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ABSTRACT 

In this paper, a progressive type I group-censoring life test for Burr XII distribution is considered. We use the 
maximum likelihood method to obtain the point estimators of the Burr XII parameters. The approximate 
confidence intervals for the parameters of Burr XII distribution are also obtained. We use modified algorithm 
proposed by Kus et al. [20] to decide the number of test units, number of inspections, and length of inspection 
interval under a restricted budget of experiment such that the determinant of the asymptotic 
variances-covariance of estimators of parameters is minimum. A numerical example is presented to illustrate the 
proposed approach. The sensitivity analysis is also investigated. 
 
Key words: D-Optimality, Grouped data, Interval censoring, Nonlinear mixed integer programming, Maximum 
likelihood method, Progressive censoring. 

  

 
1. INTRODUCTION 

 

In reliability analysis, censored sampling arises in a life 
test whenever the experimenter does not observe the 
lifetimes of all test units. The most common censoring 
schemes are type I censoring and type II censoring. They 
are used to reduce the test time and cost reduction. 
Censoring schemes usually give the exact failure times of 
some test units. However, in some situations, it is often 
impossible to observe the testing process continuously, 
even with censoring. The test units might be able to be 
inspected intermittently. That is, we can only record 
whether a test unit fails in an interval instead of measuring 
failure time exactly. Data of this type are called grouped 

data. In the literature, group-censored data have been 
studied by many researchers such as Cheng and Chen 
[16], Chen and Mi [15], Aggarwala [1], Qian and Correa 
[24], Xiang and Tse [28], Yang and Tse [29], Wu et al. 
[27] and Lu and Tsai [21] . 
 
One of the most popular group censoring scheme is the 
progressive type I group-censoring. To conduct a 
progressive type I group-censored life test more efficiently, 
one has to address the problem of determining the number 
of test units, the number of inspections, and the length of 
the inspection intervals. In practice, the budget of a life 
experiment is limited. The size of the budget always 
affects the decisions of the number of test units, the 
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number of inspections, and the length of inspection 
intervals and, hence, affects the precision of estimation. In 
this study, we will obtain the optimal settings of a 
progressive type I group-censored life test under the 
constraint that the total experimental cost does not exceed 
a pre-determined budget. In the literature, some 
researchers took cost considerations into account when 
reliability plans were designed. Some of them are Lui et 
al. [22], Tse et al. [25], Kuş et al. [19, 20], Akdoğan et al. 
[4], Kuş and Akdoğan [18], Akdoğan and Kuş [3] and 
Akdoğan [2] . 

 
In this study, we assume that the lifetimes have a Burr XII 
distribution, which was constructed by Burr [11]. The 
Burr XII distribution has a non-monotone hazard function 
and with decreasing failure rates at larger times. This is 
similar to the log-normal distribution. Therefore, the Burr 
XII distribution can be considered as an alternative to the 
log-normal. Zimmer et al. [30] pointed out that the Burr 
type XII distribution has two advantages. They are: (1) the 
Burr cumulative distribution function and reliability 
function can be written in closed form; thus, it simplifies 
the computation of the percentiles and the likelihood 
function for censored data; (2) the Burr type XII 
distribution has algebraic tails which are effective for 
modeling failures that occur with lesser frequency than 
with corresponding models based on exponential tails. 
Hence, the Burr type XII distribution gives the reliability 
analyst another model for representing failure time data. 
 
The main purpose of this study focuses on the designing 
problem of a progressive type I group-censored life test. 
We integrate the decision variables and the cost of the 
experiment to construct a mathematical model, and use 
the method of nonlinear mixed integer programming to 
obtain the optimal plans. The rest of the paper is 
organized as follows. In Section 2, we use the maximum 
likelihood method to obtain the point and interval 
estimators of the model parameters. In Section 3, an 
algorithm for obtaining the optimal plans is provided. In 
Section 4, a numerical example is discussed. In Section 5, 
results of the sensitivity analysis are presented. Finally, 
we conclude the paper in Section 6. 
 
