
Gazi UniversityJournal of Science 

GU J Sci 

28(4):683- 688 (2015)  

 

 
 

 

 

 

Corresponding author, e-mail: lkargin@akdeniz.edu.tr 

 

 

Riemann Zeta Matrix Function 

 

 

Levent KARGIN
1,♠

, Veli KURT
2 

 

 

1
Alanya Alaaddin Keykubat University Akseki Vocational School, Antalya Turkey 

2
Akdeniz University, Faculty of Science Department of Mathematics, Antalya, TURKEY 

 

 

 

Received:28/05/2015                  Accepted: 05/09/2015 

ABSTRACT 

 

In this study, obtaining the matrix analog of the Euler's reflection formula for the classical gamma function we 

expand the domain of the gamma matrix function and give a infinite product expansion of 𝑠𝑖𝑛𝜋𝑥𝑃. Furthermore we 

define Riemann zeta matrix function and evaluate some other matrix integrals. We prove a functional equation for 
Riemann zeta matrix function. 
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1. INTRODUCTION 

Matrix generalization of special functions has become 

important during last years. This importance is brought 

about by many facts. Their frequent appearance in 

physical problems, their ubiquitous use in statistics and 

probability theory and their applications in numerical 

analysis are just a few of these facts. Matrix 

polynomials, appeared in connection with matrix 

functions are introduced in ([6, 7, 8, 11, 12, 17, 19, 20]). 

Furthermore their important properties are studied in 

([1, 2, 3, 4, 8, 15, 17]).  

Throughout this paper for a matrix 𝑃 in ℂ𝑟×𝑟, its 

spectrum 𝜎(𝑃) denotes the set of all the eigenvalues of 

𝑃, 𝛼(𝑃) = 𝑚𝑎𝑥{𝑅𝑒(𝑧): 𝑧𝜖𝜎(𝑃)} and 𝛽(𝑃) =

𝑚𝑖𝑛{𝑅𝑒(𝑧): 𝑧𝜖𝜎(𝑃)}. Besides for 𝑡 ≥ 0, it follows that 

                    ‖𝑒𝑡𝑃‖ ≤ 𝑒𝑡𝛼(𝑃) ∑
(‖𝑃‖√𝑟𝑡)

𝑘

𝑘!

𝑟−1

𝑘=0

                  (1) 

where ‖P‖ denotes the 2-norm of P defined in [20]. 

If 𝑓(𝑧) and 𝑔(𝑧) are holomorphic functions in an open 

set Ω of the complex plane and 𝑃 is a matrix in ℂ𝑟×𝑟 

with 𝜎(𝑃)Ω, then from matrix functional calculus [9] 

it follows that 𝑓(𝑃)𝑔(𝑃) = 𝑔(𝑃)𝑓(𝑃). Since the 

reciprocal Gamma function denoted by 𝛤−1(𝑧) =
1/𝛤(𝑧) is an entire function, 𝛤−1(𝑃) is a well-defined 

matrix for any matrix 𝑃 in ℂ𝑟×𝑟 . Furthermore if 𝑃 is a 

matrix in ℂ𝑟×𝑟 such that  

   𝑃 + 𝑛𝐼 𝑖𝑠 𝑖𝑛𝑣𝑒𝑟𝑡𝑖𝑏𝑙𝑒 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑛 ≥ 0     (2) 
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then 𝛤(𝑃) is invertible and  

                  (𝑃)𝑛 = 𝛤(𝑃 + 𝑛𝐼)𝛤−1(𝑃),    𝑛 ≥ 1             (3) 

where (𝑃)𝑛 is the matrix analogue expression of the 

factorial function is defined by [13]  

(𝑃)𝑛 = 𝑃(𝑃 + 𝐼)(𝑃 + 2𝐼)… (𝑃 + (𝑛 − 1)𝐼), 𝑛 ≥ 1 (4)  

where (𝑃)0 = 1. 

