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ABSTRACT 

In this paper, we consider the boundary value problem (bvp) 

𝑦𝑗
′′ + 𝜆2𝑦𝑗 = ∑ 𝑉𝑗𝑘(𝑥)𝑦𝑘

𝑛

𝑘=1

, 𝑥 ∈ ℝ+ ∶= (0, ∞)                       y𝑗
′ (0) + (𝛼0 + 𝑖𝛼1𝜆 + 𝛼2𝜆2)𝑦𝑗(0) = 0, 𝑗 = 1,2, … , 𝑛 

where 𝜆 is the spectral parameter and 𝑉(𝑥) = ||𝑉𝑗𝑘(𝑥)||
1

𝑛

 is a Hermitian matrix such that  

𝜎1(𝑥) = ∫ 𝑡|𝑉(𝑡)|𝑑𝑥 < ∞,
∞

𝑥

 𝑥 ∈ ℝ+ 

and 𝛼0, 𝛼1 and 𝛼2 are real numbers, 𝛼1 ≥ 0, 𝛼2 > 0, 𝛼0 + 𝑖𝛼1𝜆 + 𝛼2𝜆2 ≠ 0 for 𝜆 = 𝑖𝜇, 𝜇 > 0. 

We have obtained the uniqueness of the solution to the inverse problem of scattering theory on the semiaxis for the 

boundary value problem with a spectral parameter. 

Keywords: scattering theory, inverse problem, spectral parameter 



136    GU J SCI, 29(1):135-142 (2016) / Gülen BAŞCANBAZ TUNCA, Esra KIR ARPAT 
 

 
 

 

1. INTRODUCTION 

The inverse problem of scattering theory for  

−y′′ + q(x)y = λ2y          (1) 

with boundary condition not containing a spectral 

parameter were studied in [1-3].  The direct and inverse 

scattering problems for a selfadjoint infinite system 

second-order difference equations with operator-valued 

coefficients are considered in [4]. The uniqueness of the 

solution to the inverse problem of scattering theory for 

the following equation  

−y′′ + q(x)y = λ2y                                                     (2) 

with a spectral parameter in the boundary condition 

𝑦′(0) + (𝛼0 + 𝑖𝛼1𝜆 + 𝛼2𝜆2)𝑦(0) = 0        (3) 

was studied by Kh.R.Mamedov [5]. 

We consider the bvp 

𝑦𝑗
′′ + 𝜆2𝑦𝑗 = ∑ 𝑉𝑗𝑘(𝑥)𝑦𝑘 ,   𝑥 ∈ ℝ+ ≔ (0, ∞)𝑛

𝑘=1        (4) 

𝑦𝑗
′(0) + (𝛼0 + 𝑖𝛼1𝜆 + 𝛼2𝜆2)𝑦𝑗(0) = 0, 𝑗 = 1,2, … , 𝑛  

(5) 

where 𝜆 is the spectral parameter and  

𝑉(𝑥) = ||𝑉𝑗𝑘(𝑥)||
1

𝑛
 is a Hermitian matrix such that 

𝜎1(𝑥) = ∫ 𝑡|𝑉(𝑡)|𝑑𝑥 < ∞,
∞

𝑥
 𝑥 ∈ ℝ+                         (6) 

and 𝛼0, 𝛼1 and 𝛼2 are real numbers, 𝛼1 ≥ 0, 𝛼2 >
0, 𝛼0 + 𝑖𝛼1𝜆 + 𝛼2𝜆2 ≠ 0 for 𝜆 = 𝑖𝜇, 𝜇 > 0. 

Clearly we can study the matrix differential equation 

Y′′ + 𝜆2𝑌 = 𝑉(𝑥)𝑌, 𝑥 ∈ ℝ+          (7) 

instead of the system (4). It is well known that (see [2]) 

under the condition (6) Equation (7) has a solution 

𝐸(𝑥, 𝜆) given by 

𝐸(𝑥, 𝜆) = 𝑒𝑖𝜆𝑥𝐼 + ∫ 𝐾(𝑥, 𝑡)𝑒𝑖𝜆𝑡𝑑𝑡
∞

𝑥
,                          (8) 

where the matrix 𝐾(𝑥, 𝑡) satisfies the inequality 

|𝐾(𝑥, 𝑡)| ≤
1

2
𝑒𝜎1(𝑥)𝜎 (

𝑥 + 𝑡

2
) 

𝜎(𝑥) = ∫ |𝑉(𝑡)|𝑑𝑡
∞

𝑥
.                (9) 

for 

𝑥 ∈ ℝ+ (and for 𝑥 =
0 as well, in the event that 𝜎1(0) < ∞), 𝐸(𝑥, 𝜆) is  

 

 

regular in ℂ+ and continuous on ℂ+. Moreover, the 

matrix 𝐾(𝑥, 𝑡) and potential are related to 

𝐾(𝑥, 𝑥) =
1

2
∫ 𝑉(𝑡)𝑑𝑡.

