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ABSTRACT 

  
In application of kernel-based methods, some  particular types of  PDEs  need some special types of kernels for  their 

approximations. For example some nonlinear evolution equations describing wave processes in dispersive and 

dissipative media. These models may have soliton like solutions for example KdV equation. In such a situation some 
special types of kernels may perform better than standards kernels for example soliton kernels. 

 

Keywords:   Soliton  kernels, Meshless  technique, RBF-PS scheme, evolution  equations.  

 

  1.  INTRODUCTION   

For approximating PDEs in the fields of computer 

experiments, response surface modeling, finance and 

image processing, we need some special types of kernels 

(for more detail see [1, 2]). These special types of kernels 

may perform better than the available standard kernels. 

These kernels are more appropriate than standard kernels 

when looking at special solutions of PDEs. For example 

nonlinear evolution equations describing wave processes 

in dispersive and dissipative media may have soliton like 

solutions, so soliton kernels, would be more suited to 

approximate the solution of such types of PDEs.  An 

example is the Korteweg-de Vries (KdV) equation, 

 

0],,[,0  tbaxvvvv xxxxt    (1) 

where   and   are real constant and the subscripts 

represent differentiation, e.g. 

t
vvt 
 .  This nonlinear transport or wave equation 

has a special traveling soliton solution. 

For solving such types of PDEs we have the soliton kernel 
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)(sec),( 2 yxhyx                                      (2) 

which is positive definite. Korteweg-de Vries equation is 

a model to describe the behavior of shallow-water waves 

[3]. The Korteweg-de Vries (KdV) equation has a variety 

of application in many fields for example waves in a fluid 

mechanics, waves in a ion-acoustic waves in a plasma, 

waves in a liquid-gas, and wave in harmonic crystals. The 

kernel-based methods are based on interpolating functions 

expressed entirely in terms of nodes [4]. During the past 

two decades the meshless methods have been developed 

and effectively applied to solve many engineering and 

science problems [5-11]. Many radial kernels contain a 

free shape parameter and solution accuracy greatly 

depends on this parameter. For improved accuracy, the 

user has to choose an optimal value of the shape 

parameter. But the soliton kernel is free of shape 

parameter. 

2. SOLITON KERNEL-BASED MESHLESS 

METHOD 

Corresponding to a set of centers,

  Nxxx ,...,, 21 , the kernel-based approximation 

is given as 





N

j

jj xxxttxv
1

.),,()(),(                    (3) 

where the soliton kernel   is given as 

Njxxhxxxx jjj  1),(sec)(:),( 2 ,  

and jxxr   denotes the Euclidean distance 

between two points x  and  jx  is a function defined for  

0r .  For the given set of interpolation points

 Nxxx ,...,, 21 , the kernel-based interpolation is 

obtained by solving the system of equations, 





N

j

jiji Nixxttxv
1

.1),,()(),(            (4) 

The matrix form of the above system is given as 

Bv  ,                                                          (5) 

where the entries of the interpolation matrix B  are

Njixx ji  ,1),,( , and 

the vector of expansion coefficients is 
T

N ],...,,[ 21   . Using equation (4) the derivatives  

xv   may be obtained by differentiating the kernel 

functions and then evaluating at each point 

Nixi 1,  ,  we have in matrix-vector notation 

,xx Bv                                                                (6) 

where the entries of the matrix xB  are 

ixxjxx
dx

d
),( , .,1 Nji   The differentiation 

matrix can be obtained by solving equations (4)-(5) for the 

value of  . Thus, we have 

uDuBBv xxx  1
,                                          (7) 

where 
1 BBD xx

  is the differentiation matrix. It 

should be noted that the differentiation matrix depends on 

the invertibility of the matrix B . It is well known that the 

matrix B  is always invertible for distinct set of 

collocation points. In a similar way, we can compute 

differentiation matrices of higher order. 

Using the above differentiation matrices, the numerical 

scheme corresponding to equations (1) is given as 

 

0 vDvDvv xxxx  .                                (8) 

This equation may be written as 

.vDvDvv xxxx                                        (9) 

Equation (9) is of the form 

)(vFv  .                                                        (10) 

Now this ODE system can be discretize in time using any 

ODE solver like ode45, ode113, ode23. The initial 

solution vector is 0v . Any good ODE solver will select 

an appropriate time step t  to overcome the stiffness of 

ODE system. The fourth-order Runge-Kutta scheme may 

also be used for solving the generated ODE system. 

3. NUMERICAL EXPERIMENTS 

In this section we have applied the soliton kernel-based 

meshless method as discussed above for the numerical 

solution of the KdV equation. The accuracy and efficiency 

of the method is verified in terms of the error norms L  

and 2L defined by 

i

ap

i

exapex vvvvL )()(max 


 ,  (11) 
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
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i

i

ap
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exapex vvhvvL
0

2

2
2 )()( , 

where  Nabh /)(  , and the invariants of motion 

defined by 

 




b

a

N

i

i

nvhvdxI
0

1 )( ,  




b

a

N

i

i
nvhdxvI

0

22

2 )( , (12) 

2.1    Problem 1 

Equation (1) has a soliton type solution [12], 

)7)(
2

(sec
2

),( 2  ctx
c

h
c

txv .              (13) 

We approximate the solution of (1) by using soliton 

kernels (2). We choose the spatial domain [0, 40] to 

approximate the solution of equation (1). The problem is 

solved for the time domain  

[0, 5], where the parameters 6  and  1  have 

been used. The initial solution 0v  and boundary 

conditions are extracted from (13). The time integration 

was carried out by the RK4 method. The results of the 

present method are compared with other methods in the 

literature [12]. It is found that the application of soliton 

kernels for solving the PDEs having soliton type solutions 

is very is beneficial in terms of computations time as well 

as in terms of accuracy as evident from Figure 1 and 

Table 1. 