If 𝑃 is a matrix in ℂ𝑟×𝑟 such that 𝑅𝑒(𝑧) > 0 for all 

𝑧 ∈ 𝜎(𝑃) (we say positive stable matrix for 𝑃), then the 

gamma matrix function 𝛤(𝑃) is defined in [12] as 

follows 

     𝛤(𝑃) = ∫ 𝑒−𝑡𝑡𝑃−𝐼𝑑𝑡,

∞

0

 𝑡𝑃−𝐼 = 𝑒𝑥𝑝((𝑃 − 𝐼)𝑙𝑛𝑡).  (5) 

Using (5) Jódar and Cortés in [12] have obtained a limit 
expression for the gamma matrix function 

                𝛤 (𝑃) = lim
𝑛→∞

(𝑛 − 1)! (𝑃)𝑛
−1𝑛𝑃.                     (6) 

In addition, if 𝑃 and 𝑄
 
 are commuting matrices in ℂ𝑟×𝑟 

such that 𝑃 + 𝑛𝐼, 𝑄 + 𝑛𝐼 and 𝑃 + 𝑄 + 𝑛𝐼 invertible for 

all integer 𝑛 ≥ 0 then 

𝐵(𝑃, 𝑄) = 𝛤(𝑃)𝛤(𝑄)𝛤−1(𝑃) 

where 𝐵(𝑃, 𝑄) is the Beta matrix function given in [13]. 

Also Jódar and Sastre have proved asymptotic 

behaviour of Laguerre matrix polynomials in [14] by 
using  

          P𝛤(𝑃) = 𝑒−𝛾𝑃 [∏(𝐼 +
𝑃

𝑛
) 𝑒−

𝑃

𝑛

∞

𝑛=1

]

−1

                   (7) 

where P is a matrix in ℂ𝑟×𝑟 satisfying (2) and 𝛾 is the 

Euler-Mascheroni constant. 

In this paper, we focus on the generalization of two 

other properties of classical gamma function to gamma 

matrix function. These properties are  

√𝜋 𝛤(2𝑧) = 22𝑧−1𝛤(𝑧)𝛤 (𝑧 +
1

2
) 

and 

𝛤(𝑧)𝛤(1 − 𝑧) =
𝜋

𝑠𝑖𝑛𝜋𝑧
, 

called Legendre’s duplication formula and Euler’s 

reflection formula, respectively. So we can evaluate the 

gamma values of a matrix P in ℂ𝑟×𝑟 such that 𝜎(𝑃) =

{𝑘: 𝑘Z}. Moreover we give a infinite product 

expansion of sin 𝜋𝑥𝑃. The classical Riemann zeta 

function plays a pivotal role in analytic number theory 

and has applications in physics, probability theory and 

applied statistics. This fact together with its close 

relationship with the well-known classical gamma 

function motivates the definition of Riemann zeta 

matrix function (𝑃) as an infinite sum of matrix 

exponential. So, examining the properties of Riemann 

zeta matrix function will allow us to get information 

about infinite sum of matrix exponential. We evaluate 

some matrix integrals in terms Riemann zeta matrix 

function and gamma matrix function. We also give a 

functional equation for Riemann zeta matrix function. 

2. ON GAMMA MATRIX FUNCTION 

In this section we give duplication and reflection 

formula for gamma matrix function and a product 

formula for sin matrix function. Evaluation of sin 

matrix function for a matrix 𝑃 in ℂ𝑟×𝑟 is given with an 

example. We discover an expression for 𝛤(2𝐴) in 

terms of 𝛤(𝐴) and 𝛤 (𝐴 +
𝐼

2
) in the following 

theorem. 

Theorem 1 Let P be a positive stable matrix in  ℂ
r×r. 

Then the dublication formula for gamma matrix 

function holds: 

                √𝜋 𝛤(2𝐴) = 22𝐴−𝐼𝛤(𝐴)𝛤 (𝐴 +
𝐼

2
).             (8) 

Proof. Using (4) it is easy to show that  

(𝑃)2𝑛 = 22𝑛 (
𝑃

2
)
𝑛
(
𝑃 + 𝐼

2
)
𝑛

 

Taking 𝑃 = 2𝐴 in the above equation and using (3) we 

obtain 

𝛤(2𝐴)𝛤−1(𝐴)𝛤−1 (𝐴 +
𝐼

2
)                                        (9) 

     = 2−2𝑛𝛤(2𝐴 + 2𝑛𝐼)𝛤−1
(𝐴 + 𝑛𝐼)𝛤−1

(𝐴 +
𝐼

2
+ 𝑛𝐼). 

We next insert in the right member of (9) appropriate 

factors to permit us to make use of the result in (6). By 

using (6), we rewrite (9) as 

𝛤(2𝐴)𝛤−1(𝐴)𝛤−1 (𝐴 +
𝐼

2
)

= 22𝐴 lim
𝑛→∞

(2𝑛 − 1)! 𝑛−
𝐼

2

22𝑛(𝑛 − 1)! (𝑛 − 1)!
. 
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Setting 𝐴 =
𝐼

2
 it follows from (5) that the value of limit 

is 
1

2√𝜋
. This completes the proof. 

