies

$$
E^{\prime}\left(0, \lambda_{0}\right) a+\left(\alpha_{0}+i \alpha_{1} \lambda_{0}+\alpha_{2} \lambda_{0}^{2}\right) E\left(0, \lambda_{o}\right) a=0
$$

for $\lambda=\lambda_{0}$.
Since

$$
W\left\{w\left(x, \lambda_{0}\right) E\left(x, \lambda_{0}\right)\right\}_{x=0}=F\left(\lambda_{0}\right)
$$

then

$$
E\left(x, \lambda_{0}\right) a=w\left(x, \lambda_{0}\right) a_{1}
$$

here a_{1} is some vector and then

$$
\lim _{x \rightarrow 0} E\left(x, \lambda_{0}\right) a=E\left(\lambda_{0}\right) a=w\left(\lambda_{0}\right) a_{1}=a_{1}
$$

exist and

$$
E\left(x, \lambda_{0}\right) a=w\left(x, \lambda_{0}\right) a_{1}
$$

Substituting $\lambda=\lambda_{0}$ into (17), multiplying this equation from the left by a^{*} and from the right by a and then letting x tend to zero, we get that

$$
\begin{equation*}
-i a^{*} \dot{F}^{*}\left(i \mu_{0}\right) E\left(i \mu_{0}\right) a=2 \mu_{0} \int_{0}^{\infty}\left[E\left(x, i \mu_{0}\right) a\right]^{*}\left[E\left(x, i \mu_{0} a\right] d x+\left(\alpha_{1}+2 \alpha_{2} \mu_{0}\right) a^{*} E^{*}\left(i \mu_{0}\right) E\left(i \mu_{0}\right) a \neq 0\right. \tag{19}
\end{equation*}
$$

In addition the condition (16) we now suppose that the vector a satisfies the equation

$$
\begin{equation*}
F\left(\lambda_{0}\right) b+\dot{F}\left(\lambda_{0}\right) \mathrm{a}=0 \tag{20}
\end{equation*}
$$

where b is some other vector.
Taking the complex conjugate transpose of both sides of the matrix equation (20) and postmultiplying the resulting equation by $E^{\prime}\left(\lambda_{0}\right) a \quad$ we deduce that

$$
b^{*} F^{*}\left(\lambda_{0}\right) E^{\prime}\left(\lambda_{0}\right) a+a^{*} \dot{F}^{*}\left(\lambda_{0}\right) E^{\prime}\left(\lambda_{0}\right) a=0
$$

By the definition of $F(\lambda)$ and (18), the first term of the left hand side of the last equation is

$$
b^{*} F^{*}\left(\lambda_{0}\right) E^{\prime}\left(\lambda_{0}\right) a=b^{*}\left(E^{*}\right)^{\prime}\left(\lambda_{0}\right) E\left(\lambda_{0}\right) a=0
$$

and hence the second term is

$$
a^{*} \dot{F}^{*}\left(\lambda_{0}\right) E^{\prime}\left(\lambda_{0}\right) a=0
$$

which gives a contradiction to (19) by the definition of $F\left(\lambda_{0}\right)$. This shows that the vector satisfying (18) and (20) simultaneously must be zero. Therefore by Lemma 2.2 .1 in [2] we get that $F^{-1}(\lambda)$ has a simple pole at λ_{0} as claimed. (i.e. all zeros of $\operatorname{det} F(\lambda)$ are simple).

By the definition of $F(\lambda)$, we can obtain the following asymptotic equality

$$
F(\lambda)=\alpha_{2} \lambda^{2}\left[I+O\left(\frac{1}{\lambda}\right)\right]
$$

as $|\lambda| \rightarrow \infty$. Therefore $S(\lambda)$ is called the scattering matrix and satisfies the asymptotic equality $S(\lambda)=I+O\left(\frac{1}{\lambda}\right)$ as
$|\lambda| \rightarrow \infty$. Hence $I-S(\lambda) \epsilon L_{(n)}^{2}(-\infty, \infty)$ and therefore the function

$$
F_{S}(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty}(I-S(\lambda)) e^{i \lambda t} d \lambda
$$

belongs to $L_{(n)}^{2}(-\infty, \infty)$.
To derive the main equation we rewrite (12) in the following form:

$$
2 i w(x, \lambda)\left[E^{* \prime}(-\bar{\lambda})+\left(\alpha_{0}+i \alpha_{1} \lambda+\alpha_{2} \lambda^{2}\right) E^{*}(-\bar{\lambda})\right]^{-1}=E(x,-\lambda)-E(x, \lambda) S(\lambda)
$$

and substitute $E(x, \lambda)$ in this by its expression (8). Then we get that

$$
\begin{align*}
& 2 i w(x, \lambda)\left[\left(E^{*}\right)^{\prime}(-\bar{\lambda})+\left(\alpha_{0}+i \alpha_{1} \lambda+\alpha_{2} \lambda^{2}\right) E^{*}(-\bar{\lambda})\right]^{-1}+2 i \sin \lambda x I= \\
& e^{i \lambda x}[I-S(\lambda)]+\int_{x}^{\infty} K(x, t) e^{-i \lambda t} d t+\int_{x}^{\infty} K(x, t) e^{i \lambda t} d t[I-S(\lambda)]-\int_{x}^{\infty} K(x, t) e^{i \lambda t} d t \tag{21}
\end{align*}
$$

