ORIGINAL ARTICLE

Some Fixed Point Results for Multi Valued Mappings in Ordered G-Metric Spaces

Wasfi SHATANAWI¹♣, Mujahid ABBAS²

¹ Hashemite University, Mathematics Department, P.O. Box 150459, Zarqa 13115, JORDAN ² Lahore University of Management Sciences, Mathematics Department, 54792-Lahore, PAKISTAN

Received: 20.11.2011 Resubmitted: 23.12.2011 Accepted: 27.12.2011

ABSTRACT

Using the setting of G— metric spaces, some new fixed point theorems for multivalued monotone mappings in ordered G— metric space X are proved, where the partial ordered

 \leq in X is obtained by a pair of functions (ψ, φ)

Key Words: Common fixed point, generalized weak contractive condition, lower semicontinous functions, G—metric space.

2000 Mathematics Subject Classification: 47H10.

1. INTRODUCTION AND PRELIMINARIES

Many authors studied many fixed and common fixed points in metric and order metric

spaces. Dhage introduced the concept of D-metric spaces and studied several fixed point

results (see [1]-[4]). Mustafa and Sims [5] showed that the structure of D metric spaces

called *G*-metric spaces. Since then many authors introduced many fixed and common fixed point

results using the concept of *G*-metric spaces (see [5]-[25]).

didn't generate a metric space. They introduced a new concept of generalized metric spaces,

^{*}Corresponding author, e-mail: swasfi@hu.edu.jo

In 1976, Caristi [26] defined an order relation in a metric space by using a functional

as follows: Let (X, d) be a metric space, $\varphi: X \to R$ be a functional. Define the relation \leq on X by

$$x \le y$$
 iff $d(x, y) \le \varphi(x) - \varphi(y)$.

Then \leq is a partial order relation on X introduced by φ and (X, \leq) is called an ordered

metric space introduced by φ . After that many authors discussed the existence of a fixed

point and a common fixed point using Caristi type mapping (see [26]-[31]).

Consistent with Mustafa and Sims [6], the following definitions and results will be needed

in the sequel.

Definition 1.1. Let X be a nonempty set. Suppose that a mapping $G: X \times X \times X \to R^+$ satisfies

- (G1) G(x,y,z)=0 if x=y=z;
- (G2) 0 < G(x,y,z) for all $x, y, z \in X$ with $x \neq y$
- (G3) $G(x,x,y) \le G(x,y,z)$ for all $x,y,z \in X$ with $y \ne z$
- (G4) G(x,y,z)=G(x,z,y)=G(y,z,x)=...

(symmetry in all three variables); and

(G5)
$$G(x,y,z) \le G(x,a,a) + G(a,y,z)$$
 for all $x,y,z,a \in X$.

Then G is called a G-metric on X and (X,G) is called a G-metric space.

Definition 1.2. A sequence $\{x_n\}$ in a G-metric space X is:

- (i) a G-Cauchy sequence if for any $\varepsilon > 0$, there is
- a natural number $n_0 \in N$ such that for all $n, m, l \ge n_0$, $G(x_n, x_m, x_l) < \varepsilon$,
- (ii) a G-convergent sequence if for any $\varepsilon > 0$, there

is an
$$x\in X$$
 and an $n_0\in N$ such that for all
$$n,m\geq n_0,\ G(x_n,x_m,x)<\varepsilon.$$

A *G*-metric space on *X* is said to be *G*-complete if every *G*-Cauchy sequence in

X is G-convergent in X. It is known that $\{x_n\}$ G-converges to $x \in X$ if and only if

$$G(x_n, x_m, x) \to 0$$
 as $n, m \to +\infty$.

Proposition 1.3. [6] Let *X* be a *G*-metric space. Then the following are equivalent:

- 1. The sequence $\{x_n\}$ is G-convergent to x.
- 2. $G(x_n, x_n, x) \to 0$ as $n \to +\infty$.
- 3. $G(x_n, x, x) \to 0$ as $n \to +\infty$.
- 4. $G(x_n, x_m, x) \to 0$ as $n, m \to +\infty$.