To derive a reflection formula for gamma matrix 

function and the sine product formula, we must first 

give the following lemma. 

Lemma 2 Let 𝑥 be an arbitrary parameter. Define the 

matrix function 𝜑(𝑥𝑃), for a matrix 𝑃 in ℂ𝑟×𝑟 such that 

𝑘𝜎(𝑥𝑃) for 𝑘 ∈ 𝑍 to be  

           𝜑(𝑥𝑃) = 𝛤(𝑥𝑃)𝛤(𝐼 − 𝑥𝑃) sin 𝜋𝑥𝑃                (10) 

then 𝜑(𝑥𝑃 + 𝐼) = 𝜑(𝑥𝑃). 

 Proof. By taking 𝑥𝑃 and −𝑥𝑃 in (3) for 𝑛 = 1, then we 

get  

                 𝛤 (𝑥𝑃 + 𝐼) = 𝑥𝑃𝛤(𝑥𝑃)                                (11) 

                 𝛤 (𝐼 − 𝑥𝑃) = −𝑥𝑃𝛤(−𝑥𝑃)                         (12) 

respectively. It is easy to show that sin 𝜋(𝑥𝑃 + 𝐼) =

sin 𝜋𝑥𝑃. Using (11) and rearranging (12) gives the 

proof. 

(8) can be written as 

𝛤 (
𝑥𝑃

2
)𝛤 (

𝑥𝑃 + 𝐼

2
) = 2√𝜋2−𝑥𝑃𝛤(𝑥𝑃). 

Replacing 𝑥𝑃 with 𝐼 − 𝑥𝑃 and using (10) we get  

𝜑 (
𝑥𝑃

2
)𝜑 (

𝑥𝑃 + 𝐼

2
) = 𝜋𝜑(𝑥𝑃). 

Using (11) and the infinite series expansion of sin 𝜋𝑥𝑃, 

we get  

𝜑(𝑥𝑃) 

    = 𝛤(𝑥𝑃 + 𝐼)𝛤(𝐼 − 𝑥𝑃) (𝜋 −
𝜋3(𝑥𝑃)2

3!
+

𝜋5(𝑥𝑃)4

5!
− ⋯) 

The right hand side of the equation equals 𝜋𝐼 when 

𝑥 = 0. From there we see that φ(𝟎) = 𝜋𝐼, where 𝟎 is 

zero matrix. Let 𝑔(𝑥𝑃) be a periodic matrix function 

that is equal to second derivative of log 𝜑(𝑥𝑃). It is 

periodic because log𝜑(𝑥𝑃) = log(𝛤(𝑥𝑃)𝛤(𝐼 −

𝑥𝑃) sin 𝜋𝑥𝑃) is periodic. Since 𝑔(𝑥𝑃)  is periodic, then 

it satisfies the equation 

                𝑔(𝑥𝑃) =
1

4
[𝑔 (

𝑥𝑃

2
) + 𝑔 (

𝑥𝑃 + 𝐼

2
)]            (13) 

Since 𝑔(𝑥𝑃) is continuos on the interval [0,1] it is 

bounded by a constant 𝑀, ‖𝑔(𝑥𝑃)‖ ≤ 𝑀. From (13), 

we get  

‖𝑔(𝑥𝑃)‖ ≤
1

4
[‖𝑔 (

𝑥𝑃

2
)‖ + ‖𝑔 (

𝑥𝑃 + 𝐼

2
)‖] ≤

𝑀

2
 

From this we see that 𝑔(𝑥𝑃) can actually be bounded 

by 
𝑀

2
. We can continue to repeat this process until the 

bound of 𝑔(𝑥𝑃) goes to 𝟎. Therefore 𝑔(𝑥𝑃) = 𝟎, 

which means log 𝜑(𝑥𝑃) is a linear function, because 

𝑔(𝑥𝑃) = 𝟎 is its second derivative. Since log 𝜑(𝑥𝑃) is 

periodic, this implies that it is a constant, which also 

implies 𝜑(𝑥𝑃) is constant. We know 𝜑(0) = 𝜋𝐼 and 

therefore 𝜑(𝑥𝑃) must equal 𝜋𝐼 for all 𝑥. 

