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Abstract. In this paper FHD flow in a rectangular pipe constricted by two

analogous semi-cylinders attached to the left and the bottom walls is investi-

gated. The laminar, axial flow is produced by a constant pressure gradient, and
the flow is affected by a spatially varying non-uniform magnetic field caused by

two electric wires. The current-carrying wires are placed along the axes of the

semi-cylinders. The fully developed flow is studied on the 2D cross-section of
the pipe, a cavity, where the wires act as point magnetic sources. The pressure

equation is added to the mathematical model, and the velocity-pressure form

governing equations are numerically solved by the dual reciprocity boundary
element method (DRBEM). The Dirichlet type pressure boundary conditions

are approximated through a process using the radial basis functions and a fi-
nite difference. The flow, velocity, and pressure variations are investigated for

different magnetic field strengths and current ratios. The grid independence

study is also carried out. The proposed iterative scheme is capable of gen-
erating numerical results by performing a non-uniform discretization for the

boundary. Dense discretizations are applied at the places where the flow shows

a sudden fluctuation. It is shown by the numerical results that the flow and
the pressure variations are dominated by the strong magnetic source. With

an increment in the magnetic number, the planar flow is accelerated, the axial

flow is decelerated, and the pressure increases, especially around the strong
point magnetic source.

1. Introduction

The interaction of electromagnetic fields and the fluid mechanics may be grouped
into three main categories, namely electrohydrodynamics (EHD), magnetohydrody-
namics (MHD), and ferrohydrodynamics (FHD) [27]. Electrohydrodynamics theory
investigates the flow of electrically charged particles under the influence of electric
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fields. In EHD, the electrostatic force term plays a crucial role in the momentum
equations. EHD phenomena is used in designs of many engineering instruments
such as pumps, printing systems, flow meters, etc. The motion of electrically con-
ducting fluids in the presence of magnetic fields is the subject of magnetohydro-
dynamics. In MHD, the body force acting on the fluid is called Lorentz force.
Lorentz force retards the core flow and accelerates the side flows, thus equalizes
the total flow in pipes. Ferrohydrodynamics is an interdisciplinary subject hav-
ing an inherent interest of a physical and mathematical nature with applications
in printing [7], medicine [44], tribiology [14], separation science [47], cooling sys-
tems [32], microelectromechanical systems (MEMS) [48], etc. FHD investigates the
motion of electrically insulated (non-conducting) fluid under the effect of magnetic
polarization [27]. In FHD, there needs no presence of electric current flow in the
fluid, but the flow undergoes a fluctuation due to the material magnetization. A
ferrofluid is mainly composed of a carrier fluid (e.g. water) and nanoscale magnetic
particles (e.g iron, nickel) coated by a surfactant. Biomagnetic fluid dynamics is
also based on the FHD phenomena. Blood is the mostly known biomagnetic fluid
which possesses its magnetization property by the hemoglobin molecule.
The spatially varying non-uniform magnetic field generated by the current-carrying
wires applies a volumetric force to the fluid and has been used to control the flow in
pipes. The volumetric force, so-called the Kelvin force density, drives the magnetic
particles, and the translational and rotational motion of these particles are trans-
ferred to the ferrofluid. The resulting body forces alter the flow in pipes. Therefore
in applications where the flow regulation is substantial the ferrofluid is a preferen-
tial choice [6].
Much computational research has been carried out on the FHD flows in pipes due
to their vast variety of applications. The FHD flows in pipes are modeled in terms
of the continuity and the Navier-Stokes equations. If there is heat transfer, then the
energy equation is added to the system. The governing equations are coupled with
highly nonlinear partial differential equations (PDEs) containing diffusion, convec-
tion, and force terms. Therefore, approximate solutions are required to understand
the flow and the pressure behaviors. The pressure-linked pseudo transient method
(PLEM), finite difference method (FDM), finite volume method (FVM), and finite
element method (FEM) are mostly used numerical approaches to tackle the FHD
flows.
The PLEM was used to investigate the effect of a single current-carrying wire
placed below the rectangular pipe in [42]. It was reported that the solutions show
an oscillatory behavior on a common-grid. A mathematical model on the same
flow configuration for the electrically conducting fluid was presented in [41]. In
that paper, both uniform and non-uniform magnetic field effects on the biomag-