We now multiply the left hand side of (21) by $\frac{e^{i \lambda y}}{2 \pi}$ and integrate the result from $-\infty$ to ∞ over λ. On the left hand side we get

$$
\begin{equation*}
-\sum_{k=1}^{p} 2 i \mu_{k} w\left(x, \mu_{k}\right) R_{k}^{*} e^{-\mu_{k} y} \tag{22}
\end{equation*}
$$

where R_{k} is the residue of the matrix $F^{-1}(\lambda)$ at the pole $\lambda_{k}=i \mu_{k}, \mu_{k}>0$. Since the second term 2isin $\lambda x I$ of the left hand side of the equation (21) is an entire function of λ. Therefore the integral will be zero. On the right hand side, since $K(x, t)=0$ when $x>t$, we obtain that

$$
\begin{equation*}
F_{s}(x+y)+K(x, y)+\int_{x}^{\infty} K(x, t) F_{s}(t+y) d t \tag{23}
\end{equation*}
$$

for $0 \leq x<y \quad$. Taking (22) and (23) into account then (21) takes the form

$$
\begin{equation*}
F_{S}(x+y)+K(x, y)+\int_{x}^{\infty} K(x, t) F_{s}(t+y) d t=-2 i \sum_{k=1}^{p} \mu_{k} w\left(x, i \mu_{k}\right) R_{k}^{*} e^{-\mu_{k} y}, 0 \leq x<y \tag{24}
\end{equation*}
$$

Taking into account (17) for $\lambda=\lambda_{k}$ we convert the right hand side of (24) into another form. For this purpose, we have

$$
\begin{equation*}
\dot{E}^{*}\left(x, \lambda_{k}\right) E^{\prime}\left(x, \lambda_{k}\right)-\left(\dot{E}^{*}\left(x, \lambda_{k}\right)\right)^{\prime} E\left(x, \lambda_{k}\right)=2 \lambda_{k} \int_{x}^{\infty} E^{*}\left(t, \lambda_{k}\right) E\left(t, \lambda_{k}\right) d t \tag{25}
\end{equation*}
$$

using (17) and the relations

$$
\begin{gather*}
F\left(\lambda_{k}\right) R_{k}=R_{k} F\left(\lambda_{k}\right)=0 \\
F\left(\lambda_{k}\right) R_{k}^{(0)}+\dot{F}\left(\lambda_{k}\right) R_{k}-R_{k}^{(0)} F\left(\lambda_{k}\right)+R_{k} \dot{F}\left(\lambda_{k}\right)=I \tag{26}
\end{gather*}
$$

Let P_{k} denote a Hermitian matrix which is a projection onto the null space of the matrix $F\left(\lambda_{k}\right)$ so that $F\left(\lambda_{k}\right) P_{k}=0$. The set of vectors with form $R_{k} a$, a is an arbitrary vector, coincides with the null space of $F\left(\lambda_{k}\right)$. Hence
$\operatorname{rank}_{k}=\operatorname{rankP} P_{k}$
And

$$
\begin{equation*}
P_{k} R_{k}=R_{k} \tag{27}
\end{equation*}
$$

multiplying (25) from the left by R_{k}^{*} and from the right by P_{k} and letting $x \rightarrow 0$ in the result we reach the following equation:

$$
\begin{equation*}
R_{k}^{*} \dot{F}^{*}\left(\lambda_{k}\right) E\left(0, \lambda_{k}\right) P_{k}-\left(i \alpha_{1}+2 \alpha_{2} \lambda_{k}\right) R_{k}^{*} E^{*}\left(0, \lambda_{k}\right) E\left(0, \lambda_{k}\right) P_{k}=2 \lambda_{k} R_{k}^{*} A_{k} P_{k} \tag{28}
\end{equation*}
$$

where

$$
A_{k}:=\int_{0}^{\infty} E^{*}\left(t, \lambda_{k}\right) E\left(t, \lambda_{k}\right) d t
$$

is a positive definite Hermitian matrix,
and

$$
E\left(0, \lambda_{k}\right) P_{k}=\lim _{x \rightarrow 0} E\left(x, \lambda_{k}\right) P_{k}
$$

