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ABSTRACT 

The Dirac equation in (1 + 1) dimension with the complex vector potential coupling that leads to an effective 

Hulthen potential model is solved. Polynomial solutions are obtained using the method of Nikiforov-Uvarov. Energy 

spectrum and corresponding wave-functions are obtained. 
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1. INTRODUCTION 

The parity and time reversal PT symmetry has been an 

active research topic over the last decade [1, 2] and 

there have been considerable works on non-Hermitian 

Hamiltonians [3, 4, 5, 6, 7, 8]. Non-Hermitian 

Hamiltonians having PT symmetry (P parity, T time 

reversal) which admit real and discrete spectrum for 

exact PT symmetry form a special class and energy is 

complex conjugate pairs when this space-time 

symmetry is spontaneously broken. The parity operator 

is linear and its effect  is  x → −x, p → −p, the time 

reversal operator is anti-linear and has the effect p → 

−p, x → x, i → −i. A  potential V (x) is known to be PT 

symmetric if 𝑉(−𝑥) = 𝑉∗(𝑥) or [V (x), PT ] = 0. 

Recent years have witnessed a growing interest in there 

search fields for the PT–symmetric quantum systems 

with a constant mass to the relativistic PT –symmetric 

position-dependent effective mass quantum systems [9, 

10, 11, 12, 13, 14, 15, 16]. Moreover, Dirac equation is 

studied with reflectionless PT symmetric potentials 

[17], one can find interesting works on PT symmetry in 

relativistic quantum mechanics [18, 19, 20, 21, 22, 23]. 

Just as non-relativistic quantum mechanics problems 

include a number of solvable potentials in which all the 

energy eigenvalues and wave-functions are explicitly  

 

known, so does relativistic quantum mechanics. Some 

elegant methods can also be applied to solve relativistic 

problems such as operator methods [24], 

supersymmetric quantum mechanics [25], analytical 

methods [26], the asymptotic iteration method (AIM) 

[27] etc. To our knowledge, exact solutions of PT 

symmetric complexification of the singular Hulthen 

potential and complex Morse potential were studied 

first by Znojil [28]. This kind of potentials can be 

extended to the relativistic scheme. Thus, this study is 

based on the idea which is a general approach to 

transforming one dimensional Dirac equation into a 

Klein-Gordon like equation leads to complex effective 

potentials. The relativistic scheme related interesting 

works can be found in [29], [30], [31], [32], [33], [34] 

and a matrix polynomial approach can be found in [35].   

In our work, Dirac equation is studied in the presence of 

complex vector and scalar potentials which are given as 

general complex Hulthen potential is derived as an 

effective potential. The applications of complex 

potentials can be found in applied physics literature 

such as the meson-nucleus interaction can be described 

by an optical potential which has both real and 
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imaginary parts as U=V+iW where the imaginary part 

of the meson-nucleus potential corresponds to half of 

the in-medium width [36]. The polynomial solutions are 

used to get relativistic energy levels and wave-

functions.  

2. THE NİKİFOROV-UVAROV METHOD 

The Nikiforov Uvarov method received much interest 

and usually applied to both relativistic and non-

relativistic quantum mechanics [26]. After a coordinate 

transformation in a Sturm-Liouville type equations as x 

= x(s), for example a Klein-Gordon-like equation 

becomes 

𝑑2𝜓

𝑑𝑠2 +
𝜏(𝑠)̃

𝜎(𝑠)

𝑑𝜓

𝑑𝑠
+

𝜎̃(𝑠)

𝜎2(𝑠)
𝜓(𝑠) = 0                                    (1) 

Where 𝜎(𝑠) and 𝜎̃(𝑠) are polynomials, at most of 

second degree, and 𝜏̃(𝑠)is a polynomial, at most of first 

degree in this generalized hypergeometric differential 

equation. If the mapping𝜓(𝑠) = 𝜒(𝑠)𝑦(𝑠) is used in 

(1), we get 

𝜎(𝑠)𝑦‼(𝑠) + 𝜏(𝑠)𝑦′(𝑠) + 𝜆(𝑠)𝑦(𝑠) = 0                    (2) 