netic fluid flow were studied. It was concluded that the form of the magnetic field
gradient substantially determines the flow in the pipe. Mousavi et al. [23] used
a commercial software based on the finite volume methodology to investigate the
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biomagnetic flow in a three-dimensional pipe under the influence of a magnetic
field due to a single current-carrying wire. They obtained grid-independent results
by using a discretization covering the magnetic field accurately. The influence of
an alternating magnetic field that is generated by line source dipoles on a forced
convective ferrofluid flow was investigated by Goharkhah and Ashjaee [10] using a
control volume technique. They reported the flow acceleration along the surface as
the ferrofluid passes over the magnetic field section. Recently, A finite volume ap-
proach for a nanofluid flow through an annular pipe subjected to multiple magnetic
sources was presented by Soltanipour [40]. A control volume-based FEM solution
of a free convection ferrofluid flow in an enclosure subjected to multiple current-
carrying wires was presented in [37]. Loukopoulos and Tzirtzilakis [19] presented a
FDM solution of a biomagnetic fluid flow between two horizontal plates subjected
to a single current-carrying wire. Some other computational studies on magnetiz-
able fluids can be found in [1, 3, 15,22,25,28,29,33–36,38,39].
The boundary elements method (BEM) [4] is an alternative to domain discretiza-
tion type methods such as FDM and FEM. In BEM, fundamental solutions are
required to transform the partial differential equations into boundary integral equa-
tions. After the insertion of the boundary conditions, a shuffling process is applied
to collect all the unknowns on one side of the equation. The resultant dense non-
symmetric linear equation is then treated by using an appropriate direct or iterative
solver. The boundary-only discretization advantage of the BEM reduces computa-
tional time and memory usage. When the partial differential equation is nonlinear,
containing body forces or time dependence, the corresponding BEM integral equa-
tion includes domain integrals. DRBEM has arisen to tackle this difficulty. In
DRBEM [24], a simpler equation’s fundamental solution is employed and the re-
maining terms are treated through a series expansion using radial basis functions,
and then the reciprocity procedures are applied. The DRBEM has been applied
to many types of physical problems from elasticity to fluid dynamics. Some recent
advances in the DRBEM applications may be found in [2, 11,16,21,31,45,46].
The previous studies demonstrated that no consideration has been given to pres-
sure computations for FHD irregular cavity flows. Most of the present studies used
domain-type numerical methods which are computationally expensive. The novelty
of the present study is that low computational cost solutions for the velocity and
the pressure of FHD flow in an irregular domain are presented. Therefore, the flow
of a ferrofluid through a pipe subjected to a non-uniform magnetic field that is
generated by two variable electric wires is investigated. The effects of the magnetic
field strength and the current ratio variations are discussed. The pressure profiles
are presented for the first time in the literature. The current-carrying wires are
placed parallel to one of the horizontal and the vertical walls. The geometry of the
pipe is formed in such a way that the current-carrying wires do not touch the elec-
trically insulated walls. The fully developed flow is modeled on the two dimensional
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cross-section of the pipe that is taken vertical to the axial flow. The governing equa-
tions in primitive variables (velocity-pressure form) are discretized by the DRBEM,
and an iterative numerical solution procedure is suggested. It is observed that a
non-uniform discretization is required to capture the flow behaviors. The flow and
pressure variations are dominated by the electric wire possessing high current in-
tensity. The proposed numerical scheme is capable of generating grid-independent
solutions for the velocity and the pressure with less computational cost. This is the
first DRBEM study on the FHD flow in a pipe contracted by two semi-cylinders
carrying variable electric currents along their axes. The proposed numerical scheme
provides the pressure variation which is very important in engineering design. This
study is an extension of a presentation that is published as an abstract [30] at the
International Conference on Applied Mathematics in Engineering (ICAME’21).
The rest of the paper is organized in the following fashion. In Section 2, the physics
of the problem is introduced, and the construction of the mathematical model is
presented. The numerical solution procedure and the pressure boundary condition
approximations are explained in Section 3. In Section 4, the numerical solutions
and discussions are presented. The consequences achieved from the present study
are collected in Section 5.