 

Figure 1: Single solitary wave: 001.0t , 6 , 

100N , ]40,0[x . 

Table 1:  Single solitary wave: 001.0t , 6 , 1 , 200N , ]40,10[x . 

Method                t                         L                            2L                                  C. time 

 

RK4 (Soliton)      1                       1.280e-006                5.249e-006                    5.32 

                             2                       1.934e-006                6.513e-006                    9.86 

                             3                       2.354e-006                7.905e-006                   14.57 

                             4                       2.903e-006                9.926e-006                   19.08 

                             5                       3.888e-006                1.302e-005                   24.28 

 

[32]                      1                       1.804e-005                 6.236e-005                  14.00 

                             2                       3.037e-005                 1.126e-004                  20.00 

                             3                       4.008e-005                 1.553e-004                  25.00 

                             4                       4.834e-005                 1.940e-004                  30.00 

                             5                       5.609e-005                 2.294e-004                  36.00 
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2. Problem 2 

In this problem, we consider the solution of (1) in the 

form [13] 

)4(sec2),( 2 txhtxu  ,                                  (14) 

Here again we used soliton kernels (2) to approximate the 

solution of  (1). We select the spatial domain ]40,10[ , 

and the time domain ]5,0[ . We compute the solution for 

the choice of 6 , and  1  . The boundary and 

initial conditions have been extracted from analytical 

solution (13). The time integration was carried out by the 

RK4 method. The results of the present method are 

compared with other methods in the literature [13]. Her 

the again the soliton kernel-based 

method performed better. 

 

Figure 2: Single solitary wave: 001.0t , 6 , 

1 , 250N , ]40,10[x . 

 

Method                  t                      L                            2L                    1I                2I  

RK4(Soliton)         1.0                  5.611e-005          4.869e-004        3.98399       5.31200 

                               2.0                  7.694e-005          6.648e-004        3.98397       5.31200 

                               3.0                  5.291e-005          4.536e-004        3.98396       5.31200 

                               4.0                  3.541e-005          2.087e-004        3.98400       5.31200 

                               5.0                  7.655e-005          5.293e-004        3.98399       5.31200 

(MQ) [31]              1.0                  4.172e-005          6.467e-005         3.9999        5.3333 

                               2.0                  3.565e-005          7.400e-005         3.9999        5.3333 

                               3.0                  3.931e-005          7.960e-005         3.9999        5.3333 

                               4.0                  3.523e-005          8.580e-005         3.9999        5.3333 

                               5.0                  3.822e-005          9.393e-005         3.9999        5.3333 

(IMQ) [31]             1.0                  4.094e-003          5.932e-003         4.0064        5.3334 
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                               2.0                  3.992e-003          7.296e-003         4.0081         5.3334 

                               3.0                  4.138e-003          7.715e-003         4.0083         5.3334 

                               4.0                  3.902e-003          7.898e-003         4.0074         5.3334 

                               5.0                  3.873e-003          8.474e-003         4.0057         5.3334 

 

 Table 2: Single solitary wave: 001.0t , 6 , 1 , 250N , ]40,10[x . 

2.3   Problem 3 

Now we consider the nonlinear system 

,uvuu xt   uvvv xt  .          (15)

  

For the sake of comparison [14], we take 

100,5.0,5.0  ba , and the 

initial conditions 

 

)0,(xu


 

otherwise

xx

,0

].1.0,3.0[)},10cos(1{5.0 
      (16)                                              

 

)0,(xv


 

otherwise

xx

,0

].3.0,1.0[)},10cos(1{5.0 
      (17) 

 

and with the boundary conditions 

 

0),().(,0),(),(  tbvtavtbutau .      (18)

     

 Here we apply the present method for solving 

the couple system of PDEs. For time integration we used 

RK4 scheme. The initial solutions )0,(xu  and )0,(xv  

selected in the form of solitons, initially located at 

positions 2.0x  and 2.0x . For time 0t , the 

nonlinearity uv causes the waves to move towards each 

other without any change in shape. The waves u and v  

collides at time 1.0t , which result change in waves 

shapes. At time 3.0t  the waves overlap each other 

and again separated at time 3.0t . The linear term 

becomes dominant and the waves lose their symmetry and 

experience a decrease in the amplitude due to nonlinear 

interaction. The evolution of two waves u, and v are 

shown graphically. These graphical results are agreed well 

with the results obtained by quasi-linear interpolation 

method [14]. 
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   Figure 3: Nonlinear interaction: 0001.0t , 

126N , ]5.0,5.0[x . 

4. CONCLUDING REMARKS 

In the present work, the soliton kernel-based meshless 

method is investigate for the applicability of soliton 

kernels for numerically approximating PDEs with soliton 

type solutions. To show how good and accurate the 

present numerical scheme is, we computed the error 

norms and invariants of the model and compared the 

results of the present method with the available methods 

in the literature. The soliton-based method has been found 

to be very accurate. The soliton kernel is free of shape 

parameter and suited to approximate the PDEs which have 

soliton type solutions. 
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