Rearranging (10) and using the fact that 𝜑(0) = 𝜋𝐼, we 

obtain 

                   (𝑥𝑃)(𝐼 − 𝑥𝑃) = 𝜋[sin πxP]−1.            (14) 

For 𝑥 = 1, we derive a relationship between the sine 

and gamma matrix function in the following theorem. 

Theorem 3 Let 𝑃 be a matrix in ℂ𝑟×𝑟 such that 

𝑘𝜎(𝑃) for 𝑘 ∈ 𝑍. Then we obtain a reflection 

formula for the gamma matrix function  

                  𝛤(𝑃)𝛤(𝐼 − 𝑃) = 𝜋[sin πP]−1                     (15) 

Let rewrite (15) as 

                   𝛤(𝑃) = 𝜋[𝛤(𝐼 − 𝑃)sinπP]−1.                  (16) 

Then (16) gives us important information for the 

gamma matrix function. Whereas the gamma matrix 

function is well-defined for the positive stable matrix in 

(5), we can evaluate the gamma values of the matrix 𝑃  

in ℂ𝑟×𝑟 such that 𝑘𝜎(𝑃) for 𝑘 ∈ 𝑍. 

Example 4 Let 𝐴 = [
−

7

2
0

3 −
1

2

] be a matrix in ℂ2×2 

with 𝜎(𝐴) = {−
7

2
, −

1

2
}. Hence one gets 

𝛤(𝐼 − 𝐴) = ∫ 𝑒−𝑡𝑡−𝐴𝑑𝑡

∞

0

= ∫ [
𝑒−𝑡 0

0 𝑒−𝑡] [
𝑡

7

2 0

𝑡
1

2 − 𝑡

7

2

𝑡
1

2

] 𝑑𝑡

∞

0

= [
𝛤 (

9

2
) 0

𝛤 (
3

2
) − 𝛤 (

9

2
) 𝛤 (

3

2
)
]

= [

105

16
√𝜋 0

−
97

16
√𝜋

1

16
√𝜋

] 
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and 

sin(𝜋𝐴) =
𝑒𝑥𝑝(𝑖𝜋𝐴) − 𝑒𝑥𝑝(−𝑖𝜋𝐴)

2𝑖
= [

1 0
−2 −1

] 

Then from (16), we have 

𝛤(𝐴) = [

16

105
√𝜋 0

−
226

105
√𝜋 −2√𝜋

] 

Note that the Weierstrass product formula given in (7) 

allows us to rewrite sin 𝜋𝑥𝑃 as an infinite product 

expansion in the following corollary. 

Corollary 5 Let 𝑃 be an invertible matrix in ℂ𝑟×𝑟. Then 

infinite product expansion of sin 𝜋𝑥𝑃 holds: 

 sin 𝜋𝑥𝑃 = 𝜋𝑥𝑃 ∏(𝐼 −
(𝑥𝑃)2

𝑛2 )

∞

𝑛=1

 

3. RIEMANN ZETA MATRIX FUNCTİON 

Let 𝑃 be a matrix in ℂ𝑟×𝑟 such that 𝑅𝑒(𝑧) > 1 for all 

𝑧 ∈ 𝜎(𝑃). Using inequality (1), it follows that 

∑‖𝑛−𝑃‖ ≤ ∑
(‖𝑃‖√𝑟)

𝑘

𝑘!

𝑟−1

𝑘=0

∞

𝑛=1


(𝑘)(𝛽(𝑃)) < ∞, 

where 
(𝑘)(𝑠) is the 𝑘 times derivative of classical 

Riemann zeta function. Thus we can define Riemann 

zeta matrix function as 

                 (𝑃) = ∑ 𝑛−𝑃

∞

𝑛=1

= ∑ 𝑒𝑥𝑝(−𝑃𝑙𝑛𝑛)

∞

𝑛=1

.        (17) 

The following theorem is about integral representation 

of Riemann zeta matrix function. 

Theorem 6 Let P be a matrix in ℂr×r such that Re(z) >

1 for all z ∈ σ(P), then we get  

(𝑃)𝛤(𝑃) = ∫
𝑥𝑃−𝐼

𝑒𝑥 − 1
𝑑𝑥

∞

0

 

Proof. If we make the change of variable 𝑡 = 𝑛𝑥 for 

𝛤(𝑃), where 𝑛 ≥ 1, to obtain 

𝑛−𝑃𝛤(𝑃) = ∫ 𝑒−𝑛𝑥𝑥𝑃−𝐼𝑑𝑥,

∞

0

 

and summing over all 𝑛 ≥ 1, we find  

                   (𝑃)𝛤(𝑃) = ∑ ∫ 𝑒−𝑛𝑥𝑥𝑃−𝐼𝑑𝑥.