2. MODEL DESCRIPTION AND PARAMETER 

ESTIMATION 

 

Let the lifetime of a particular unit have a Burr XII 
distribution with probability density function 

( ) ( ) ( )11 1 , 0,f x x x x
λβ βλβ

− +−= + > where 

λ  and β  are both shape parameters. The 

corresponding cumulative distribution function and hazard 
function are given respectively by 
 

( ) ( )1 1 , 0F x x x
λβ −

= − + >      (1) 

( ) ( ) 11 1 , 0h x x x xβ βλβ
−−= + > . 

 
Burr XII distribution can be used for modelling to 
describe biological, clinical or other experimental data, 
see for instance Burr [11] and Burr and Cislak [12]. It has 
also been applied in areas of quality control, reliability 
studies, duration and failure time modeling, see for 
example Papadopoulos [23] and more recently 
AL-Hussaini and Jaheen [5,6], Gupta et al. [17], and Ali 
Mousa and Jaheen [7-10]. 
 
Let us consider the following k-stage progressive type I 
group-censoring: n  units are simultaneously placed on a 
life test, and run until time 1τ , at which point the number 

of failed units 1n  is counted and 1r  surviving units are 

removed from the test; starting from time 1τ , the 

1 1n n r− −  non-removed surviving units are run until 

time 2τ , at which point the number of failures 2n  is 

counted and 2r  surviving units are removed from the 

test, and so on. At time kτ , the number of failed units 

kn  is counted and the remaining 

1

1 1

k k

k i j
i j

r n n r
−

= =
= −∑ − ∑  surviving units are all removed, 

thereby terminating the test. This scheme may be depicted 
pictorially in Figure 1. In practice, one may assume that 
the lengths of inspection intervals are all equal; that is, 

τττ =− −1ii , ki  ,,2 ,1 K= . This assumption is 

convenient for practitioners. Thus, we will consider equal 
length of inspection interval throughout this paper. 
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Figure 1. k -stage progressive type I group-censoring scheme 

 

Note that the number of failed units in , and the number 

of removed units ir  are random variables. Generally, the 

values of 1 2, , , kr r rK  can be computed by the 

pre-determined percentages of the remaining live units 

1 2, , , kp p pK  (with 1kp = ). That is, 

( )i i i ir m n p= − , where nm =1  and 

1 1

1 1

i i

i j j
j j

m n n r
− −

= =
= − ∑ − ∑ , ki K,3,2= , are the 

number of non-removed surviving units at the beginning 

of the i -th stage. Under a progressive type I 
group-censoring scheme, we have the fact that 
 

( )1 1 1 1| , , , , , , ,i i i i iN n n r r Binomial m q− − ∼K K  

where iN  is the random variable of observed value in  

and  

( ) ( )( ) ( )( ) ( )( ) ( )( )( )1 1/ 1 1 1 / 1 1i i i iq F F F i i
λ

ββτ τ τ τ τ
−

− −
 = − − = − + + −  

 is the probability that a unit survives at time 1iτ −  and 

will fail before time iτ , for 1,2, ,i k= K , 0 0τ = , 

and the function ( )F ⋅  is defined in Equation (1). 
 

Given observations ),,,( 21 knnn K  and 

),,,( 21 krrr K , the log-likelihood function can be 

written as 

( )( ) ( ) ( ) ( )∑
=

−−+∝
k

i
iiiii qnmqnL

1

1loglog,log λβ  

The maximum likelihood estimators (MLEs) of β  and 

λ  can be obtained by solving 
 

( )( ) ( )
( )1

log ,

1

k
i ii i i

i i i

L m nn q q

q q

β λ

β β β=

∂ −∂ ∂
= −

∂ ∂ − ∂∑  

 
and 
 

( )( ) ( )
( )1

log ,

1

k
i ii i i

i i i

L m nn q q

q q

β λ

λ λ λ=

∂ −∂ ∂
= −

∂ ∂ − ∂∑ . 

 
Because the log-likelihood equations can not be solve 
analytically, one may employ  Newton–Raphson method 
for finding the MLEs numerically.  
 