∞

𝑥
       (10) 

In this paper we shall use the following notations: 

ℂ+ = {𝜆: 𝜆 ∈ ℂ, 𝐼𝑚𝜆 > 0} 

ℂ+ = {𝜆: 𝜆 ∈ ℂ, 𝐼𝑚𝜆 ≥ 0} 

I is the identity matrix, 

A* is the complex conjugate transpose of the matrix A. 

|𝐴| = 𝑚𝑎𝑥
𝑗

∑ |𝑎𝑗𝑘|

𝑘

 

denotes absolute value of a matrix 𝐴 = ‖𝑎𝑗𝑘‖. 

A matrix is said to be continuous if all its elements are 

continuous functions. In the same sense, we shall refer 

to a matrix as being summable, differentiable, regular, 

etc. 

𝐿(𝑛)
2 (𝛼, 𝛽) denotes the Hilbert space of vector functions 

𝑓(𝑥) = {𝑓1(𝑥), … , 𝑓𝑛(𝑥)} with components square 

summable over (𝛼, 𝛽) and with scaler product defined 

by  

(𝑓, 𝑔)〈𝛼,𝛽〉 = ∫ ∑ 𝑓𝑘(𝑥)

𝑛

𝑘=1

𝑔𝑘(𝑥)̅̅ ̅̅ ̅̅ ̅̅ 𝑑𝑥
𝛽

𝛼

 

Moreover we have  

𝑊{𝐸∗(𝑥, 𝜆), 𝐸(𝑥, 𝜆)} = {
2𝑖𝜆𝐼  𝑓𝑜𝑟 𝐼𝑚𝜆 = 0

0  𝑓𝑜𝑟 𝑅𝑒𝜆 = 0, 𝐼𝑚𝜆 > 0
}(11) 

Here W denotes the Wronskian of 𝐸∗ and 𝐸 .  As 𝜆 is 

real and nonzero 𝐸(𝑥, 𝜆) and 𝐸(𝑥, −𝜆) form the 

fundamental system of solutions of the equation (4) and 

the Wronskian of this system is  

𝑊{𝐸(𝑥, 𝜆), 𝐸(𝑥, −𝜆)} = −2𝑖𝜆𝐼 for 𝐼𝑚𝜆 = 0  

Consider the solution w(𝑥, 𝜆) of equation (4) satisfying 

the initial conditions  

𝑤(0, 𝜆) = 𝐼, 𝑤(0, 𝜆) = −(𝛼0 + 𝑖𝛼1𝜆 + 𝛼2𝜆2)𝐼. 

Now we have the following: 

Lemma 1: 

For  𝜆𝜖𝑅 ∖ {0} the following expression for w(𝑥, 𝜆) is 

valid 

 
w(𝑥, 𝜆) =

1

2
[𝐸(𝑥, −𝜆) − 𝐸(𝑥, 𝜆)𝑆(𝜆)][𝐸∗′

(−𝜆) + (𝛼0 + 𝑖𝛼1𝜆 + 𝛼2𝜆2)𝐸∗(−𝜆)] (12) 

where  

𝑆(𝜆) = [𝐸∗′
(𝜆) + (𝛼0 + 𝑖𝛼1𝜆 + 𝛼2𝜆2)𝐸∗(𝜆)][𝐸∗′

(−𝜆) + (𝛼0 + 𝑖𝛼1𝜆 + 𝛼2𝜆2)𝐸∗(−𝜆)]−1 (13) 

with  𝑆∗(𝜆) = 𝑆(−𝜆) 

Proof: 
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Since 𝐸(𝑥, 𝜆) and 𝐸(𝑥, −𝜆) form the fundamental solution system of equation (4) for 𝜆𝜖𝑅 ∖ {0} then  (12) can be obtained 

easily. From the initial conditions we deduce the following result 

 𝐸′(−𝜆) + (𝛼0 + 𝑖𝛼1𝜆 + 𝛼2𝜆2)𝐸(−𝜆)][𝐸∗′
(−𝜆) + (𝛼0 + 𝑖𝛼1𝜆 + 𝛼2𝜆2)𝐸∗(−𝜆)] 

= 𝐸′(𝜆) + (𝛼0 + 𝑖𝛼1𝜆 + 𝛼2𝜆2)𝐸(𝜆)] [𝐸∗′
(𝜆) + (𝛼0 + 𝑖𝛼1𝜆 + 𝛼2𝜆2)𝐸∗(𝜆)] 

(14) 

By (14) we obtain that 𝑆∗(𝜆) = 𝑆(−𝜆). 