2. Physical Problem and Mathematical Model

A laminar, steady, fully developed flow of an electrically insulated, magnetizable
fluid is considered in a long rectangular pipe. Two semi-cylinders with radiuses r̄
are located in the middle of the left and the bottom walls. Two electric wires (W1

and W2) are passing through the axes of the semi-cylinders. The pipe walls are
electrically insulated. The 3D flow configuration is presented in Figure 1.

Figure 1. Fully developed flow in a pipe
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The flow is driven by a constant pressure gradient in the z̄−direction, and it
is under the influence of a non-uniform magnetic field that is generated by the
two wires carrying electric currents with different intensities (I1 and I2). The fully
developed flow is modeled on the 2D cross-section of the pipe. On this cross-section
(cavity), wires behave alike as point magnetic sources. Each section of the cavity
boundary is smooth. Figure 2 displays the 2D problem geometry.

Figure 2. Problem geometry

The FHD flow in a cavity is defined by the continuity and Navier-Stokes equa-
tions containing the dimensional velocity V̄(x̄, ȳ) = (ū(x̄, ȳ), v̄(x̄, ȳ), w̄(x̄, ȳ)) and
the pressure P̄ (x̄, ȳ, z̄) [27]. Once the flow reaches a fully developed state, the
velocity and the pressure of the fluid do not vary in the pipe axis direction.
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where ρ and ν are the density and the kinematic viscosity of the fluid, µ0 is the
magnetic permeability of vacuum, and H̄ is the magnetic field intensity. M̄ = χH̄ is
the magnetization where χ is the magnetic susceptibility of the fluid. Since the fluid
is electrically insulated the force terms on the right-hand side of the momentum
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equations are containing only the magnetization force in FHD. This mathematical
model does not have an analytical solution.
In fully developed flows pressure P̄ can be written as [9]

P̄ (x̄, ȳ, z̄) = P̄1(z̄) + p̄(x̄, ȳ). (5)

Since the axial flow is generated by a constant pressure gradient, one has

∂P̄

∂z̄
=

∂P̄1

∂z̄
= P̄z = constant . (6)

The components of the magnetic field H̄ = (H̄x(x̄, ȳ), H̄y(x̄, ȳ), 0) generated by
infinitely long, thin wires carrying steady electric currents I1 and I2 flowing in the
same direction are given by [17,26]
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, (7)

where (āi, b̄i), i = 1, 2, are the locations of the point magnetic sources around the
cavity. The point magnetic sources have different strengths. The intensity of the
magnetic field generated by the two point magnetic sources is defined by

H̄ =
√

H̄2
x + H̄2

y . (8)

For the numerical simulations following non-dimensional variables are introduced
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(9)
Here, L is the height of the cavity, and H0 = I1/(2πL).
The governing equations in the dimensionless form are
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where Mn is the magnetic number defined by

Mn =
µ0χH

2
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2
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. (14)
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To investigate the pressure variation within the cavity, the equation of pressure is
obtained. Eqs (11) and (12) are differentiated with respect to x and y, respectively.
The resultant equations are added and some terms are canceled using the continuity
equation. Then, the pressure equation is obtaied
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(
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−
(
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−2
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∂y
.