Where 

𝜒′(𝑠)

𝜒(𝑠)
=

𝜋(𝑠)

𝜎(𝑠)
                                                                   (3) 

And 

𝜏(𝑠) = 𝜏̃(𝑠) + 2𝜋(𝑠)                                                   (4) 

𝜆 =
𝜎̅(𝑠)

𝜎(𝑠)
                                                                        (5) 

𝜎̅(𝑠) = 𝜎̃(𝑠) + 𝜋2(𝑠) + 𝜋(𝑠)(𝜏̃(𝑠) − 𝜎′(𝑠)) + 𝜋′(𝑠)𝜎(𝑠)  (6) 

To find 𝜋(𝑠) and 𝜆(𝑠), (5) is written as 

𝜋2(𝑠) + 𝜋(𝑠)(𝜏̃(𝑠) − 𝜎′(𝑠)) − 𝑘𝜎(𝑠) = 0                (7) 

Where 

𝑘 = 𝜆 − 𝜋′(𝑠).                                                             (8) 

From this quadratic equation, 𝜋(𝑠) is given by 

𝜋(𝑠) =
𝜎′−𝜏̃

2
± √(

𝜎′(𝑠)−𝜏̃(𝑠)

2
)

2

− 𝜎̃(𝑠) + 𝑘𝜎(𝑠)  .        (9) 

If the discriminant of the expression under the square 

root is zero, 𝜋(𝑠) becomes a polynomial of degree at 

most one. On the other hand, boundary conditions 

require𝜏′(𝑠) < 0 that means , 𝜋(𝑠) and 𝑘(𝑠) has to be 

chosen according to these conditions. Using the family 

of particular solutions of (2),  𝑦(𝑧) = 𝑦𝑛(𝑧) [26], the 

form of the 𝜆 is 

𝜆 = 𝜆𝑛 = −𝑛𝜏′(𝑠) −
𝑛(𝑛−1)

2
𝜎′′(𝑠)                           (10) 

which determines the eigenvalues and n=0,1,2,…The 

polynomial solutions of  (2) are given by the Rodrigues 

relation 

𝑦𝑛(𝑠) =
𝐵𝑛

𝜌(𝑠)

𝑑𝑛

𝑑𝑠𝑛
(𝜎𝑛(𝑠)𝜌(𝑠))                                    (11)                                      

Where 𝜌(𝑠) satisfies the relation 

𝑑(𝜎(𝑠)𝜌(𝑠))

𝑑𝑠
= 𝜏(𝑠)𝜌(𝑠).                                              (12)                                            

3. DIRAC EQUATION 

The one dimensional   time independent Dirac equation 

is given as 

(𝛼⃗. 𝑝 + 𝛽(𝑚0 + 𝑆(𝑥)) + 𝑉)Ψ(𝑥) = 𝐸Ψ(𝑥)            (13)                  

where Ψ  is the two component spinor wave-function, E 

is the energy, 𝑝 is the momentum operator, 𝑚0 is the 

mass of the particle, V(x) and S(x) denote the vector 

and scalar potentials correspondingly and 𝛼, 𝛽 are 2X2 

Dirac matrices in Standard representation and ℏ = 𝑐 =
1 atomic units are chosen. Let us Show the upper and 

lower components by 𝜙(𝑥), 𝜃(𝑥). Using 𝛼 = 𝜎3, 𝛽 =
𝜎1 where 𝜎1 and 𝜎3 are Pauli matrices, and multiplying 

(13) by 𝜎1, we obtain  

−𝑖
𝑑𝜃

𝑑𝑥
+ (𝐸 − 𝑉(𝑥))𝜃 − (𝑚 + 𝑆(𝑥))𝜙 = 0              (14)                         

𝑖
𝑑𝜙

𝑑𝑥
+ (𝐸 − 𝑉(𝑥))𝜙 − (𝑚 + 𝑆(𝑥))𝜃 = 0  .             (15)                        

If we terminate the lower component in above coupled 

equations, one gets 

 

−
𝑑2𝜙

𝑑𝑥2
+

1

𝑚0+𝑆(𝑥)