∞

0

∞

𝑛=1

            (18) 

For each 𝑛 ≥ 1, by the inequality (1) and using 

ln 𝑥 < 𝑥 − 1 for 𝑥 ∈ 𝑅+, we have 

‖𝑓𝑛(𝑥, 𝑃)‖ ≤ ∑
(‖𝑃‖√𝑟)

𝑘

𝑘!

𝑟−1

𝑘=0

𝑒−𝑥𝑥𝑘+𝛼(𝑃)−1 = 𝑓(x, P) 

where 𝑓𝑛(𝑥, 𝑃) = 𝑒−𝑛𝑥𝑥𝑃−𝐼 . Furthermore it is clear that 

𝑓(x, P) is integrable in [0,∞]. By the dominated 

convergence theorem, we can change the summation 

and integration in (18), obtaining 

(𝑃)𝛤(𝑃) = ∫ ∑ 𝑒−𝑛𝑥𝑥𝑃−𝐼

∞

𝑛=1

𝑑𝑥.

∞

0

 

If 𝑥 > 0 we have 0 < |𝑒−𝑛𝑥| < 1 and hence we have  

∑ 𝑒−𝑛𝑥𝑥𝑃−𝐼

∞

𝑛=1

=
𝑥𝑃−𝐼

𝑒𝑥−1. 

This completes the proof. 

Proposition 7 Let P be a matrix in ℂr×r such that 

Re(z) > 1 for all z ∈ σ(P), and Re(b) > 0 then we 

have 

       ∫
𝑥𝑃−𝐼

𝑠𝑖𝑛ℎ𝑏𝑥
𝑑𝑥 = 2𝑏−𝑃

∞

0

(𝐼 − 2−𝑃) 𝛤(𝑃)(𝑃),      (19) 

   ∫ 𝑥𝑃−𝐼(1 − 𝑡𝑎𝑛ℎ𝑏𝑥)𝑑𝑥

∞

0

 

                        = 2(2𝑏)−𝑃(𝐼 − 2𝐼−𝑃)𝛤(𝑃)(𝑃), (20) 

∫ 𝑥𝑃−𝐼(𝑐𝑜𝑡ℎ𝑏𝑥 − 1)𝑑𝑥

∞

0

= 2(2𝑏)−𝑃𝛤(𝑃)(𝑃).       (21) 

Proof. It is clear that a proof is needed only for the case 

𝑏 = 1 (then use the substitution 𝑥𝑏𝑥). For (19), by 

using geometric series we write 

1

𝑠𝑖𝑛ℎ𝑥
=

2𝑒−𝑥

1 − 𝑒−2𝑥
= 2 ∑ 𝑒−(2𝑛+1)𝑥

∞

𝑛=0

. 

Multiplying this by 𝑥𝑃−𝐼 and integrating from zero to 

infinity we obtain  
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         ∫
𝑥𝑃−𝐼

𝑠𝑖𝑛ℎ𝑏𝑥
𝑑𝑥 = 2𝛤

∞

0

(𝑃) ∑(2𝑛 + 1)−𝑃

∞

𝑛=0

= 2𝛤(𝑃){(𝑃) − 2−𝑃(𝑃)}. 

This gives (19). The equations (20) and (21) can be 

proved similarly.  

Differentiating (20) and (21) for the variable 𝑏 we 

obtain two more representations. 

Corollary 8 For a matrix P in ℂr×r such that Re(z) >

−1 for all z ∈ σ(P) and Re(b) > 0 we obtain the 

following matrix integrals. 

 ∫
𝑥𝑃−𝐼

𝑐𝑜𝑠ℎ2𝑏𝑥
𝑑𝑥

∞

0

 

             = 4(2𝑏)−(𝑃+𝐼)(𝐼 − 2𝐼−𝑃) 𝛤(𝑃 + 𝐼)(𝑃),     (22) 

∫
𝑥𝑃−𝐼

𝑠𝑖𝑛ℎ2𝑏𝑥
𝑑𝑥

∞

0

= 4(2𝑏)−(𝑃+𝐼) 𝛤(𝑃 + 𝐼)(𝑃).          (23) 

An important item for this section is the integral (cosine 

transform of hyperbolic cosecant) 

                         ∫
𝑡 cos 𝑥𝑡

𝑠𝑖𝑛ℎ
𝜋

2
𝑡
𝑑𝑡

∞

0

=
1

𝑐𝑜𝑠ℎ2𝑥
,                      (24) 

 which will be used to prove the matrix analog of the 

functional equation for the Riemann zeta function. An 

elementary introduction based on classical analysis can 

be found in chapter 3 of [21]. Also the following lemma 

is important to prove the matrix analog of the functional 

equation for the Riemann zeta function. 