Lemma 2: 

The function  𝑑𝑒𝑡𝐹(𝜆) ,   

in which 

𝐹(𝜆) ≔ 𝐸′(0, 𝜆) + (𝛼0 + 𝑖𝛼1𝜆 + 𝛼2𝜆2)𝐸(0, 𝜆) 

can have only a finite number of zeros in  𝐶+ . Moreover, all these zeros are simple and lie on the imaginary axis. 

Proof:  

From (8), (9) we obtain that  

𝐹(𝜆) = 𝛼2𝜆2𝐼 + 𝑂(𝜆) 

when  |𝜆| → ∞ ,  𝜆𝜖ℂ̅, so that the zeros of  𝑑𝑒𝑡𝐹(𝜆)  form a bounded set with at most one possible limiting point  𝜆 = 0 . 
(Since  𝐹(𝑥, 𝜆)  is nonsingular 𝑑𝑒𝑡𝐹(𝜆) ≠ 0 for 𝜆𝜖ℝ) . We can show the method given in [2] that the number of zeros of  

𝑑𝑒𝑡𝐹(𝜆) is finite even if  𝑑𝑒𝑡𝐹(𝜆) = 0. So we get that the matrix function 𝐹−1(𝜆) is regular in ℂ+ with the possible 

exception of a finite number of points where  𝑑𝑒𝑡𝐹(𝜆) = 0. (i.e. 𝐹−1(𝜆) has poles).  Let us now show that all the 

singularities of the matrix function 𝐹−1(𝜆) lie on the imaginary axis: Let  𝜆1 and 𝜆2 be some poles of 𝐹−1(𝜆).  

Consider the following differential equation for 𝜆1 

𝐸′′(𝑥, 𝜆1) + 𝜆1
2𝐸(𝑥, 𝜆1) = 𝑉(𝑥) 𝐸(𝑥, 𝜆1) 

and its complex conjugate transpose for 𝜆2  

(𝐸∗)′′(𝑥, 𝜆2) + (�̅�2)
2

𝐸∗(𝑥, 𝜆2) = 𝑉(𝑥) 𝐸∗(𝑥, 𝜆2) 

Multiplying the first equation by 𝐸∗(𝑥, 𝜆2) and the second equation by 𝐸(𝑥, 𝜆1), subtracting the second resulting relation 

from the first, and integrating the result from zero to infinity, we get  

 

(𝜆1−
2 (�̅�2)

2
) ∫  𝐸∗(𝑥, 𝜆2)𝐸(𝑥, 𝜆1)𝑑𝑥 − 𝑊{𝐸∗(𝑥, 𝜆1)𝐸(𝑥, 𝜆2)}𝑥=0 = 0  

∞

0

     (15) 

where  𝜆1, 𝜆2 are the points for which the inverse of  𝐹(𝜆) does not exist. Hence obviously there exists a nonzero vector a 

such that  

𝐹(𝜆𝑖)𝑎 = 0  , i=1,2 

Thus the solution 𝐸(𝑥, 𝜆𝑖)𝑎  of the system (4) satisfies (5).  

Therefore Wronskian in (15) takes the form 

 𝑊{𝐸∗(𝑥, 𝜆1)𝐸(𝑥, 𝜆2)}𝑥=0 = 𝐸∗(0, 𝜆1)𝐸′(0, 𝜆2) − (𝐸∗)′(0, 𝜆1)𝐸(0, 𝜆2).  