Proposition 1.4. [6] Let *X* be a *G*-metric space. Then the following are equivalent:

- 1. The sequence $\{x_n\}$ is G-Cauchy.
- 2. For every $\mathcal{E} > 0$, there exists $n_0 \in N$, such that for all $n, m \geq n_0$, $G(x_n, x_m, x_l) < \mathcal{E}$; that is $G(x_n, x_m, x) \to 0$ as $n, m \to +\infty$.

Definition 1.5. A *G*-metric on *X* is said to be symmetric if G(x,x,y)=G(x,y,y) for

all
$$x, y \in X$$
.

Proposition 1.6. Every G-metric on X will define a metric d_G on X by

$$d_G(x,y) = G(x,y,y) + G(y,x,x) \text{ for all } x,y \in X.$$

For a symmetric G-metric space, one obtains

$$d_G(x, y) = 2G(x, y, y)$$
 for all $x, y \in X$.

However, if G is not symmetric, then the following inequality holds:

$$\frac{3}{2}G(x, y, y) \le d_G(x, y) \le 3G(x, y, y)$$
 for

all
$$x, y \in X$$
.

Definition 1.7. The two classes of following mappings are defined as

$$\Phi = \{ \varphi / \varphi : [0, +\infty) \to [0, +\infty) \text{ is lower semi continuous, } \varphi(t) > 0 \text{ for all } t > 0, \varphi(0) = 0 \},$$

 $\Psi = \{ \psi / \psi : [0,+\infty) \rightarrow [0,+\infty) \text{ is continuous}$ and nondecreasing with $\psi(t) = 0$ if and only if $t = 0 \}$.

Using the setting of G- metric spaces, some new fixed point theorems for multivalued

monotone mappings in ordered G— metric space X are proved, where the partial ordered

 \leq in X is obtained by a pair of functions (ψ, φ) .

2. MAIN RESULTS

Throughout this paper, we let $\psi: [0,+\infty) \to [0,+\infty)$ be a function with following properties:

1. $\boldsymbol{\mathcal{W}}$ is nondecreasing continuous.

2.
$$\psi^{-1}(\{0\}) = \{0\}.$$

3

$$\psi(a+b) \le \psi(a) + \psi(b)$$
 for all $a,b \in [0,+\infty)$.
Let (X,G) be a G -metric space, define a relation \le by using functional $\phi: X \to R$ and ψ

as follows:

$$x \le y \text{ iff } \psi(G(x, y, y)) \le \varphi(x) - \varphi(y)$$

for all $x, y \in X$. Then it is an easy matter to prove the following lemma:

Lemma 2.1 \leq is partial order and (X, \leq) is a partial ordered set.

Proof: \leq is reflexive because $\psi(G(x,x,x)) = \varphi(x) - \varphi(x)$ for all $x \in X$.

 \leq is antisymmetric because if $x, y \in X$ with $x \leq y$ and $y \leq x$, then

$$\psi(G(x, y, y)) \le \varphi(x) - \varphi(y)$$

and

$$\psi(G(y,x,x)) \le \varphi(y) - \varphi(x).$$

Thus

$$\psi(G(x, y, y)) + \psi(G(y, x, x)) = 0.$$

Hence
$$\psi(G(x, y, y)) = \psi(G(y, x, x)) = 0.$$

Therefore $G(x, y, y) = 0$ and hence $x = y$.

 \leq is transitive because if $x, y, z \in X$ with $x \leq y$ and $y \leq z$, then

$$\psi(G(x, y, y)) \le \varphi(x) - \varphi(y)$$

and

$$\psi(G(y,z,z)) \le \varphi(y) - \varphi(z)$$
.

Thus

$$\psi(G(x,y,y)) + \psi(G(y,z,z)) \le \varphi(x) - \varphi(z)$$
.
Using (G5) of the definition *G*-metric space and property (3) of the function ψ , we get

$$\psi(G(x,z,z) \le \psi(G(x,y,y) + G(y,z,z))$$

$$\le \psi(G(x,y,y)) + \psi(G(y,z,z))$$

$$\le \varphi(x) - \varphi(z).$$

Thus, we have $x \le z$.