Using the second equation in (26) and the fact that

$$
W\left\{E^{*}(x, \lambda), E(x, \lambda)\right\}_{x=0}=0 \text { for } \lambda \epsilon C_{+}, \operatorname{Re} \lambda=0
$$

we arrive at

$$
R_{k}^{*} \dot{F}^{*}\left(\lambda_{k}\right) E\left(0, \lambda_{k}\right) P_{k}=E\left(0, \lambda_{k}\right) P_{k} .
$$

Hence taking the last equation and (26) into account we obtain for $\lambda_{k}=i \mu_{k}$ that

$$
\begin{equation*}
\left.E\left(0, i \mu_{k}\right) P_{k}-i\left(\alpha_{1}+2 \alpha_{2} \mu_{k}\right) R_{k}^{*}\right) E^{*}\left(0, i \mu_{k}\right) E\left(0, i \mu_{k}\right) P_{k}-2 i \mu_{k} R_{k}^{*} A_{k} P_{k} \tag{29}
\end{equation*}
$$

where A_{k} is the matrix given in (26).
Now we have

$$
E\left(x, i \mu_{k}\right) P_{k}=w\left(x, i \mu_{k}\right) E\left(0, i \mu_{k}\right) P_{k}
$$

Since each side of the last equation is a solution of matrix Equation (4) when $\lambda=i \mu_{k}$ and satisfies the same initial conditions at $x=0$. The last equation takes the form

$$
\begin{equation*}
E\left(x, i \mu_{k}\right) P_{k}=2 i \mu_{k} w\left(x, i \mu_{k}\right) R_{k}^{*} B_{k} \tag{30}
\end{equation*}
$$

where

$$
B_{k}=P_{k} A_{k} P_{k}+\left(\frac{\alpha_{1}+2 \alpha_{2} \mu_{k}}{2 \mu_{k}}\right) P_{k} E^{*}\left(0, i \mu_{k}\right) E\left(0, i \mu_{k}\right) P_{k}+I-P_{k}
$$

by considering (27) in (29). Postmultiplying (28) by B_{k}^{-1} we arrive at

$$
\begin{equation*}
E\left(x, i \mu_{k}\right) M_{k}^{2}=w\left(x, i \mu_{k}\right) R_{k}^{*} \tag{31}
\end{equation*}
$$

here
$M_{k}^{2}=P_{k} B_{k}^{-1}$
M_{1}, \ldots, M_{p} will be referred to as the normalization matrices. Taking (31) into account , then (22) takes the form

$$
-\sum_{k=1}^{p} 2 i \mu_{k} w\left(x, i \mu_{k}\right) R_{k}^{*} e^{-\mu_{k} y}=-\sum_{k=1}^{p} E\left(x, i \mu_{k}\right) M_{k}^{2} e^{-\mu_{k} y}
$$

where
$M_{k}^{2}=P_{k} B_{k}^{-1}$.
Using the expression for $E\left(x, i \mu_{k}\right)$ given by (8) in the last form of (22) obtained above, we finally deduce that the kernel $K(x, y)$ satisfies the linear integral equation

$$
\begin{equation*}
F(x+y)+K(x, y)+\int_{x}^{\infty} K(x, t) F(t+y) d t=0 \tag{32}
\end{equation*}
$$

for $0 \leq x<y$, where

$$
\begin{equation*}
F(t)=\sum_{k=1}^{p} M_{k}^{2} e^{-\mu_{k} t}+F_{s}(t)=\sum_{k=1}^{p} M_{k}^{2} e^{-\mu_{k} t}+\frac{1}{2 \pi} \int_{-\infty}^{\infty}[I-S(\lambda)] e^{i \lambda t} d \lambda \tag{33}
\end{equation*}
$$

Equation (22) is called the fundamental equation of the inverse problem of scattering theory.
Therefore we have proved the following.
Theorem 1:
The kernel $K(x, y)$ of the transformation operator (6) satisfies the fundamental equation (32) for ≥ 0.
We know that in order to construct the fundamental equation (32), it is sufficient to state the matrix $F(t)$ (kernel of the fundamental equation). In turn, in order to construct $F(t)$, it is sufficient to know the quantities

$$
\mathrm{S}(\lambda), \lambda_{k}^{2}, \mu_{k}^{2}, \mathrm{k}=1, \ldots, \mathrm{p}
$$

which are called the scattering data of the problem (4)-(5). From (33) we can deduce that $F(t)$ is a Hermitian matrix.

Given the scattering data, using (33) we can obtain the matrix $F(t)$ and hence the fundamental equation (32) for the unknown matrix $K(x, y)$. Solving this equation we find the kernel K of the transformation operator. From (10) we reach to the potential such that

$$
q(x)=-\frac{1}{2} \frac{d}{d x} K(x, y)
$$

Theorem 2:
The equation (32) has a unique solution $K(x, y) \in L_{1}[x, \infty)$.