Multiplying the last equation from the right by a vector a and from the left by 𝑎∗ and using the fact that 𝐹(𝜆𝑖)𝑎 = 0 for 

i=1,2 . Therefore follows that  

𝑊{𝐸∗(𝑥, 𝜆1)𝐸(𝑥, 𝜆2)}𝑥=0 = [−𝑖𝛼1(𝜆1
̅̅̅ + 𝜆1) + 𝛼2 ((�̅�1)

2
− 𝜆1

2)] 𝑎∗𝐸∗(0, 𝜆1) 𝐸(𝑥, 𝜆1)𝑎 

for 𝜆1 = 𝜆2 . Hence substituting the last equation into equation (15) we obtain that  

 (𝜆1 +

𝜆1
̅̅̅)[(𝜆1 − 𝜆1

̅̅̅) ∫  𝐸∗(𝑥, 𝜆1)𝐸(𝑥, 𝜆1)𝑑𝑥 + 𝑖𝛼1𝑎∗𝐸∗(0, 𝜆1)𝐸(0, 𝜆1)𝑎 + 𝛼2 (𝜆1 −
∞

0

𝜆1
̅̅̅) 𝑎∗𝐸∗(0, 𝜆1)𝐸(0, 𝜆1)𝑎] = 0  

    (16) 

It follows from (16) that the zeros of 𝑑𝑒𝑡𝐹(𝜆) are of the form  𝜆 = 𝑖𝜇, 𝜇 > 0. 

Now let us show that all the singularities of the matrix function 𝐹−1(𝜆) in ℂ+ are 

simple poles.  
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Differentiating the equation  

𝐸′′(𝑥, 𝜆) + 𝜆2𝐸(𝑥, 𝜆) = 𝑉(𝑥)𝐸(𝑥, 𝜆)  

with respect to 𝜆 and then taking the complex conjugate transpose of both sides of the resulting equation, we deduce 

(𝐸∗̇ (𝑥, 𝜆))′′ + 2�̅�𝐸∗(𝑥, 𝜆) + (𝜆)
2

𝐸∗̇ (𝑥, 𝜆) = 𝐸∗̇ (𝑥, 𝜆)𝑉(𝑥) 

for  𝜆𝜖ℂ+ . Postmultiplying the last equation by 𝐸(𝑥, 𝜆) and subtracting the first resulting equation from the second, after 

first premultiplying it by 𝐸∗(𝑥, 𝜆)  we obtain that  

𝐸∗̇ (𝑥, 𝜆)𝐸′′(𝑥, 𝜆) − (𝐸∗̇ (𝑥, 𝜆))′′𝐸(𝑥, 𝜆) = 2𝜆𝐸∗(𝑥, 𝜆)𝐸(𝑥, 𝜆) 

Integrating both sides of the last equation from 0 to ∞ we obtain that  

 
𝐸∗̇ (𝑥, 𝜆)𝐸′(𝑥, 𝜆) − (𝐸∗̇ (𝑥, 𝜆))′𝐸(𝑥, 𝜆) = 2𝜆 ∫ 𝐸∗(𝑥, 𝜆)𝐸(𝑥, 𝜆)

∞

𝑥

𝑑𝑥 (17) 

for  𝜆𝜖ℂ+. 

 Let 𝜆0=𝑖𝜇0  ,   𝜇0𝜖ℂ+ be a pole of 𝐹−1(𝜆). Then we have 𝑑𝑒𝑡𝐹(𝜆0) = 0 and hence there exists a nonzero vector 

a such that  

                                                      𝐹(𝜆0)𝑎 = 0                                                                                                            (18) 

Thus the solution 𝐸(𝑥, 𝜆0)𝑎 of the system (1) satisfies  

𝐸′(0, 𝜆0)𝑎 + (𝛼0 + 𝑖𝛼1𝜆0 + 𝛼2𝜆0
2)𝐸(0, 𝜆𝜊)𝑎 = 0 

for  𝜆 = 𝜆0 . 

Since   
𝑊{𝑤(𝑥, 𝜆0)𝐸(𝑥, 𝜆0)}𝑥=0 = 𝐹(𝜆0) 

then  

𝐸(𝑥, 𝜆0)𝑎 = 𝑤(𝑥, 𝜆0)𝑎1 

here  𝑎1 is some vector and then 

lim
𝑥→0

𝐸(𝑥, 𝜆0)𝑎 = 𝐸(𝜆0)𝑎 = 𝑤(𝜆0)𝑎1 = 𝑎1  

exist and 

𝐸(𝑥, 𝜆0)𝑎 = 𝑤(𝑥, 𝜆0)𝑎1 

Substituting 𝜆 = 𝜆0 into (17), multiplying this equation from the left by 𝑎∗ and from the right by a and then letting x tend 

to zero, we get that   

 −𝑖𝑎∗�̇�∗(𝑖𝜇0)𝐸(𝑖𝜇0)𝑎 = 2𝜇0 ∫ [𝐸(𝑥, 𝑖𝜇0)𝑎]∗[𝐸(𝑥, 𝑖𝜇0)𝑎]𝑑𝑥
∞

0
+ (𝛼1 + 2𝛼2𝜇0)𝑎∗𝐸∗(𝑖𝜇0)𝐸(𝑖𝜇0)𝑎 ≠ 0  (19) 

In addition the condition (16) we now suppose that the vector a satisfies the equation 

                                                       𝐹(𝜆0)𝑏 + �̇�(𝜆0)a = 0                                                                                         (20) 

where b is some other vector. 