𝑑𝑆

𝑑𝑥

𝑑𝜙

𝑑𝑥
+ (2𝐸𝑉(𝑥) − 𝑉(𝑥)2 − 𝑖

𝑑𝑉

𝑑𝑥
− 𝑖

1

𝑚0+𝑆(𝑥)

𝑑𝑆

𝑑𝑥
(𝐸 − 𝑉(𝑥))) 𝜙 = (𝐸2 − (𝑚0 + 𝑆(𝑥))2)𝜙   .                                  (16) 

Let us transform (16) into a Klein-Gordon-like equation using𝜙(𝑥) = √𝑚0 + 𝑆(𝑥)𝜑(𝑥) in (16): 

−
𝑑2𝜑

𝑑𝑥2 + 𝑉𝑒𝑓𝑓(𝑥)𝜑 = 𝐸2𝜑                                                                                                                                                   (17) 

where 

𝑉𝑒𝑓𝑓(𝑥) = −𝑉2 − 𝑖
𝑑𝑉

𝑑𝑥
+ (𝑚0 + 𝑆(𝑥))

2
+ 𝑖

𝑉

𝑚0+𝑆(𝑥)

𝑑𝑆

𝑑𝑥
+ 𝐸 (2𝑉 −

𝑖

𝑚0+𝑆(𝑥)

𝑑𝑆

𝑑𝑥
) −

1

2(𝑚0+𝑆(𝑥))

𝑑2𝑆

𝑑𝑥2
+

3

4
(

1

(𝑚0+𝑆(𝑥))

𝑑𝑆

𝑑𝑥
)

2

.                            (18)                                                                                        

We shall give𝑉(𝑥) in the form of a complex function as 

𝑉(𝑥) = 𝑉𝑅(𝑥) + 𝑖𝑉𝐼(𝑥)                                                                                                                                                       (19) 

Then, the effective potential becomes 
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𝑉𝑒𝑓𝑓(𝑥) = −𝑉𝑅
2 + 𝑉𝐼

2 − 𝑖
𝑑𝑉

𝑑𝑥
+ (𝑚0 + 𝑆(𝑥))

2
+ 2𝐸𝑉𝑅(𝑥) −

𝑆′′(𝑥)

2(𝑚0+𝑆(𝑥))
+

3

4
(

𝑀′(𝑥)

𝑚0+𝑆(𝑥)
)

2

+ 𝑉𝐼
′(𝑥) −

𝑆′(𝑥)

𝑚0+𝑆(𝑥)
𝑉𝐼(𝑥) +

𝑖 (−2𝑉𝐼𝑉𝑅 + 2𝐸𝑉𝐼 − 𝑉𝑅
′ +

𝑆′(𝑥)

𝑚0+𝑆(𝑥)
𝑉𝑅 − 𝐸

𝑆′

𝑚0+𝑆(𝑥)
).                                                                                                          (20) 

 

Now we may choose the imaginary component of V(x) 

as 

𝑉𝐼(𝑥) =
𝑆′(𝑥)

2(𝑚0+𝑆(𝑥))
                                                     (21)                                                                                      

and use in (20), we have 

𝑉𝑒𝑓𝑓(𝑥) = (𝑚0 + 𝑆(𝑥))2 + 2𝐸𝑉𝑅(𝑥) − 𝑉𝑅
2(𝑥) − 𝑖𝑉𝑅

′(𝑥).  (22)                                       

It is noted that 𝑉𝐼(𝑥) is chosen as given in (21) to get a 

model exactly soluble.  