From now on, we let (X, G, \leq) be an ordered G-metric space introduced by (ψ, φ) .

Let (X, G, \leq) be an ordered G-metric space introduced by (ψ, φ) . For $x, y \in X$ we define

the ordered interval in X as:

$$[x, y] = \{z \in X : x \le z \le y\},$$

$$[x,+\infty) = \{z \in X : x \le z\},\$$

$$(-\infty, x] = \{ z \in X : z \le x \}.$$

Let $F: X \to 2^X$ be a multivalued mapping, we say that F is upper semi-continuous if whenever $x_n \in X$ and $y_n \in F(x_n)$ with $x_n \to x_0 \in X$ and $y_n \to y_0 \in X$, then $y_0 \in F(x_0)$.

Our first result is:

Theorem 2.1 Let (X,G,\leq) be an ordered complete G-metric space introduced by (ψ,φ) ,

where $\varphi: X \to R$ be a function bounded below. Let $F: X \to 2^X$ be a multivalued mapping

$$M = \{x \in X : F(x) \cap [x, +\infty) \neq \emptyset.$$

Suppose that:

i. F is upper semi-continuous;

ii. for each $x \in M$, $F(x) \cap M \cap [x,+\infty) \neq \emptyset$;

iii.
$$M \neq \phi$$
.

Then there exists a sequence (x_n) with

$$x_{n-1} \le x_n \in F(x_{n-1}), \quad \forall \ n \in \mathbb{N},$$

and F has a fixed point x^* such that $x_n \to x^*$. Moreover if φ is lower semi-continuous, then $x_n \le x^*$ for all n.

Proof: Since $M \neq \emptyset$, we choose $x_0 \in M \subseteq X$.. By (ii), we have

$$F(x_0) \cap M \cap [x_0, +\infty) \neq \phi$$
.

Thus we choose

$$x_1 \in F(x_0) \cap M \cap [x_0, +\infty).$$

Therefore $x_0 \le x_1$. Again by (ii), we have

$$F(x_1) \cap M \cap [x_1, +\infty) \neq \phi$$
.

Thus, we choose

$$x_2 \in F(x_1) \cap M \cap [x_1, +\infty).$$

Hence $x_1 \le x_2$. Continuing in the same process, we construct a sequence (x_n) in X such that

$$x_{n-1} \le x_n \in F(x_{n-1}), \quad \forall \ n \in \mathbb{N}.$$

Since (X, G, \leq) is an ordered G-metric space introduced by (ψ, φ) , we get that

$$\psi(G(x_{n-1}, x_n, x_n)) \le \varphi(x_{n-1}) - \varphi(x_n).$$

Since ψ is a nonnegative function, we get that

$$\varphi(x_{n-1}) - \varphi(x_n) \ge 0 \quad \forall n \in \mathbb{N}.$$

Thus

$$\varphi(x_{n-1}) \ge \varphi(x_n) \ \forall \ n \in \mathbb{N}.$$

Since φ is a function which is bounded below, we have $(\varphi(x_n))$ is a decreasing sequence which is bounded below. By completeness property of \mathbf{R} , we have

$$\lim_{n \to +\infty} \varphi(x_n) = \inf\{x_n : n \in N\}.$$

For m > n, we have $x_n \le x_m$. Thus, we get

$$\psi(G(x_n, x_m, x_m)) \le \varphi(x_n) - \varphi(x_m).$$

Let $n, m \to +\infty$, then

$$\lim_{n \to +\infty} \psi(G(x_n, x_m, x_m)) \le$$

$$\lim_{n\to+\infty}\varphi(x_n)-\lim_{m\to+\infty}\varphi(x_m).$$

Thus

Proof: Let

$$\lim_{\substack{n \text{ m} \to +\infty}} \psi(G(x_n, x_m, x_m)) = 0.$$

Using the continuity of ψ and the fact that $\psi^{-1}(\{0\})=\{0\}$, we get that