Taking the complex conjugate transpose of both sides of the matrix equation (20) and postmultiplying the resulting 

equation by  𝐸′(𝜆0)𝑎 we deduce that  

𝑏∗𝐹∗(𝜆0)𝐸′(𝜆0)𝑎 + 𝑎∗�̇�∗(𝜆0)𝐸′(𝜆0)𝑎 = 0 

By the definition of 𝐹(𝜆) and (18), the first term of the left hand side of the last equation is  

𝑏∗𝐹∗(𝜆0)𝐸′(𝜆0)𝑎 = 𝑏∗(𝐸∗)′(𝜆0)𝐸(𝜆0)𝑎 = 0 

and hence the second term is  

𝑎∗�̇�∗(𝜆0)𝐸′(𝜆0)𝑎 = 0 

which gives a contradiction to (19) by the definition of  𝐹(𝜆0). This shows that the vector satisfying (18) and (20) 

simultaneously must be zero. Therefore by Lemma 2.2.1 in [2] we get that   𝐹−1(𝜆) has a simple pole at 𝜆0  as claimed. 

(i.e. all zeros of  𝑑𝑒𝑡𝐹(𝜆) are simple). 
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By the definition of 𝐹(𝜆), we can obtain the following asymptotic equality 

𝐹(𝜆) = 𝛼2𝜆2 [𝐼 + 𝑂 (
1

𝜆
)] 

as |𝜆| → ∞. Therefore  𝑆(𝜆) is called the scattering matrix and satisfies the asymptotic equality S(𝜆) = 𝐼 + 𝑂(
1

𝜆
) as 

|𝜆| → ∞.  Hence 𝐼 − 𝑆(𝜆)𝜖𝐿(𝑛)
2 (−∞, ∞) and therefore the function  

𝐹𝑠(𝑡) =
1

2𝜋
∫ (𝐼 − 𝑆(𝜆))𝑒𝑖𝜆𝑡𝑑𝜆

∞

−∞

 

belongs to 𝐿(𝑛)
2 (−∞, ∞). 

To derive the main equation we rewrite (12) in the following form: 

 2𝑖𝑤(𝑥, 𝜆)[𝐸∗′(−�̅�) + (𝛼0 + 𝑖𝛼1𝜆 + 𝛼2𝜆2)𝐸∗(−�̅�)]
−1

= 𝐸(𝑥, −𝜆) − 𝐸(𝑥, 𝜆)𝑆(𝜆) 

and substitute 𝐸(𝑥, 𝜆) in this by its expression (8). Then we get that  

 2𝑖𝑤(𝑥, 𝜆)[(𝐸∗)′(−�̅�) + (𝛼0 + 𝑖𝛼1𝜆 + 𝛼2𝜆2)𝐸∗(−�̅�)]
−1

+ 2𝑖𝑠𝑖𝑛𝜆𝑥𝐼 =

𝑒𝑖𝜆𝑥[𝐼 − 𝑆(𝜆)] + ∫ 𝐾(𝑥, 𝑡)𝑒−𝑖𝜆𝑡𝑑𝑡 + ∫ 𝐾(𝑥, 𝑡)𝑒𝑖𝜆𝑡𝑑𝑡[𝐼 − 𝑆(𝜆)] − ∫ 𝐾(𝑥, 𝑡)𝑒𝑖𝜆𝑡𝑑𝑡
∞

𝑥

∞

𝑥

∞

𝑥
  

(21) 

We now multiply the left hand side of (21) by 
𝑒𝑖𝜆𝑦

2𝜋
 and integrate the result from  −∞ 𝑡𝑜 ∞ over 𝜆. On the left hand side we 

get  

                                                        − ∑ 2𝑖𝜇𝑘𝑤(𝑥, 𝜇𝑘)𝑅𝑘
∗𝑝

𝑘=1 𝑒−𝜇𝑘𝑦                                                                            (22) 

where  𝑅𝑘 is the residue of the matrix 𝐹−1(𝜆) at the pole 𝜆𝑘 = 𝑖𝜇𝑘 ,  𝜇𝑘 > 0. Since the second term 2𝑖𝑠𝑖𝑛𝜆𝑥𝐼 of the left 

hand side of the equation (21) is an entire function of 𝜆. Therefore the  integral will be zero. On the right hand side, since 