(15)
The flow patterns in 2D cavities are visualized by the stream function Ψ isolines
(streamlines). The stream function satisfies the continuity equation and is linked
with the planar velocities in x− and y−directions as

u =
∂Ψ

∂y
, v = −∂Ψ

∂x
. (16)

From the continuity equation, the stream function equation is generated
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. (17)

Non-dimensional forms of the magnetic field components are

Hx = − y − b1
(x− a1)2 + (y − b1)2

− Ir
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, (18)
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+ Ir

x− a2
(x− a2)2 + (y − b2)2

, (19)

where Ir = I2/I1 is the current ratio, (a1, b1), (a2, b2) are the positions of magnetic
sources and

H =
√
H2

x +H2
y . (20)

No-slip boundary condition is applied on the cavity walls, thus

u = v = w = Ψ = 0 on ∂Ω. (21)

Here, ∂Ω stands for the boundary of the cavity Ω. Dirichlet-type pressure boundary
conditions are obtained approximately by using a finite difference scheme and the
radial basis functions. The details for the pressure boundary condition computa-
tions are given in the next section.

3. Application of the DRBEM

The governing partial differential equations (11)-(13), (15), and (17) are trans-
formed into boundary integral equations by the DRBEM. The governing equations
are rewritten in the Poisson type as

∇2R = bR, (22)

where R denotes u, v, w, p, or Ψ. bR is the right-hand side of the equation for R
containing convection and force terms. For the sake of practice, the construction
of the DRBEM discretized system has been presented on this sample equation.
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Eq. (22) is weighted by the fundamental solution of the Laplace equation (u∗ =
(1/2π) ln(1/r), [24]) and then the Green’s first identity is applied to achieve

ciRi +

∫
Γ

Rq∗dΓ−
∫
Γ

u∗ ∂R

∂n
dΓ = −

∫
Ω

bRu
∗dΩ, (23)

with Γ = ∂Ω and q∗ = ∂u∗/∂n notations. ci = θ/2π where θ radian is the internal
angle at the source point i. ci = 1/2 on the smooth part of the boundary and ci = 1
for the interior nodes.
bR is approximated by using linear radial basis functions fj(ri) = 1 + rij ,

(rij =
√
(xi − xj)2 + (yi − yj)2) to eliminate the domain integral on the right-hand

side of Eq. (23). The corresponding particular solutions ûj satisfy ∇2ûj = fj .
Then, by using the collocation technique one gets an approximation for bR as

bR ≈
N+L∑
j=1

(αR)jfj =
N+L∑
j=1

(αR)j∇2ûj , (24)

where (αR)j ’s are the unspecified coefficients. Here, N is the number of boundary
nodes and L is the number of interior nodes.
Substituting the approximation in 24 into the integral equation 23 one has Laplace
term on the right-hand side of the equation (23). Green’s first identity is applied
again and the irregular boundary is discretized by the constant elements. Then,
the corresponding boundary integral equation is obtained

ciRi +

N∑
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∫
Γk

Rq∗dΓ−
N∑
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N∑
k=1

∫
Γk
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∂n
dΓ) . (25)

Considering all of the nodes, Eq. (24) gives

bR = FαR. (26)

Here, bR and αR are (N + L) × 1 vectors. (N + L) × (N + L) sized DRBEM
coordinate matrix F is constructed from the radial basis functions as Fij = fij .
According to Micchelli’s Theorem [20], F is invertible.
Thus, the vector of unspecified coefficients αR is calculated from Eq. (26) as

αR = F−1bR. (27)

Considering all the discretization nodes and using equations (25) and (27) the
system of matrix-vector equations are obtained
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Hw −G
∂w

∂n
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The entries of (N + L)× (N + L) sized DRBEM matrices are

Hij = ciδij +

∫
Γj

q∗dΓj ,

Gij =

∫
Γj

u∗dΓj , Gii =
l

2π
(ln(

2

l
) + 1).