$$\lim_{n \to +\infty} G(x_n, x_m, x_m) = 0.$$

Hence (x_n) is a Cauchy sequence in X. Since X is G-complete, then there is $x^* \in X$ such that (x_n) is G-convergent to x^* . Since $x_{n-1} \in X$, $x_n \in F(x_{n-1})$, $x_{n-1} \to x^*$ and $x_n \to x^*$ by definition of upper semi-continuous of F, we have $x^* \in F(x^*)$. Now, suppose that φ is lower semi-continuous, then for each $n \in N$, we have

$$\psi(G(x_n, x^*, x^*) = \lim_{m \to +\infty} \psi(G(x_n, x_m, x_m))$$

$$\leq \limsup_{m \to +\infty} \varphi(x_n) - \varphi(x_m)$$

$$= \varphi(x_n) - \liminf_{m \to +\infty} \varphi(x_m)$$

$$\leq \varphi(x_n) - \varphi(x^*).$$

Therefore $x_n \le x^*$ for all $n \in \mathbb{N}$.

Corollary 2.1 Let (X, G, \leq) be an ordered complete G-metric space introduced by (ψ, φ) ,

where $\varphi: X \to R$ be a function bounded below. Let $F: X \to 2^X$ be a multivalued mapping

Suppose that:

i. F is upper semi-continuous;

ii. F satisfies the monotonic condition: For each $x, y \in X$ with $x \le y$ and any $u \in F(x)$,

there exists $v \in F(y)$ such that $u \le v$.

iii. There exists
$$x_0 \in X$$
 such that $F(x_0) \cap [x_0, +\infty) \neq \phi$.

Then there exists a sequence (x_n) in X with

$$x_{n-1} \le x_n \in F(x_{n-1}), \quad \forall \ n \in \mathbb{N},$$

and F has a fixed point x^* such that $x_n \to x^*$. Moreover if φ is lower semi-continuous,

then
$$x_n \le x^*$$
 for all n .

$$M = \{x \in X : F(x) \cap [x, +\infty) \neq \emptyset\}.$$

By (iii) we conclude that $M \neq \phi$. For $x \in M$, take $y \in F(x)$ and $x \leq y$. Since F satisfies

the monotonic condition, there exist $z \in F(y)$ such that $y \le z$. Thus $y \in M$, and

 $F(x) \cap M \cap [x,+\infty) \neq \emptyset$. Thus we get the result from Theorem 2.1.

Corollary 2.2 Let (X, G, \leq) be an ordered complete G-metric space introduced by (ψ, φ) ,

where $\varphi: X \to R$ be a function bounded below. Let $f: X \to X$ be a map.

Suppose that:

i. f is continuous.

ii. f is monotone increasing.

iii. There exists $x_0 \in X$ such that $x_0 \le f(x_0)$.

Then there exists a sequence (x_n) in X with

$$x_{n-1} \le x_n \in f(x_{n-1}), \quad \forall n \in N,$$

and f has a fixed point x^* such that $x_n \to x^*$. Moreover if φ is lower semi-continuous,

then $x_n \le x^*$ for all n.

Proof: Define $F: X \to 2^X$ by $F(x) = \{f(x)\}$ for all $x \in X$. Then F and X satisfy all the

hypotheses of Theorem 2.1. Thus the result follows from Theorem 2.1.

Theorem 2.2 Let (X, G, \leq) be an ordered complete Gmetric space introduced by (ψ, φ) ,

where $\varphi: X \to R$ be a function bounded above. Let $F: X \to 2^X$ be a multivalued mapping

and

$$M = \{x \in X : F(x) \cap (-\infty, x] \neq \emptyset\}.$$

Suppose that:

i. F is upper semi-continuous;

ii. for each $x \in M$, $F(x) \cap M \cap (-\infty, x] \neq \emptyset$;

iii. $M \neq \phi$.

Then there exists a sequence (x_n) with

$$x_{n-1} \ge x_n \in F(x_{n-1}), \quad \forall n \in \mathbb{N},$$

and F has a fixed point x^* such that $x_n \to x^*$. Moreover if φ is lower semi-continuous,

then $x_n \ge x^*$ for all n.