3.1 The Model 

We can choose 𝑉𝑅(𝑥) and 𝑆(𝑥) as below 

𝑉𝑅(𝑥) = 𝑉𝐼
𝑒−𝛼𝑥

𝑒−𝛼𝑥−𝑞
                                                      (23)                                                                                                      

 

𝑆(𝑥) = 𝑆1
𝑒−𝛼𝑥

𝑒−𝛼𝑥−𝑞
                     (24)                                                                                             

Where 𝑆1, 𝑉1 are constants. Then, using (19), (21) and 

(23), V(x) becomes 

𝑉(𝑥) = 𝑉1
𝑒−𝛼𝑥

𝑒−𝛼𝑥−𝑞
+

𝑖𝑞𝑆1𝛼

2(𝑞−𝑒−𝛼𝑥)(−𝑆1+𝑚0(𝑒𝛼𝑥−𝑞))
          (25)                                                             

And the expression in (22) turns into 

𝑉𝑒𝑓𝑓(𝑥) = 𝑚0
2 + (𝑆1

2 − 𝑉1
2 − 𝑖𝑉1𝛼)

𝑒−2𝛼𝑥

(𝑒−𝛼𝑥−𝑞)2
+

(2𝑚0𝑆1 + 2𝑉1𝐸 + 𝑖𝑉1𝛼)
𝑒−𝛼𝑥

𝑒−𝛼𝑥−𝑞
               (26) 

Thus, one obtains the following Klein-Gordon-like 

second order differential equation whose solutions are 

related to the upper component as 

𝜑′′(𝑥) + ((𝑆1
2 − 𝑉1

2 − 𝑖𝑉1𝛼)
𝑒−2𝛼𝑥

(𝑒−𝛼𝑥−𝑞)2 + (2𝑚0𝑆1 + 2𝑉1𝐸 + 𝑖𝑉1𝛼)
𝑒−𝛼𝑥

(𝑒−𝛼𝑥−𝑞)
) 𝜑(𝑥) = (𝐸2 − 𝑚0

2)𝜑(𝑥)                     (27)                                                                                                              

Here we will use 𝐸̃ = 𝐸2 − 𝑚0
2  and we note that we have derived an effective potential which is a generalized complex 

Hulthen potential.  Now we will look at the solutions of the system. Let us use the variable transformation  𝑠 = 𝑒−𝛼𝑥  in 

(27), then we have 

𝜑′′(𝑥) +
1−𝑞𝑠

𝑠(1−𝑞𝑠)
𝜑′(𝑥) +

1

(𝑠(1−𝑞𝑠))
2 ((𝛾 − 𝑞2𝜖2 − 𝑞𝛽)𝑠2 + (𝛽 + 2𝑞𝜖2)𝑠 − 𝜖2)𝜑(𝑥) = 0                                               (28) 

Where 

𝐸̃

𝛼2 = −𝜖2                        (29)                                                                                                              

𝛽 =
2𝑚0𝑆1+2𝐸𝑉1+𝑖𝑉1𝛼

𝛼2                  (30)                                                                                                   

𝛾 =
𝑆1

2−𝑉1
2−𝑖𝛼𝑉1

𝛼2
                                   (31)                                                                                                                

We use 𝜇 = √𝑞2 − 4𝛾 and obtain 𝜋(𝑠) and 𝜏(𝑠)  as 

𝜋(𝑠) = 𝜖 −
1

2
(𝑞 + (𝜇 + 2𝑞𝜖))𝑠            (32)                                                                                     

𝜏(𝑠) = 1 + 2𝜖 − (2𝑞 + 𝜇 + 2𝑞𝜖)𝑠          (33)                                                                                    

Then we use 

𝜆𝑛 = 𝛽 −
1

2
(𝜇 + 𝑞) − 𝜖(𝜇 + 𝑞) = 𝑛2𝑞 + 2𝑞𝑛𝜖 + 𝑞𝑛 + 𝜇𝑛          (34)                                               

Now we arrange this equation and  give 

−(𝐸2 − 𝑚0
2)𝛼2 = (

𝐶+2𝐸𝑉1

𝐷𝑛
−

𝛼2

2
𝐷𝑛)

2

              (35)                                                                         

Where 

𝐶 = 2𝑚0𝑆1 + 𝑖𝑉1𝛼(1 + 1/𝑞) −
1

𝑞
(𝑆1

2 − 𝑉1
2)          (36)                                                                                               

𝐷𝑛 = 2𝑞 (𝑛 +
1

2
(1 +

𝜇

𝑞
))                 (37)                                                                                         