(33)

Here, δij is the Kronecker delta and l is the length of the constant element. The
diagonal entries of G are computed analytically due to the singularities of the
integrals. Ûij = ûij and Q̂ij = q̂ij , q̂ij = ∂ûij/∂n.
Using the advantage of DRBEM, all the space derivatives of the unknowns in Eqs.
(28)-(32) are treated by using the approximation

R̂ = Fξ, (34)

where R̂ represent u, v, w, or p and ξ denotes an unspecified coefficient vector.
Then one has

∂R̂

∂η
=

∂F

∂η
F−1R̂, (35)

with η being x or y.
Once all the DRBEM constructions are completed Dirichlet type boundary condi-
tions are inserted, and all the problem unknowns are carried to the left-hand side.
This process is called shuffling. Then, one obtains a full linear system Ax = b̃.
The (N +L)× (N +L) sized coefficient matrix A is dense having no special form.
Thus, the resultant linear system is numerically solved by the LU decomposition
method with less computational cost.
An iterative solution process is applied. Initially, planar velocity components are
taken as zero everywhere. As can be observed from Eqs. (11) and (12) in this
case, magnetization forces are balanced by the pressure gradients [27]. The it-
eration process is started with ∂p/∂x = MnH(∂H/∂x) + 10−12 and ∂p/∂y =
MnH(∂H/∂y) + 10−12 initial values for the pressure gradients. Firstly, planar ve-
locity equations (Eq. (28) and (29)) are solved. To treat the nonlinear terms,
unknown velocities are taken from the previous iteration level and their space
derivatives are taken from the new level. Boundary conditions for the pressure
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are computed repeatedly in each iteration level by using newly obtained planar ve-
locity nodal solutions. Then, the pressure equation (Eq. (31)) is solved. Lastly, the
axial velocity and the stream function equations (Eqs. (30) and (32), respectively)
are solved with given boundary conditions. At each level, previously computed
problem unknowns are used in the subsequent equations. Pressure is relaxed as a
weighted summation of the nodal values taken from the previous and new iteration
levels, p(n+1) = rp(n+1) + (1 − r)p(n) where 0 < r < 1. The stopping criterion for
the iterative process is

||z(n+1) − z(n)||∞
||z(n)||∞

< 10−3, (36)

where z represents u, v, p, or Ψ and n is the number of iteration.

Figure 3. Pressure boundary condition approximation

Pressure boundary conditions are obtained by using Eqs. (11) and (12). Pressure
gradients are approximated by a forward or backward difference and the terms
containing the space derivatives of the planar velocities are approximated by the
DRBEM coordinate matrix F. Formulations of approximate boundary conditions
for the pressure are found for each side of the cavity (Figure 3) as

SIDE I: p
(n+1)
b = p

(n)
i −∆y(Sv(n+1) +MnH

∂H

∂y
), (37)

SIDE II: p
(n+1)
b = p

(n)
i +∆x(Su(n+1) +MnH

∂H

∂x
), (38)

SIDE III: p
(n+1)
b = p

(n)
i +∆y(Sv(n+1) +MnH

∂H

∂y
), (39)
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SIDE IV: p
(n+1)
b = p

(n)
i −∆x(Su(n+1) +MnH

∂H

∂x
), (40)

where pi is the closest interior node to the corresponding boundary node pb and

S =
∂F

∂x
F−1 ∂F

∂x
F−1 +

∂F

∂y
F−1 ∂F

∂y
F−1 − u(n+1) ∂F

∂x
F−1 − v(n+1) ∂F

∂y
F−1, (41)

with u(n+1) and v(n+1) being the diagonal matrices constructed from u− and
v−velocity nodal solutions at the (n+ 1)st iteration, respectively.

Pz = −8000 is taken as in [42] and (a1, b1) = (0.5, 0), (a2, b2) = (0, 0.5) are
the placement of point magnetic sources around the cavity. The radiuses of the
semi-cylinders are r = r̄/L = 0.1.