Proof: Since $M \neq \phi$, we choose

$$x_1 \in F(x_0) \cap M \cap (-\infty, x_0].$$

Therefore $x_0 \ge x_1$. Again by (ii), we choose

$$x_2 \in F(x_1) \cap M \cap (-\infty, x_1].$$

Hence $x_1 \ge x_2$. Continuing in the same process, we construct a sequence (x_n) in X such

that

$$x_{n-1} \ge x_n \in F(x_{n-1}), \quad \forall n \in \mathbb{N}.$$

Since (X,G,\leq) is an ordered G-metric space introduced by (ψ,φ) , we get that

$$\psi(G(x_n, x_{n-1}, x_{n-1})) \le \varphi(x_n) - \varphi(x_{n-1}).$$

Since ψ is a nonnegative function, we get that

$$\varphi(x_n) - \varphi(x_{n-1}) \ge 0 \quad \forall \ n \in \mathbb{N}.$$

Thus

$$\varphi(x_n) \ge \varphi(x_{n-1}) \ \forall \ n \in \mathbb{N}.$$

Since φ be a function which is bounded above, we have $(\varphi(x_n))$ is an increasing sequence

which is bounded above. By completeness property of \mathbf{R} , we have

$$\lim_{n\to+\infty}\varphi(x_n)=\sup\{x_n:n\in N\}.$$

For m > n, we have $x_n \ge x_m$. Thus, we get

$$\psi(G(x_m, x_n, x_n)) \le \varphi(x_m) - \varphi(x_n).$$

Let $n, m \to +\infty$, then

$$\lim_{\substack{n,m\to+\infty\\\text{Thus}}} \psi(G(x_m,x_n,x_n)) \le \lim_{\substack{m\to+\infty\\\text{m}\to+\infty}} \varphi(x_m) - \lim_{\substack{n\to+\infty\\\text{m}\to+\infty}} \varphi(x_n).$$

$$\lim_{n,m\to+\infty}\psi(G(x_m,x_n,x_n))=0$$

Using the continuity of ψ and the fact that $\psi^{-1}(\{0\}) = \{0\}$, we get that

$$\lim_{\substack{n,m\to+\infty\\}} G(x_m,x_n,x_n)=0.$$

Hence (x_n) is a Cauchy sequence in X. Since X is G-complete, then there is $x^* \in X$ such

that (x_n) is G-convergent to x^* . Since $x_{n-1} \in X$, $x_n \in F(x_{n-1})$, $x_{n-1} \to x^*$ and $x_n \to x^*$

by definition of upper semi-continuous of F, we have $x^* \in F(x^*)$. Now, suppose that φ is

lower semi-continuous, then for each $n \in \mathbb{N}$, we have

$$\psi(G(x^*, x_n, x_n) = \lim_{m \to +\infty} \psi(G(x_m, x_n, x_n))$$

$$\leq \limsup_{m \to +\infty} \varphi(x_m) - \varphi(x_n)$$

$$\leq \varphi(x^*) - \varphi(x_n).$$

Therefore $x_n \ge x^*$ for all $n \in \mathbb{N}$.

Corollary 2.3 Let (X, G, \leq) be an ordered complete G-metric space introduced by (ψ, φ) ,

where $\varphi: X \to R$ be a function bounded above. Let $F: X \to 2^X$ be a multivalued mapping

Suppose that:

i. *F* is upper semi-continuous;

ii. F satisfies the monotonic condition: For each $x, y \in X$ with $x \ge y$ and any $u \in F(x)$,

there exists $v \in F(y)$ such that $u \ge v$.

iii. There exists $x_0 \in X$ such that $F(x_0) \cap (-\infty, x_0] \neq \phi$.

Then there exists a sequence (x_n) in X with

$$x_{n-1} \ge x_n \in F(x_{n-1}), \quad \forall \ n \in \mathbb{N},$$

and F has a fixed point x^* such that $x_n \to x^*$. Moreover if φ is lower semi-continuous,

then $x_n \ge x^*$ for all n.