We will solve (35) to find eigenvalues En of the system 

but before giving the eigenvalue solutions, let us check 

the real spectrum conditions using (35) and (31). We 

will write 𝑆1 = 𝑆𝑅 + 𝑖𝑆𝐼 and put into (36) and (31),  we 

get 

2𝑚0𝑆𝐼 + 𝑉1𝛼(1 + 1/𝑞) −
2𝑆𝐼𝑆𝑅

𝑞
= 0                (38)                                                                          

2𝑆𝑅𝑆𝐼 − 𝑉1𝛼 = 0                     (39)                                                                                                     

𝑆1 = −𝑚0 − 𝑖
𝑉1𝛼

2𝑚0
                   (40)                                                                                                     

If we plug (40) into (36), we get real C and also real 𝛾 

which are given by 

𝐶 = −2𝑚0
2(1 + 1/𝑞) +

𝑉1
21

𝑞
(1 +

𝛼2

4𝑚0
2)        (41)                                                                             

𝛾 =
𝑚0

2−𝑉1
2

𝛼2 −
𝑉1

2

4𝑚0
2 .                         (42)                                                                                        

Moreover, 𝑆(𝑥), 𝑉(𝑥) and 𝑉𝑒𝑓𝑓(𝑥) turn into 

𝑆(𝑥) = − (𝑚0 + 𝑖
𝑉1𝛼

2𝑚0
)

𝑒−𝛼𝑥

𝑒−𝛼𝑥−𝑞
                     (43)                                                                           

 

𝑉(𝑥) =
𝑉1𝑒−𝛼𝑥

𝑒−𝛼𝑥−𝑞
+

𝑒𝛼𝑥(𝑒𝛼𝑥−𝑞)𝑚0
2𝛼2𝑞𝑉1

4𝑚0
4(−1+𝑞𝑒𝛼𝑥)((𝑒𝛼𝑥+1−𝑞)2+𝑉1

2𝛼2)
− 𝑖

𝑒𝛼𝑥𝑞𝛼(4𝑚0
4(1−𝑞+𝑒𝛼𝑥)+𝑉1

2𝛼2)

8𝑚0
4(−1+𝑞𝑒𝛼𝑥)((𝑒𝛼𝑥+1−𝑞)2+𝑉1

2𝛼2)
            (44)                                         

And 
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𝑉𝑒𝑓𝑓(𝑥) = 2(𝐸𝑉1 − 𝑚0
2)

𝑒−𝛼𝑥

𝑒−𝛼𝑥−𝑞
+ (𝑚0

2 − 𝑉1
2 −

𝑉1
2𝛼2

4𝑚0
2 )

𝑒−2𝛼𝑥

(𝑒−𝛼𝑥−𝑞)2
.                                                                                       (45) 

Using (35), we can get real energies of (44) as 

𝐸𝑛,± = −
𝑉1

𝐷𝑛
±

√16𝑉1
2−4𝐷𝑛(𝐷𝑛(2𝑚2+𝛼2)+4𝑚2+2𝛼2𝑛2𝑞+2𝛼2𝑛𝜇)

4𝐷𝑛
                                           (46)                            

            

 

We note that there exists solutions both for positive 

energy as well as for negative energy shown by (46). 

The negative energy solutions correspond to predict the 

existence of antiparticle, positron. If the real electrons 

are described by positive energy states, all negative 

energy states are occupied by electrons and a real 

electron is not allowed to fall into a negative energy 

state according to the Dirac theory. Now, the functions   

𝜌(𝑠)  and 𝑓(𝑠) are given by 

𝜌(𝑠) = 𝑠2𝜖(1 − 𝑞𝑠)
𝜇

𝑞               (47)                                                                                                     

𝑓(𝑠) = 𝑠𝜖(1 − 𝑞𝑠)
𝜇+𝑞

2𝑞                (48)                                                                                                   

 

 

And finally wave-function 𝜑(𝑠) reads 

𝜑𝑛(𝑠) = 𝐵𝑛𝑠𝜖(1 − 𝑞𝑠)
𝜇+𝑞

2𝑞 𝑃
(2𝜖,

𝜇

𝑞
)

𝑛(1 − 2𝑞𝑠).          (49)                                                                   