4. Numerical results and discussions

The influences of magnetization force and current ratio variations on the FHD
cavity flow are investigated for various combinations of Mn and Ir. Numerical
results are illustrated in terms of velocity, pressure, and stream function contour
plots. The computer code is validated with the existing literature, a grid inde-
pendence study is carried out, and an appropriate non-uniform discretization is
suggested.

Figure 4. Square cavity flow subjected to unique point source
Mn = 90.

The validation of the numerical procedure and the written computer code is
carried out for an FHD square cavity flow subjected to a unique point source that
is placed at (0.5,−0.05). Figure 4 displays the flow and pressure behaviors when
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Mn = 90. A good agreement is observed in the flow behaviors between the present
study and the existing literature [42].

The magnetization force pushes the fluid towards the top wall therefore the flow
on the transverse plane is separated into two symmetric vortices rotating in opposite
directions. The movement of the fluid particles in front of the point magnetic source
causes highly concentrated pressure at the bottom of the cavity. The u−velocity
is divided into two vortices and the v−velocity is expanded through the channel
section forming a boundary layer in front of the magnetic source. For small Mn
values, axial velocity shows a parabolic profile.

The grid independence test is carried for N = 192, 240, 288, 336, 384. The nu-
merical solutions for the pressure and the planar velocities are compared along
the x = 0.25 line for Mn = 10, Ir = 1. Figure 5 shows that N = 336 gives
grid-independent solutions.

Figure 5. Grid independence test along the x = 0.25 line for
Mn = 10, Ir = 1.

Table 1 displays the number of iterations needed to achieve solutions with a
tolerance of 10−3 for Mn = 10, Ir = 1. It is observed that the number of iterations
increases almost linearly as the number of boundary nodes advances. Effects of
magnetic sources on the pressure and velocity behaviors are investigated for various
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N=192 N=240 N = 288 N = 336 N = 384
573 670 812 957 1106

Table 1. Number of iterations for different N when Mn = 10,
Ir = 1.

combinations of current ratios Ir and moderate values of magnetic numbers Mn.
The boundary of the 2D computational domain is non-uniformly discretized by
constant elements. In constant element discretization, the approximate solution is
constant on each element and the points where the unknown values are considered
(nodes) are in the middle of the element. This property enables one to deal with the
corners of the irregular cavity. Each element is taken from the smooth part of the
boundary section. Figure 6 shows samples for the discretization of the boundaries
and the choices of the interior nodes. More interior nodes are taken at the places
where the flow is expected to show a sudden fluctuation according to the strengths
of the point magnetic sources and the cavity corners. In the case of the same current
intensities (e.g. (a) Ir = 1) the discretizations are dense near the corners of the
cavity. When one of the point magnetic sources is stronger than the other (e.g. (b)
Ir = 0.2) more interior nodes are taken in front of the semi-circles.

Figure 6. Sample discretizations of the boundary and the choice
of the interior nodes. (a) Ir = 1, (b) Ir = 0.2. Mn = 10.

The number of boundary elements is increased with Mn. At most N = 400
boundary and L = 9888 interior nodes are used for the discretization. The numer-
ical solutions are achieved using a 64GB RAM computer.

Figure 7 shows velocity, pressure, and the stream function contour plots when
both magnetic sources have the same strength (Ir = 1). The magnetic sources
push the fluid through the opposite walls and apply the same magnetization force.
This causes the division of the flow on the transverse plane into vortices that are
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Figure 7. Velocity and pressure profiles for Ir = 1, Mn = 10, 50, 90.

symmetric about the y = x axis, and the boundary layers are formed. Four sym-
metric vortices that are rotating in opposite directions are generated. Magnetic
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Figure 8. Velocity and pressure profiles for Mn = 10, Ir = 0.2, 0.5, 1, 2.