Proof: Let

$$M = \{x \in X : F(x) \cap (-\infty, x] \neq \emptyset\}.$$

By (iii) we conclude that $M \neq \phi$. For $x \in M$, take $y \in F(x)$ and $x \geq y$. Since F satisfies

the monotonic condition, there exist $z \in F(y)$ such that $y \ge z$. Thus $y \in M$, and

 $F(x) \cap M \cap (-\infty, x] \neq \phi$. Thus we get the result from Theorem 2.2.

Corollary 2.4 Let (X, G, \leq) be an ordered complete G-metric space introduced by (ψ, φ) ,

where $\varphi: X \to R$ be a function bounded above. Let $f: X \to X$ be a map.

Suppose that:

i. f is continuous.

ii. f is monotone increasing.

iii. There exists $x_0 \in X$ such that $x_0 \ge f(x_0)$.

Then there exists a sequence (x_n) in X with

$$x_{n-1} \ge x_n \in f(x_{n-1}), \quad \forall n \in N,$$

and f has a fixed point x^* such that $x_n \to x^*$. Moreover if φ is lower semi-continuous,

then $x_n \ge x^*$ for all n.

Proof: Define $F: X \to 2^X$ by $F(x) = \{f(x)\}$ for all $x \in X$. Then F and X satisfy all the

hypotheses of Theorem 2.2. Thus the result follows from Theorem 2.2.

ACKNOWLEDGMENT

The authors thank the editor and the referee for their valuable comments and suggestions.

REFERENCES

- [1] Dhage, B.C., "Generalized metric space and mapping with fixed point", *Bull. Cal. Math. Soc.*, 84: 329–336 (1992).
- [2] Dhage, B.C., "Generalized metric spaces and topological structure I", An. Stiint. Univ. Al.I. Cuza Iasi. Mat(N.S), 46:3–24 (2000).
- [3] Dhage, B.C., "On generalized metric spaces and topological structure II", *Pure Appl. Math. Sci.*, 40 (1-2): 37–41 (1994).

- [4] Dhage, B.C., "On continuity of mappings in D-metric spaces", *Bull. Calcutta Math. Soc.*, 86 (6): 503–508 (1994).
- [6] Mustafa, Z., Sims, B., "A new approach to generalized metric spaces", *J. of Nonlinear and Convex Analysis*, 7(2): 289-297 (2006).
- [7] Mustafa, Z., Obiedat, H., Awawdeh, F., "Some fixed point theorem for mapping on complete G—metric spaces", *Fixed Point Theory Appl.*, vol. 2008, Article ID 189870, 12 pages.
- [8] Mustafa, Z., Sims, B., "Fixed point theorems for contractive mapping in complete G— metric spaces", Fixed Point Theory Appl., vol. 2009, Article ID 917175, 10 pages.
- [9] Mustafa, Z., Shatanawi, W., Bataineh, M., "Existance of Fixed point Results in G— metric spaces", *Inter. J. Mathematics and Math. Sciences.*, vol. 2009, Article ID 283028, 10 pages.
- [10] Mustafa, Z., Khandaqji, M., Shatanawi, W., "Fixed Point Results on Complete G-metric spaces", Studia Scientiarum Mathematicarum Hungarica, 48 (2011), 304–319, DOI: 10.1556/SSc-Math.48.2011.3.1170.
- [11] Abbas, M., Rhoades, B. E., "Common fixed point results for non-commuting mappings without continuity in generalized metric spaces", *Appl. Math. and Computation*, 215: 262–269 (2009).
- [12] Abbas, M., Nazir, T., Radenovic, S., "Some periodic point results in generalized metric spaces", *Appl. Math. Comput.*, 217: 4094-4099 (2010).
- [13] Abbas, M., Khan, A.R., Nazir, T., "Coupled common fixed point results in two generalized metric spaces", *Appl. Math. Comput.*, doi:10.1016/j.amc.2011.01.006 (2011).
- [14] Aydi, H., Damjanovic, B., Samet, B., Shatanawi, W., "Coupled fixed point theorems for nonlinear contractions in partially ordered *G*-metric spaces", *Mathematical and Computer Modelling*, 54: 2443-2450 (2011).
- [15] Aydi, H., Shatanawi, W., Vetro, C., "On generalized weakly *G*-contraction mapping in *G*-metric spaces", *Comput. Math. Appl.*, doi:10.1016/j.camwa.2011.10.007(2011)