𝐵𝑛 is the normalization constant and the upper spinor 

component can be determined as 

𝜙𝑛(𝑠) = 𝑁√𝑚0 + 𝑆1
𝑠

𝑠−𝑞
𝑠𝜖(1 − 𝑞𝑠)

𝜇+𝑞

2𝑞 𝑃𝑛

(2𝜖,
𝜇

𝑞
)
(1 − 2𝑞𝑠). (50)                                                 

Now,(50) satisfies the boundary conditions 𝑠 = 𝑒−𝛼𝑥, 

then, 𝜙𝑛(𝑥) → 0 becomes zero when 𝑥 → 0, 𝑥 → ∞ if 

and only if 𝑞 = 1, 𝐸2 < 𝑚0
2, 𝜇 > 0, 𝜖 > 0. Equation 

(15) can help us to find the lower spinor wave-function 

as 

 

𝜃𝑛(𝑠) =
1

√𝑚0+𝑆(𝑥)
[(−𝑖𝛼𝜖 +

𝑖𝛼(𝜇+1)

2

𝑠

1−𝑠
−

𝑖𝛼

2

𝑠(1−𝑠)

(1−𝑠)(𝑚0+𝑆1)−𝑆1
+ 𝐸 − 𝑉(𝑠)) 𝜑𝑛−𝐵𝑛(𝑛 + 1 + 2𝜖 + 𝜇)𝑠𝜖(1 − 𝑠)

𝜇+1

2 𝑃𝑛−1
(1+2𝜖,1+𝜇)

(1 − 2𝑠)]  (51)                                                                         

4. CONCLUSION 

 In conclusion, we have extended one dimensional 

Dirac Hamiltonian to a solvable Klein-Gordon-like 

Hamiltonian where the vector potential is chosen as a 

complex function. It is seen that decomposing the 

vector potential and using a specific  𝑉𝐼(𝑥)  leads to a 

new effective potential given by (22). We have 

introduced some specific forms for 𝑉𝑅(𝑥) and S(x) to 

obtain an effective potential in the form of generalized 

complex Hulthen potential. After then, we have applied 

Nikiforov-Uvarov method to (27) in order to obtain  

 

energy and wave-functions. We have seen that we can 

obtain a real energy spectrum under some parameter 

restrictions while S(x) should be a complex function but 

𝑉𝑒𝑓𝑓(𝑥)  is real. In [22], the authors solved one 

dimensional Dirac equation for generalized Hulthen 

potential and found that the real spectrum was obtained 

by using an imaginary α, i.e. α → iα, rather than a real 

α. But in this study, we have seen that one can obtain 

real spectrum if S(x) and V (x) are complex functions 

when α is real. In figure 1, our results with those given 

in [22] agree for n = 1 states. 

 

 

 

 

Figure 1: Graph of (46) (𝐸𝑛, −𝐸𝑛)  with respect to n shown by pink and blue lines while (𝜆+, 𝜆−)  correspond to the 

energy formula (33) in [22]. 



                                                           GU J Sci, 28(4):571-575 (2015)/ Özlem YEŞİLTAŞ                                              575 

 

CONFLICT OF INTEREST 

No conflict of interest was declared by the authors.  

 

REFERENCES 

[1] C.M. Bender and S. Boettcher, Phys. Rev. Lett. 80 

(1998) 5243.  

[2] For a review, see C. M. Bender Rep. Prog. Phys. 70 

(2007) 947.  

[3] C. M. Bender and H. F. Jones, Phys. Rev. A 85 

(2012) 052118. 

[4] M. Znojil, J. Phys. A: Math. Gen. 33 (2000) L61-2; 

M. Znojil, M. Tater, J. Phys. A: Math. Gen. 34 

(2001) 1793. 

[5] G. L´evai, P. Siegl, M. Znojil, J. Phys. A: Math. 

Theor. 42 (2009) 295201.  

[6] G. Levai, M. Znojil, Mod. Phys. Letters A 16 (2001) 

1973; 

[7] B. Bagchi, C. Quesne, Phys.Lett. A 273 (2000) 285-

292; Phys. Lett. A 301 (2002) 173.  