Under some mild regularity conditions (see e.g., Casella 
and Berger [13, p.516]), the property of asymptotic 
normality of the MLEs can be easily constructed. First, 
the second derivatives of the log-likelihood function are: 
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( )( ) ( )
( )

( )
2 22 2 2

22 2 2 2
1

log ,
1

1

k
i ii i i i i

i i
i i i

L m nn q q q q
q q

q q

β λ

β β β β β=

   ∂ −∂  ∂  ∂  ∂ 
=  −  −  − +       ∂ ∂ ∂ ∂ ∂−      
∑  

  

( )( ) ( )
( )

( )
2 22 2 2

22 2 2 2
1

log ,
1

1

k
i ii i i i i

i i
i i i

L m nn q q q q
q q

q q

β λ

λ λ λ λ λ=

   ∂ −∂ ∂ ∂ ∂   = − − − +         ∂ ∂ ∂ ∂ ∂   −   
∑  

 
and 
 

( )( ) ( )
( )

( )
( )

2 2 2

22
1

log ,

11

k
i i i ii i i i i i i i

i i i ii

L m n m nn q q q n q q q

q q qq

β λ

β λ λ β β λ λ β β λ=

 ∂ − −∂ ∂ ∂ ∂ ∂ ∂ 
= − + − − 

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ −−  
∑ , 

 
where 

 

( ) ( )log 1
1 ii

i

qq
q

λ λ
−∂

= − −
∂

 

 

( )
( )( ) ( )

( )
( )( ) ( )( )

( )( )
log 1 log 1

1
1 1 1

i
i

i i i iq
q

i i

β β

β β

τ τ τ τ
λ

β τ τ

 − −∂  = − −
 ∂ + + −  

 

 

( )2

2

log 1 ii i
qq q

λ λ λ
−∂ ∂ =  ∂ ∂ 

 

 

( )
( )( ) ( ) ( )

( )( )
( )( ) ( )( ) ( )( )

( )( )( )
22

2 22

log log 1 log 1 log 1 1
1

11 1 1

i i
i

i

i i i i i iq q
q

qi i

β β

ββ

τ τ τ τ τ τ
λ

β βτ τ

 
− − − ∂  ∂ 

= − − −   ∂ ∂ − + + − 
 

 
and 
 

1 1

1
i i i i

i

q q q q

qβ λ β λ β λ
∂ ∂ ∂ ∂

= −
∂ ∂ ∂ ∂ ∂ −

. 

 
Thus, the Fisher information matrix is then obtained by taking the negative of the expectations of the second derivatives. That 
is, 
 

( )
( ) ( )

( )
( ) ( )( )

( )

( ) ( )( )
( )

( ) ( )
( )

2

1 1

2

1 1

/ / /

1 1
,

/ / /

1 1

k k
i i i

i i
i i

i i i i

k k
i i i

i i
i i

i i i i

q q q
E M E M

q q q q

q q q
E M E M

q q q q

β β λ

β λ
β λ λ

= =

= =

 ∂ ∂ ∂ ∂ ∂ ∂
∑ ∑ 

− − 
=  

∂ ∂ ∂ ∂ ∂ ∂ ∑ ∑ − − 

I , 
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where iM  is the random variable of observed value im  with 

( ) ( )( )
1

1
1 1 , 1,2, , .

i

i j j
j

E M n q p i k
−

=
= ∏ − − = K  For a large sample size n , the MLEs ( )ˆ ˆ,β λ ′

 have an 

approximate bivariate normal distribution with mean vector ( ),β λ ′  and variance-covariance matrix ( )1 ,β λ−I . Thus, 

the approximate confidence intervals or confidence region for β  and λ  can be easily established. 
 
 
 
3. OPTIMAL PLANS 

 

To obtain a precise estimation of life parameters, 
frequently asked questions include `How many units does 
the experimenter need to test?', `How long does the 
experimenter need to run the life test?' or `How many 
times does the experimenter need to inspect the units in 
the life test?' Simply put, more test units, more test time, 
and more number of inspections will generate more 
information, which improves the precision of estimates. 
However, in practice, the budget of an experiment is 
limited. Therefore, the problem of obtaining a precise 
estimation of life parameters under a restricted cost of 
experiment is an important issue for the reliability analyst. 
 