𝐾(𝑥, 𝑡) = 0  when  𝑥 > 𝑡, we obtain that 

         𝐹𝑠(𝑥 + 𝑦) + 𝐾(𝑥, 𝑦) + ∫ 𝐾(𝑥, 𝑡)𝐹𝑠(𝑡 + 𝑦)𝑑𝑡
∞

𝑥
                          (23) 

for  0 ≤ 𝑥 < 𝑦 . Taking (22) and (23) into account then (21) takes the form  

𝐹𝑠(𝑥 + 𝑦) + 𝐾(𝑥, 𝑦) + ∫ 𝐾(𝑥, 𝑡)𝐹𝑠(𝑡 + 𝑦)𝑑𝑡
∞

𝑥
= −2𝑖 ∑ 𝜇𝑘𝑤(𝑥, 𝑖𝜇𝑘)𝑅𝑘

∗ 𝑒−𝜇𝑘𝑦 , 0 ≤ 𝑥 < 𝑦
𝑝
𝑘=1                                  (24)                                                    

Taking into account (17) for 𝜆 = 𝜆𝑘 we convert the right hand side of (24) into another form. For this purpose, we have  

 
𝐸∗̇ (𝑥, 𝜆𝑘)𝐸′(𝑥, 𝜆𝑘) − (𝐸∗̇ (𝑥, 𝜆𝑘))′𝐸(𝑥, 𝜆𝑘) = 2𝜆𝑘 ∫ 𝐸∗(𝑡, 𝜆𝑘)𝐸(𝑡,

∞

𝑥

𝜆𝑘)𝑑𝑡 (25) 

using (17) and the relations  

𝐹(𝜆𝑘)𝑅𝑘 = 𝑅𝑘𝐹(𝜆𝑘) = 0. 

                                                        𝐹(𝜆𝑘)𝑅𝑘
(0)

+ �̇�(𝜆𝑘)𝑅𝑘 − 𝑅𝑘
(0)

𝐹(𝜆𝑘) + 𝑅𝑘�̇�(𝜆𝑘) = 𝐼.                                              (26) 

Let 𝑃𝑘 denote a Hermitian matrix which is a projection onto the null space of the matrix 𝐹(𝜆𝑘) so that 𝐹(𝜆𝑘)𝑃𝑘 = 0. The 

set of vectors with form  𝑅𝑘𝑎 , a is an arbitrary vector, coincides with the null space of  𝐹(𝜆𝑘). Hence  

𝑟𝑎𝑛𝑘𝑅𝑘 = 𝑟𝑎𝑛𝑘𝑃𝑘 

And 

                                                                          𝑃𝑘𝑅𝑘 = 𝑅𝑘    [2]                                                                                  (27) 

multiplying (25) from the left by 𝑅𝑘
∗  and from the right by 𝑃𝑘 and letting 𝑥 → 0 in the result we reach the following 

equation : 

 𝑅𝑘
∗ 𝐹∗̇(𝜆𝑘)𝐸(0, 𝜆𝑘)𝑃𝑘 − (𝑖𝛼1 + 2𝛼2𝜆𝑘)𝑅𝑘

∗ 𝐸∗(0, 𝜆𝑘)𝐸(0, 𝜆𝑘)𝑃𝑘 = 2𝜆𝑘𝑅𝑘
∗ 𝐴𝑘𝑃𝑘 (28) 

where  

𝐴𝑘 ≔ ∫ 𝐸∗(𝑡,
∞

0

𝜆𝑘)𝐸(𝑡, 𝜆𝑘)𝑑𝑡 

is a positive definite Hermitian matrix, 

and 
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𝐸(0, 𝜆𝑘)𝑃𝑘 = lim
𝑥→0

𝐸(𝑥, 𝜆𝑘) 𝑃𝑘 . 

Using the second equation in (26) and the fact that  

𝑊{𝐸∗(𝑥, 𝜆), 𝐸(𝑥, 𝜆)}𝑥=0 = 0 for 𝜆𝜖𝐶+, 𝑅𝑒𝜆 = 0 

we arrive at  

𝑅𝑘
∗ 𝐹∗̇(𝜆𝑘)𝐸(0, 𝜆𝑘)𝑃𝑘 = 𝐸(0, 𝜆𝑘)𝑃𝑘  . 