[8] C. Quesne, J. Phys. A 41 (2008) 244022.  

[9] C. S. Jia, A. de S. Dutra, Ann. Phys. 323 (2008) 566.  

[10] L. B. Castro, Phys. Lett. A, 375(25) (2011) 2510.  

[11] A. Arda, R. Sever, Phs. Scr. 82(6) (2010) 065007. 

[12] S. M. Ikhdair, J. Math. Phys. 51(2) (2010) 023525.  

[13] O. Mustafa, S. H. Mazharimousavi, Int. J. Theo. 

Phys. 48(1) (2009) 183.  

[14] A. D. Alhaidari, Phys. Lett. A, 322 (2004) 72.  

[15] X. L. Peng, J. Y. Liu, C. S. Jia, Phys. Lett. A, 352 

(2006) 478. 

[16] C. S. Jia, A. de S. Dutra, J. Phys. A: Math. Gen. 39 

(2006) 11877.  

[17] F. Cannata, A. Ventura, J. Phys. A : Math. Theor. 

43 (2010) 075305: 1-19. 

[18] C. M. Bender, P. D. Mannheim, Phys. Rev. D 84 

(2011) 105038. 

[19] R. Giachetti, V. Grecchi, J.Phys.A: Math. Theo. 44 

(2011) 095308.  

[20] S. M. Ikhdair, J. Math. Phys. 51(2) (2010) 023525.  

[21] F. Cannata, A. Ventura, Phys. Lett. A 372 (2008) 

941. 

[22] H. Eˆgrifes, R. Sever, Phys. Lett. A 344 (2005) 

117.  

[23] S. M. Ikhdair, J. Mod. Phys. 3(2) (2012) 170-179.  

[24] O. L. de Lange, R. E. Raab, Oxford University 

Press USA, 1992, ISBN-10: 0198539614 ISBN-

13: 978-0198539612; L. Infeld and T. E. Hull, 

Rep. Mod. Phys. 23 (1951) 21 8 . 

[25] Junker G, Supersymmetric Methods in Quantum 

and Statical Physics, 1996 (Berlin: Springer); F. 

Cooper, A. Khare and U. Sukhatme Phys. Rep. 25 

(1995)  

[26] B. Bagchi, Supersymmetry in Quantum and 

Classical Mechanics (New York: Chapman and 

Hall) 2001; W. Miller Symmetry and separation of 

variables (Massachusetts: Reading) 1977.  

[27] A. F. Nikiforov, V. B. Uvarov, Special functions of 

mathematical physics: a unified introduction with 

applications, Boston, MA: Birkhauser, 1988.  

[28] H. Ciftci, R. L. Hall, N. Saad, J. Phys. A 36 (2003) 

11807-11816.  

[29] M. Znojil, J. Phys. A: Math. Gen. 33 4561 (2000)- 

4572; M. Znojil, Phys. Lett. A 264 (1999) 108.  

[30] A. N. Ikot et al, Few-Body Syst. 54 2053 2013.  

[31] E. Maghsoodi, H. Hassanabadi, H. Rahimov, S. 

Zarrinkamar, Chinese Physics C Vol. 37, No. 4 

(2013) 043105.  

[32] Akpan N. Ikot et al, Z. Naturforsch. 68a, 499 509 

(2013); H. Hassanabadi, E. Maghsoodiand S. 

Zarrinkamar, Commun. Theor. Phys. 58 807 2012. 

[33]  H. Hassanabadi, E. Maghsoodi, S. Zarrinkamar 

and H.Rahimov, J. Math. Phys. 53 022104 2012.  

[34] Akpan N. Ikot et al, J.KoreanPhys. Soc. 64(9) 1248 

2014; AkpanN.Ikot, E. Maghsoodi, O. A. Awoga, 

S. Zarrinkamarand H. Hassanabadi, Quant. Phys. 

Lett. 3(1) 7 (2014). 

[35] A. Shehata, Gazi Univ. Jour. Science, 28 464 2015. 

[36] M. Nanova, EPJ Web of Conferences, 97 00022 ( 

2015).  

 

 

 

 

 