There are a lot of decision variables that affect the cost of 
experiment. The most important three decision variables 
are: (1) the number of test units, (2) the number of 
inspections, and (3) the length of inspection interval. Let 

n  denote the number of units on test, k  the number of 
inspections, and τ  the length of the inspection interval. 
The cost of experiment consists of the following four 
parts. 
 

(1) Installation cost: This is the cost of installing all 
test units at the beginning of the life experiment, 

say aC . It does not depend on the number of test 

units. 

(2) Sample cost: This is the cost of test units. Let sC  

be the cost of a test unit. Then, the total sample 

cost is snC . 

(3) Inspection cost: This cost includes the cost of 
using inspection equipment and material. It 

depends on the number of inspections. Let iC  

denote the cost of one inspection. Then, the total 

inspection cost is ikC . 

(4) Operation cost: This includes salaries of operators, 
utilities, and depreciation of test equipment, etc. It 

is proportional to the testing time. Let oC  be the 

operation cost in the time interval between two 
inspections. Then, the total operation cost is 

ok Cτ . 

 
Therefore, the total cost of experiment is: 
 

.T a s i oC C nC kC k Cτ= + + +  

 
Note that the asymptotic variance-covariance matrix 

( )1 ,β λ−
I  of the MLEs β̂  and λ̂  is a function of 

n , k  and τ . For a specific plan ( ), ,n k τ , we can 

compute the asymptotic variance-covariance matrix of the 
MLEs. We want to determine the optimal plan 

( ), ,n k τ  under cost considerations. Since the 

parameter ( ),β λ  is two-dimensional, some possible 

optimality criteria include A-optimality, D-optimality, and 
E-optimality. The A-optimality, D-optimality, and 
E-optimality are to minimize the trace, the determinant, 
and the largest eigenvalue of the asymptotic 
variance-covariance matrix, respectively. Since 
D-optimality provides an overall measure of variability of 
the estimates, but the A-optimality and E-optimality do 
not implement all available information on the parameters, 
we only investigate D-optimality in this paper. 

 

Let ( ), ,G n k τ  be the determinant of the asymptotic 

variance-covariance matrix of the MLEs. Then, the 
optimal design problem can be formulated as follows: 
 

( )min , ,

, , 1 0,
a s i o r

G n k

C nC kC k C C
subject to

k n k and

τ
τ

τ
+ + + ≤

∈ ≥ >�

 

 

where �  is the set of positive integers and rC  is the 

budget of the experiment. Since the decision variables n  
and k  are integer, the decision variable τ  is real, and 
the objective function and constraint are both nonlinear 

functions of n , k , and τ , the nonlinear mixed integer 
programming can be used to find the optimal solution. 
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Kuş et al. [20] modified the algorithm proposed by Wu et 
al. [27] for finding the optimal solution as follows: 
 
Algorithm  

 
Step 1. Set the values of cost parameters 

, , ,a s i oC C C C  and rC  and give the values 

parameters ( ),β λ . 

Step 2. Calculate the upper bound of the number of test 
units. Under the constraint of total experimental cost, the 
upper bound is 
 

r a i

s

C C C
n

C

 − −
=  
 

% , 

where [ ]x  is greastest integer that is less than or equal 

to x . Set 2n = . 
Step 3. Compute the upper bound of the number of 
inspections for a given n . Using the constraint of total 
experimental cost and a given value of n , compute the 
upper bound 
 

r a s
n

i

C C nC
k

C

 − −
=  
 

% . 

 
Step 4. Compute the upper bound of the length of 

inspection interval. Using the constraint of total 

experimental cost, for all N,k ∈  1 nk k≤ ≤ % , 

compute the upper bound of the length of inspection 

interval r a s i

o

C C nC kC
kn kCτ − − −=% , and obtain 

( )argmin , ,G n k
τ

τ τ′ = = . 

Step 5. Calculate the corresponding value of objective 

function ( ), , knG n k τ%  and ( ), ,G n k τ ′ . 