Hence taking the last equation and (26) into account we obtain for 𝜆𝑘 = 𝑖𝜇𝑘 that  

 𝐸(0, 𝑖𝜇𝑘)𝑃𝑘 − 𝑖(𝛼1 + 2𝛼2𝜇𝑘)𝑅𝑘
∗ )𝐸∗(0, 𝑖𝜇𝑘)𝐸(0, 𝑖𝜇𝑘)𝑃𝑘 − 2𝑖𝜇𝑘𝑅𝑘

∗ 𝐴𝑘𝑃𝑘 (29) 

where 𝐴𝑘 is the matrix  given in (26). 

 Now we have  

𝐸(𝑥, 𝑖𝜇𝑘)𝑃𝑘 = 𝑤(𝑥, 𝑖𝜇𝑘)𝐸(0, 𝑖𝜇𝑘)𝑃𝑘 

Since each side of the last equation is a solution of matrix  Equation (4) when 𝜆 = 𝑖𝜇𝑘 and satisfies the same initial 

conditions at 𝑥 = 0. The last equation takes the form 

                                                          𝐸(𝑥, 𝑖𝜇𝑘)𝑃𝑘 = 2𝑖𝜇𝑘𝑤(𝑥, 𝑖𝜇𝑘)𝑅𝑘
∗ 𝐵𝑘                                                                     (30) 

where 

𝐵𝑘 = 𝑃𝑘𝐴𝑘𝑃𝑘 + (
𝛼1 + 2𝛼2𝜇𝑘

2𝜇𝑘
) 𝑃𝑘𝐸∗(0, 𝑖𝜇𝑘)𝐸(0, 𝑖𝜇𝑘)𝑃𝑘 + 𝐼 − 𝑃𝑘 

by considering (27) in (29).  Postmultiplying (28) by  𝐵𝑘
−1  we arrive at  

                                                     𝐸(𝑥, 𝑖𝜇𝑘)𝑀𝑘
2 = 𝑤(𝑥, 𝑖𝜇𝑘)𝑅𝑘

∗                                                                                      (31) 

here   

𝑀𝑘
2 = 𝑃𝑘𝐵𝑘

−1 

𝑀1, … , 𝑀𝑝  will be referred to as the normalization matrices. Taking (31) into account , then (22) takes the form 

− ∑ 2𝑖𝜇𝑘𝑤(𝑥, 𝑖𝜇𝑘)𝑅𝑘
∗

𝑝

𝑘=1

𝑒−𝜇𝑘𝑦 = − ∑ 𝐸(𝑥, 𝑖𝜇𝑘)𝑀𝑘
2𝑒−𝜇𝑘𝑦

𝑝

𝑘=1

 

where  

𝑀𝑘
2 = 𝑃𝑘𝐵𝑘

−1  . 

Using the expression for 𝐸(𝑥, 𝑖𝜇𝑘) given by (8) in the last form of (22) obtained above, we finally deduce that the kernel 

𝐾(𝑥, 𝑦) satisfies the linear integral equation  

 
𝐹(𝑥 + 𝑦) + 𝐾(𝑥, 𝑦) + ∫ 𝐾(𝑥, 𝑡)𝐹(𝑡 + 𝑦)𝑑𝑡 = 0

∞

𝑥

 (32) 

for 0 ≤ 𝑥 < 𝑦, where 

 

𝐹(𝑡) = ∑ 𝑀𝑘
2𝑒−𝜇𝑘𝑡 + 𝐹𝑠(𝑡) = ∑ 𝑀𝑘

2𝑒−𝜇𝑘𝑡 +
1

2𝜋
∫ [𝐼 − 𝑆(𝜆)]𝑒𝑖𝜆𝑡𝑑𝜆

∞

−∞

𝑝

𝑘=1

𝑝

𝑘=1

 (33) 

Equation (22) is called the fundamental equation of the inverse problem of  scattering theory.  

Therefore we have proved the following. 

Theorem 1:  

The kernel  𝐾(𝑥, 𝑦) of the transformation operator (6) satisfies the fundamental equation (32) for ≥ 0 . 

We know that in order to construct the fundamental equation (32), it is sufficient to state the matrix  𝐹(𝑡) (kernel of the 

fundamental equation). In turn, in order to construct  𝐹(𝑡), it is sufficient to know the quantities  

S(𝜆), 𝜆𝑘
2 , 𝜇𝑘

2  , k = 1, … , p 

which are called the scattering data of the problem (4)-(5).  From (33) we can deduce that 𝐹(𝑡) is a Hermitian matrix.  
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Given the scattering data, using (33) we can obtain the matrix  𝐹(𝑡) and hence the fundamental equation (32) for the 

unknown matrix 𝐾(𝑥, 𝑦). Solving this equation we find the kernel K of the transformation operator. From (10) we reach to 

the potential such that 

𝑞(𝑥) = −
1

2

𝑑

𝑑𝑥
𝐾(𝑥, 𝑦) 

Theorem 2: 

The equation (32) has a unique solution  𝐾(𝑥, 𝑦)𝜖𝐿1[𝑥, ∞). 