Lemma 9 For a matrix P in ℂr×r such that Re(z) > −1 

for all z ∈ σ(P) and 𝑡 > 0 we get 

  ∫ 𝑥𝑃−𝐼 cos 𝑥𝑡 𝑑𝑥

∞

0

= −𝛤 (𝑃 + 𝐼)𝑡−(𝑃+𝐼) sin
𝜋𝑃

2
.    (25) 

Proof. Using (5) we get 

   ∫ 𝑥𝑃−𝐼 cos 𝑥𝑡 𝑑𝑥

∞

0

=
1

2
   ∫ 𝑥𝑃−𝐼(𝑒𝑖𝑥𝑡 + 𝑒−𝑖𝑥𝑡)𝑑𝑥

∞

0

 

                                  =
1

2
𝛤(𝑃 + 𝐼)𝑡−(𝑃+𝐼)𝑖 [𝑒

𝜋

2
𝑖𝑃 − 𝑒−

𝜋

2
𝑖𝑃]

= −𝛤(𝑃 + 𝐼)𝑡−(𝑃+𝐼) sin
𝜋𝑃

2
. 

Now we can give the following theorem. 

Theorem 10 If P is a matrix in ℂr×r such that 1σ(P), 

then we obtain a functional equation for Riemann zeta 

matrix function  

         (𝐼 − 𝑃)𝛤(𝐼 − 𝑃) sin
𝜋𝑃

2
= 𝜋(𝑃)(2𝜋)−𝑃.      (26) 

Proof. We shall evaluate the integral in (22) in a 

different way. Using (24) and Fubini Tonelli theorem 

we can write 

        ∫
𝑥𝑃−𝐼

𝑐𝑜𝑠ℎ2𝑏𝑥
𝑑𝑥

∞

0

= ∫ 𝑥𝑃

∞

0

[∫
𝑡 cos 𝑥𝑡

𝑠𝑖𝑛ℎ
𝜋

2
𝑡
𝑑𝑡

∞

0

] 𝑑𝑥

= ∫ [∫ 𝑥𝑃 cos 𝑥𝑡 𝑑𝑥

∞

0

]

∞

0

𝑡𝑑𝑡

𝑠𝑖𝑛ℎ
𝜋

2
𝑡
. 

By using (25) and (19), we get  

∫
𝑥𝑃

𝑐𝑜𝑠ℎ2𝑥
𝑑𝑥

∞

0

= −2 (𝐼 − 2𝑃−𝐼) (
𝜋

2
)
𝑃−𝐼

sin
𝜋𝑃

2
 

                                              × 𝛤 (𝑃 + 𝐼)𝛤(𝐼 − 𝑃)(𝐼 − 𝑃) 

Comparing the above equation to (22) we obtain (26). 

It is good to notice that (26) is a well defined matrix 

function for a matrix P in ℂr×r such that 1σ(P) 

whereas (17) is well defined matrix function for a 

matrix P in ℂr×r such that Re(z) > 1 for all z ∈ σ(P). 

Let P be a matrix in ℂr×r such that σ(P) =

{−2𝑘: 𝑘 ∈ 𝑍+}. Then using sin
𝜋𝑃

2
= 0 in  

(𝑃) = (
2𝜋

𝜋
)
𝑃

(𝐼 − 𝑃)𝛤(𝐼 − 𝑃) sin
𝜋𝑃

2
 

we get (𝑃) = 𝟎. Moreover let 𝑃 = 𝟎 ∈ ℂr×r. Then one 

can obtain  

𝑒𝑥𝑝(−𝑃 ln 𝑛) = [
1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 1

] = 𝐼 

From (17), we get  

(𝑃) = ∑ 𝑛−𝑃

∞

𝑛=1

= [
(0) ⋯ 0

⋮ ⋱ ⋮
0 ⋯ (0)

]

=

[
 
 
 
 −

1

2
⋯ 0

⋮ ⋱ ⋮

0 ⋯ −
1

2]
 
 
 
 

 

So we have (𝟎) = −
𝐼

2
. 
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