Proof:

We need to show that the homogeneous equation

$$
\begin{equation*}
x(t)+\int_{x}^{\infty} x(\xi) F(t+\xi) d \xi=0 \tag{34}
\end{equation*}
$$

has only the zero solution in $L_{(n)}^{2}(0, \infty)$. We assume that (34) has a different zero solution. By forming the scalar product of both sides of (34) with $x(t)$ and integrating;

$$
\int_{x}^{\infty}(x(t), x(t)) d t+\int_{x}^{\infty}\left(\int_{x}^{\infty} x(\xi) F(t+\xi) d \xi, x(t)\right) d t=0
$$

By using last equation and (33)

$$
\begin{equation*}
\int_{x}^{\infty}(x(t), x(t)) d t+\int_{x}^{\infty}\left(\int_{x}^{\infty} x(\xi) F(t+\xi) d \xi, x(t)\right) d t+\int_{x}^{\infty}\left(\sum_{k=1}^{p} \int_{x}^{\infty} x(\xi) M_{k}^{2} e^{-\mu_{k}(t+\xi)} d \xi, x(t)\right) d t=0 \tag{35}
\end{equation*}
$$

In (35) interchanging integrals and using $\sum_{k=1}^{p} e^{-\mu_{k}(t+\xi)} \varphi(t)$ series uniform converges (35) can be integrated by terms. So we obtain following

$$
\begin{equation*}
\int_{x}^{\infty} x^{2}(t) d t+\sum_{k=1}^{p}\left(\int_{x}^{\infty} x(t) e^{-\mu_{k} t} d t\right)^{2}+\int_{x}^{\infty}\left(\int_{x}^{\infty} x(t) e^{i \mu t} d t\right)^{2} d \xi \tag{36}
\end{equation*}
$$

By using Parseval equation of Fourier transformation in (36)

$$
\begin{equation*}
\frac{1}{2 \pi} \int_{-\infty}^{\infty}\left|\phi^{+}(\xi)\right|^{2} d \xi+\sum_{k=1}^{p}\left(\int_{x}^{\infty} x(t) e^{-\mu_{k} t} d t\right)^{2}+\frac{1}{2 \pi} \int_{-\infty}^{\infty}\left[\phi^{+}(\xi)\right]^{2} d \xi=0 \tag{37}
\end{equation*}
$$

where Parseval equation

$$
\int_{x}^{\infty} x^{2}(t) d t=\frac{1}{2 \pi} \int_{-\infty}^{\infty}\left|\phi^{+}(\xi)\right|^{2} d \xi
$$

From
$\arg (\phi(\xi))=\theta(\xi)$
(37) rewrite as polar formata, we obtaine

$$
\begin{equation*}
\sum_{k=1}^{p}\left(\int_{x}^{\infty} x(t) e^{-\mu t} d t\right)^{2}+\frac{1}{2 \pi} \int_{-\infty}^{\infty}\left|\phi^{+}(\xi)\right|^{2}\left(1-e^{i(\eta(k)+2 \theta(k)}\right) d \xi=0 \tag{38}
\end{equation*}
$$

For $\operatorname{Re}\left(e^{i(\eta(k)+2 \theta(k)}\right)=\cos (\eta(k)+2 \theta(k))$
Real part of (38) is

$$
\left.\sum_{k=1}^{p}\left(\int_{x}^{\infty} x(t) e^{-\mu t} d t\right)\right)^{2}+\frac{1}{2 \pi} \int_{-\infty}^{\infty}\left|\phi^{+}(\xi)\right|^{2}(1-\cos (\eta(k)+2 \theta(k)) d k=0
$$

For this equation is equal to zero only situation is
$\phi(\xi)=0, x(t)=0$.
This is a contradiction. So equation (32) has a unique solution for finite x .

CONFLICT OF INTEREST

No conflict of interest was declared by the authors.

REFERENCES

[1] V.A.Marchenko, "Dokl.Akad. Nauk SSSR [Soviet Math. Dokl.]", 104 (5): 695-698, (1955).
[2] V.A.Marchenko, "Sturm-Liouville Operators and Their Applications" [in Russian], Naukova Dumka, Kiev, (1977).
[3] B.M.Levitan, "Mat. Zametki [Math. Notes]", 17(4): 611-624, (1975).
[4] Maksudov, F.G, Bairamov, E.M, and Orudzheva, R.U. "An Inverse Scattering Problem for an Infinite Jacobi Matrix with Operator Elements (Russian) Dokl.Akad.Nauk no. 3,415-419 (1992).
[5] Kh.R.Mamedov, "Uniqueness of the Solution to the Inverse Problem of Scattering Theory for the Sturm-Liouville Operator with a Spectral Parameter in the Boundary Condition", Mathematical Notes, 74(1): 136-140, (2003).

[^0]: "Corresponding author, e-mail: esrakir@ gazi.edu.tr