Step 6. If knτ τ
′

< % , set knτ τ
′

= , else kn knτ τ= % . 

Step 7. Let function 

( ) ( ) 1
, , min

n
n kn k k

n G n kϕ τ
≤ ≤

= = %  

( ), , knG n k τ . 

Step 8. Set 1n n= + . If n n≤ %  go to Step 3 else go 
to Step 9. 
 
Step 9. Compute the optimal value of objective function  

( ) ( ) ( ) ( )2 2min , , min , ,n n n n n knn n G n k G n kϕ ϕ τ τ∗ ∗ ∗ ∗
≤ ≤ ≤ ≤= = =

% %

. 

Step 10. The optimal design ( ), ,n k τ∗ ∗ ∗
 is obtained. 

 
 

 

 

4. NUMERICAL EXAMPLE 

 

We apply the proposed methods to a numerical example. Assume that 60n = , 6k = , 0.2500τ = , 3β = , 2λ = , 

( ) ( )1 2 3 4 5, , , , 0.05,0.05,0.05,0.05,1p p p p p = . We use an algorithm described in Aggarwala [1] to generate the 

progressively type I group-censored sample which are presented in Table 1. 
 

Table 1.Progressively group-censored sample 

i  1 2 3 4 5 6 

in  1 8 11 20 8 5 

ir  2 2 1 0 0 2 

ip  0.05 0.05 0.05 0.05 0.05 1 

              
 
 

The MLEs of λ  and β  are obtained as 

ˆ 1.7765λ =  and ˆ 3.6538β = , respectively. We 

use these estimates in the design of our new experiment. 

Assume that the percentages of removals are 

( )1 2 1 0.05kp p p −= = = =L  and 1kp = . 

Suppose further that the values of cost parameters are as 
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follows: 3, 75, 5.25, 6a s i oC C C C= = = =  and 

5000rC = . Thus, the optimal design problem is: 

 

( )min , ,

3 75 5.25 6 5000

G n k

subject to n k k

τ
τ+ + + ≤

 

 
According to the D-optimality criterion, one can obtain 
the optimal number of test units, number of inspections, 
and length of inspection interval are, respectively, 
 

65,n∗ =  17k∗ =  and 0.2569.τ ∗ =  

 
 
5. SENSITIVITY ANALYSIS 

 

The sensitivity study of the optimal solution to change in 
the values of the different parameters is an important issue 
to the planning of life test. These parameters consist of 
two parts: (1) the parameter of lifetime distribution, i.e., 

β  and λ ; and (2) the parameters of experimental cost, 
i.e., , , ,a s i oC C C C  and rC . We now investigate the 

influence of the parameter of lifetime distribution and the 
parameters of experimental cost on the optimal solution, 
respectively. 

 

In practice, the values of distribution parameters β  and 

λ  are usually unknown. We have to use prior 

information or data from a pilot study to get their 
estimates. Thus, one needs to investigate the effect of 
changing values of estimated parameters on the optimal 

solution. From Section 4, the MLEs of β  and λ  are 

obtained as ˆ 1.7765λ =  and ˆ 3.6538β = , 

respectively. The 95% approximate confidence interval 

for β  is ( )2.8201, 4.4875 , and the 95% 

approximate confidence interval for and λ  is 

( )1.2742, 2.2789 . We choose different values of β  

and λ  in their 95% approximate confidence intervals 
for sensitivity analysis. Let 

( ), , , ,a s i o rC C C C C = ( )3,75,5.25,6,5000  

which are the values of cost parameters used in Section 4. 
We further assume that the pre-specified percentages of 
removals in each stage are all equal. That is, 

1 2 1kp p p p−= = = =L  and 1kp = . The 

optimal solutions of n , k  and τ  for various values 
of β  and λ  are presented in Table 2. It shows that 
n  is not sensitive to the changes in these values of 
parameters. The length of the inspection interval τ  and 
the termination time of experiment kτ  are decreasing 
functions of β  and λ . The values of D-optimality is 
also increasing functions of β  and λ . 