- [5] Mustafa, Z., Sims, B., "Some remarks concerning D—metric spaces", Proc. Int. Conf. on Fixed Point Theory Appl., Valencia (Spain), July 189-198(2003).
- [16] Aydi, H., Postolache, M., Shatanawi, W., "Coupled fixed point results for (ψ, φ) weakly contractive mappings in ordered G-metric spaces", *Computers and Mathematics with Applications*, 63: 298-309 (2012).
- [17] Cho, Y.J., Rhoades, B.E., Saadati, R., Samet, B., Shatanawi, W., "Nonlinear coupled fixed point theorems in ordered generalized metric spaces with integral type", *Fixed Point Theory and Applications*, 2012, 2012:8, doi:10.1186/1687-1812-2012-8
- [18] Chugh, R., Kadian, T., Rani, A., Rhoades, B. E., "Property P in G-metric Spaces", Fixed Point Theory and Appl., 2010, ID 401684, 12 pages.
- [19] Gholizadeh, L., Saadati, R., Shatanawi, W., Vaezpour, S.M., "Contractive mapping in generalized, ordered metric spaces with application in integral equations", *Mathematical Problems in Engineering*, Volume 2011, Article ID 380784, 14 pages doi:10.1155/2011/380784
- [20] Kaewcharoen, A., "Common fixed point theorems for contractive mappings satisfying _φ -maps in Gmetric spaces", Banach Journal of Mathematical Analysis, to appear.
- [21] Saadati, R., Vaezpour, S. M., Vetro, P., Rhoades, B. E., "Fixed point theorems in generalized partially ordered *G* metric spaces", *Mathematical and Computer Modelling*, 52(5-6):797-801(2010).
- [22] Shatanawi, W., Abbas, M., Nazir, T., "Common Coupled Coincidence and Coupled Fixed Point Results in two Generalized Metric Spaces", Fixed point Theory and Applications, 2011:80 (2011).
- [23] Shatanawi, W., "Coupled fixed point theorems in generalized metric spaces", *Hacettepe Journal of Mathematics and Statistics*, 40 (3): 441-447(2011).
- [24] Shatanawi, W., "Some fixed point theorems in ordered *G*-metric spaces and applications", *Abstract and Applied Analysis*, Volume 2011, Article ID 126205, 11 pages doi:10.1155/2011/126205
- [25] Shatanawi, W., "Fixed point theory for contractive mappings satisfying φ-maps in G-metric

- spaces", *Fixed Point Theory Appl.*, vol. 2010, Article ID 181650, 9 pages.
- [26] Caristi, J., "Fixed point theorems for mappings satisfying inwardness condition", *Trans. Amer. Math. Soc.*, 215: 241-251 (1976).
- [27] Feng, Y.Q., Liu, S.Y., "Fixed point theorems for multi-valued contractive mappings and multi-valued Caristi type mappings", *J. Math. Anal. Appl.*, 317: 103-112 (2006).
- [28] Khamsi, M.A., "Remarks on Caristifs fixed point theorem", *Nonlinear Anal.*, 71. 227-231 (2009).
- [29] Li, Z., "Remarks on Caristifs fixed point theorem and Kirkfs problem", *Nonlinear Anal.TMA*, 73: 3751-3755 (2010).
- [30] Kirk, W.A., "Caristifs fixed-point theorem and metric convexity", *Collog. Math.*, 36: 81-86(1976).
- [31] Suzuki, T., "Generalized Caristifs fixed point theorems by Bae and others", *J. Math. Anal. Appl.*, 302: 502-508 (2005).
- [32] Amini-Harandi, A., "Some generalizations of Caristifs fixed point theorem with application to the fixed point theory of weakly contractive set-valued maps and the minimization problem", *Nonlinear Anal. TMA*, 72: 4661-4665 (2010).