Proof: 

We need to show that the homogeneous equation 

                                                   𝑥(𝑡) + ∫ 𝑥(𝜉)𝐹(𝑡 + 𝜉)𝑑𝜉 = 0
∞

𝑥
                                                                                     (34) 

has only the zero   solution in  𝐿(𝑛)
2 (0, ∞).  We assume that (34) has a different zero solution. By forming the scalar 

product of both sides of (34) with 𝑥(𝑡) and integrating; 

∫ (𝑥(𝑡), 𝑥(𝑡))𝑑𝑡 + ∫ (∫ 𝑥(𝜉)𝐹(𝑡 + 𝜉)𝑑𝜉, 𝑥(𝑡))𝑑𝑡 = 0
∞

𝑥

∞

𝑥

∞

𝑥

 

By using last equation and (33) 

 ∫ (𝑥(𝑡), 𝑥(𝑡))𝑑𝑡 + ∫ (∫ 𝑥(𝜉)𝐹(𝑡 + 𝜉)𝑑𝜉, 𝑥(𝑡))𝑑𝑡 + ∫ (∑ ∫ 𝑥(𝜉)𝑀𝑘
2𝑒−𝜇𝑘(𝑡+𝜉)𝑑𝜉, 𝑥(𝑡))𝑑𝑡

∞

𝑥

𝑝
𝑘=1

∞

𝑥
= 0

∞

𝑥

∞

𝑥

∞

𝑥
      (35) 

In (35) interchanging integrals and using ∑ 𝑒−𝜇𝑘(𝑡+𝜉)𝜑(𝑡)
𝑝
𝑘=1  series uniform converges (35) can be integrated by 

terms. So we obtain following 

 

∫ 𝑥2(𝑡)𝑑𝑡 + ∑(∫ 𝑥(𝑡)
∞

𝑥

𝑒−𝜇𝑘𝑡𝑑𝑡)2 +

𝑝

𝑘=1

∫ (∫ 𝑥(𝑡)𝑒𝑖𝜇𝑡𝑑𝑡)
∞

𝑥

2

𝑑𝜉    
∞

𝑥

∞

𝑥

     (36) 

By using Parseval equation of Fourier transformation in (36) 

 1

2𝜋
∫ |𝜙+(𝜉)|2𝑑𝜉 + ∑(∫ 𝑥(𝑡)𝑒−𝜇𝑘𝑡𝑑𝑡)

∞

𝑥

2

+
1

2𝜋
∫ [𝜙+(𝜉)]2𝑑𝜉

∞

−∞

= 0

𝑝

𝑘=1

∞

−∞

 (37) 

where  Parseval equation 

∫ 𝑥2(𝑡)𝑑𝑡 =
1

2𝜋
∫ |𝜙+(𝜉)|2𝑑𝜉  .

∞

−∞

∞

𝑥

 

From  

arg(𝜙(𝜉)) = 𝜃(𝜉) 

(37) rewrite as polar formata, we obtaine  

 

∑ (∫ 𝑥(𝑡)𝑒−𝜇𝑡𝑑𝑡
∞

𝑥

)

2

+
1

2𝜋
∫ |𝜙+(𝜉)|2(1 − 𝑒𝑖(𝜂(𝑘)+2𝜃(𝑘))𝑑𝜉

∞

−∞

= 0

𝑝

𝑘=1

. (38) 

For  𝑅𝑒(𝑒𝑖(𝜂(𝑘)+2𝜃(𝑘)) = cos (𝜂(𝑘) + 2𝜃(𝑘)) 

Real part of (38) is 

∑ (∫ 𝑥(𝑡)𝑒−𝜇𝑡𝑑𝑡)
∞

𝑥

)

2 

+
1

2𝜋
∫ |𝜙+(𝜉)|2(1 − cos (𝜂(𝑘) + 2𝜃(𝑘))𝑑𝑘

∞

−∞

= 0

𝑝

𝑘=1

 

For this equation is equal to zero only situation is  

𝜙(𝜉) = 0, 𝑥(𝑡) = 0. 

This is a contradiction. So equation (32) has a unique solution for finite x. 
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