 

 

Table 2. Optimal values of n , k  and τ  for fixed 3, 75, 5.25, 6a s i oC C C C= = = =  and 5000rC =  and 

with 0.05p =  

 
 
 

 
 

λ  β  n  k  τ  kτ  D-optimality 

1.2742 2.8201 65 17 0.3098 5.2666 0.0032 

 3.6538 65 17 0.2905 4.9385 0.0056 

 4.4875 65 17 0.2647 4.4999 0.0087 

       

1.7765 2.8201 65 17 0.271 4.6070 0.0054 

 3.6538 65 17 0.2569 4.3673 0.0093 

 4.4875 66 7 0.244 1.7080 0.0146 

       

2.2789 2.8201 65 18 0.2442 4.3956 0.0081 

 3.6538 66 7 0.244 1.7080 0.0140 

 4.4875 66 7 0.2358 1.6506 0.0222 
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Changes in cost parameters of the experiment can affect 
the determination of the optimal design. Let us consider 
the value of distribution parameters 6778.3=λ  and 

6048.1=β . Using these values of the distribution 

parameters, the sensitivity of each of the decision 

variables  n  ,  k   and  τ   to changes in the cost 
parameters of the experiment is examined. Tables 3 shows 

that a higher value of rC  causes a higher value of n ; 
the number of test units is insensitive to changes in 

,i aC C  and oC ; and a larger value of sC  results in a 

smaller value of n . In addition, the length of the 

inspection interval τ  and the number of inspections k  
are sensitive to all cost parameters. 

 
 

Table 3. D-Optimal values of n , k  and τ  for different costs values under 3.6778λ =  and 1.6048β =  with 

0.05p = .  

rC  sC  iC  oC  aC  n  k  τ  Variance 

1000 75 5.25 6 3 12 14 0.2572 0.2741 

2000     26 6 0.3070 0.0605 

3000     39 10 0.2614 0.026 

4000     52 14 0.2572 0.0146 

5000     65 17 0.2569 0.0093 

6000     79 10 0.2614 0.0063 

7000     92 14 0.2572 0.0047 
 

5000 45 5.25 6 3 109 13 0.2576 0.0033 

 55    89 15 0.2570 0.005 

 65    76 8 0.2731 0.0069 

 75    65 17 0.2569 0.0093 

 85    58 9 0.2655 0.0118 

 95    52 8 0.2731 0.0147 

         

5000 75 4.50 6 3 66 7 0.2863 0.0092 

  4.75   66 7 0.2863 0.0092 

  5.00   66 7 0.2857 0.0092 

  5.25   65 17 0.2569 0.0093 

  5.50   65 17 0.2569 0.0093 

  5.75   65 16 0.2569 0.0093 

  6.00   65 16 0.2569 0.0093 

         

5000 75 5.25 5 3 66 7 0.2569 0.0092 

   6  65 17 0.2569 0.0093 

   7  65 17 0.2569 0.0093 

   8  65 16 0.2569 0.0093 

   9  65 16 0.2569 0.0093 

   10  65 15 0.2570 0.0093 

   11  65 15 0.2570 0.0093 

         

5000 75 5.25 6 1 66 7 0.2863 0.0092 

    2 66 7 0.2679 0.0092 
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    3 65 17 0.2569 0.0093 

    4 65 17 0.2569 0.0093 

    5 65 17 0.2569 0.0093 

    6 65 17 0.2569 0.0093 

    7 65 17 0.2569 0.0093 
 
 
6. CONCLUSION 

 
The decision problem of obtaining appropriate number of 
test units, number of inspections, and length of inspection 
interval under limited budget of life experiment is an 
important issue for practitioners. Wu et al. [27] use an 
algorithm based on nonlinear mixed integer programming 
to set tup the optimal design for progressive type I group 
censoring. Kuş et al. [20] modified their algorithm and 
this algorithm is used in this paper. By using this 
algorithm, we can obtain the optimal values of decision 
variables based on D-Optimality. Finally, the proposed 
approach can lead to better designs for conducting 
progressive type I group censoring life tests. It provides an 
efficient use of one's resources and to achieve the 
precision that one can expect to have with such a design. 
This approach is intuitive and can be useful to engineers. 
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