sources suppress the effects of each other, and therefore two small vortices appear
at the left bottom corner of the cavity. Pressure is high around the semi-circles due
to the large velocity gradients in these areas. Axial flow shows a parabolic profile
obeying the shape of the cavity. u− and v−velocity behaviors are similar due to
the symmetric location of the point sources. When the ratio of the currents is kept
fixed and the magnetic number increases, the magnetic field strengths of both wires
increase at the same rate. Thus, an increment in Mn accelerates the planar flow
(u and v velocity advance) and retards the axial flow around the semi-circles. The
pressure in the cavity increases. Strong vortices are developed on the transverse
plane as Mn advances. This is a well-known effect of the increment in the magnetic
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Figure 9. Velocity and pressure profiles for Ir = 0.5, 2 and Mn = 10, 30.

field strength.

The effect of the magnetic field generated by two wires with different current
intensities is investigated for a fixed Mn. This corresponds to the case when I1 is
kept constant and I2 changes. Figure 8 shows the flow and the pressure profiles for
Ir = I2/I1 = 2, 1, 0.5, 0.2. Generally, the flow and pressure behaviors are dominated
by the strong point magnetic source. When one of the point magnetic sources is
two times stronger than the other one (Ir = 0.5, 2) two vortices develop in front of
the dominant source that is analogous to the unique point source case. The weak
source force the fluid to divide the vortex in front of it. Pressure concentration is
high near the strong source. The flow retardation in the axial direction is mainly
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observed in front of the dominant point magnetic source. Planar velocity profiles
are generally dominated by the strong source, except for a little deformation caused
by the weak source. When the current intensity of the point source below the cavity
increases (comparing Ir = 0.5 and Ir = 0.2 cases) the magnetization force applied
by the strong source is increased and the flow is dominated mainly by the strong
bottom point magnetic source. The flow in the cavity nearly behaves as if there
was a single-point magnetic source. Pressure around the week source decreases.

In Figure 9, the effect of the magnetic number increase is investigated when one
of the sources is two times stronger than the other (Ir = 0.5 and Ir = 2 cases). An
increase in Mn advances the force applied to the fluid in the cavity and accelerates
the planar flow. At the same time, axial velocity decreases due to the kinetic energy
transfer in the axial direction into the transverse plane. The pressure in the cavity
increases, and the axial flow retardation is significant, especially near the dominant
magnetic source.

5. Conclusion

In this study, FHD flow in a rectangular duct constricted by two semi-cylinders
under the influence of a non-uniform magnetic field is investigated. The flow is
modeled in the velocity-pressure formulation and the numerical results are obtained
using the DRBEM. The Dirichlet type pressure boundary conditions are computed
by using a first-order finite difference scheme and the radial basis functions. The
system of nonlinear PDEs is solved iteratively, and the nonlinear terms are treated
by using the DRBEM coordinate matrix. The grid independence test is carried
out, and it is found that N = 336 gives grid independent solutions for Mn = 10
and Ir = 1 case. The number of boundary nodes needs to be increased according
to the magnetic number due to the alternations in the flow and pressure profiles.
The influences of the magnetic field strength and the current intensity ratios are
researched for moderate values of Mn. It is found that the velocity and the pres-
sure profiles are dominated by the strong point magnetic source. An increment in
the magnetic field strength results in an accelerated flow on the transverse plane,
retardation in the axial flow, and an increase in the pressure, especially in front
of the strong point magnetic source. When the strength of one of the sources in-
creases further, the flow behaves as if it was under the influence of a single point
magnetic source, and the pressure around the weak source decreases. The proposed
numerical scheme is capable of catching flow fluctuations, and the boundary dis-
cretization nature of DRBEM provide solutions with a less computational cost. In
the present study, the FHD flow is investigated in an irregular cavity with smooth
boundary sections. In the subsequent works, it is worthy to research the effects of
the unsmooth boundary [13,18,43] and analyze the hydrodynamic instability of the
present FHD flow [5,8, 12].
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