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Abstract
Over the years, different types of hyperideals have been introduced in order to let us fully
realize the structures of hyperrings in general. The aim of this research work is to define
and characterize a new class of hyperideals in a Krasner (m, n)-hyperring that we call
n-ary J-hyperideals. A proper hyperideal Q of a Krasner (m, n)-hyperring with the scalar
identity 1R is said to be an n-ary J-hyperideal if whenever xn

1 ∈ R such that g(xn
1 ) ∈ Q

and xi /∈ J(m,n)(R), then g(xi−1
1 , 1R, xn

i+1) ∈ Q. Also, we study the concept of n-ary δ-J-
hyperideals as an expansion of n-ary J-hyperideals. Finally, we extend the notion of n-ary
δ-J-hyperideals to (k, n)-absorbing δ-J-hyperideals. Let δ be a hyperideal expansion of
a Krasner (m, n)-hyperring R and k be a positive integer. A proper hyperideal Q of R

is called (k, n)-absorbing δ-J-hyperideal if for xkn−k+1
1 ∈ R, g(xkn−k+1

1 ) ∈ Q implies that
g(x(k−1)n−k+2

1 ) ∈ J(m,n)(R) or a g-product of (k −1)n−k +2 of x,
i s except g(x(k−1)n−k+2

1 )
is in δ(Q).
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1. Introduction
Hyperstructures represent a natural extension of classical algebraic structures and they

were introduced by Marty. In 1934, he [21] defined the concept of a hypergroup as a gen-
eralization of groups during the 8th Congress of the Scandinavian Mathematicians. Many
papers and books have been written concerning hyperstructure theory. Some review of
the theory of hyperstructures can be found in [7–9, 25, 28, 29]). The simplest algebraic
hyperstructures which possess the properties of closure and associativity are said to be
semihypergroups. n-ary semigroups and n-ary groups are algebras with one n-ary opera-
tion which is associative and invertible in a generalized sense. The notion of n-ary algebras
goes back to Kasners lecture [15] at a scientific meeting in 1904. In 1928, Dorente wrote
the first paper concerning the theory of n-ary groups [12]. Later on, Crombez and Timm
[5, 6] defined the notion of the (m, n)-rings and their quotient structures. Mirvakili and
Davvaz [20] defined (m, n)-hyperrings and obtained several results in this respect. In [10],
they introduced a generalization of the notion of a hypergroup in the sense of Marty and a
generalization of an n-ary group, which is called n-ary hypergroup. The n-ary structures
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have been studied in [2, 17–20, 26]. Mirvakili and Davvaz [23] defined (m, n)-hyperrings
and obtained several results in this respect.

One important class of hyperrings was introduced by Krasner, where the addition is a
hyperoperation, while the multiplication is an ordinary binary operation, which is called
Krasner hyperring. In [22], a generalization of the Krasner hyperrings, which is a sub-
class of (m, n)-hyperrings, was defined by Mirvakili and Davvaz. It is called Krasner
(m, n)-hyperring. Ameri and Norouzi in [1] introduced some important hyperideals such
as Jacobson radical, n-ary prime and primary hyperideals, nilradical, and n-ary multi-
plicative subsets of Krasner (m, n)-hyperrings. Afterward, the notions of (k, n)-absorbing
hyperideals and (k, n)-absorbing primary hyperideals were studied by Hila et. al. [14].

Norouzi et. al. proposed and analysed a new defnition for normal hyperideals in Krasner
(m, n)-hyperrings, with respect to that one given in [22] and they showed that these
hyperideals correspond to strongly regular relations [24]. In [26], Ostadhadi-Dehkordi and
Davvaz dened the fundamental relation η∗ on R as the smallest equivalence relation on R
such that the quotient [R : η∗] is an (m, n)-ring. Asadi and Ameri introduced and studied
direct limit of a direct system in the category of Krasner (m, n)-hyperrigs [4].

Dongsheng defined the notion of δ-primary ideals in a commutative ring where δ is a
function that assigns to each ideal I an ideal δ(I) of the same ring [11]. Moreover, in [13]
he and his colleague investigated 2-absorbing δ-primary ideals which unify 2-absorbing
ideals and 2-absorbing primary ideals. Ozel Ay et al. generalized the notion of δ-primary
on Krasner hyperrings [27]. The concept of δ-primary hyperideals in Krasner (m, n)-
hyperrings, which unifies the prime and primary hyperideals under one frame, was defined
in [3]. The notion of J-ideals as a generalization of n-ideals in ordinary rings was studied
by Khashan and Bani-ata in [16].

Now in this paper, first we define the notion of n-ary J-hyperideals in a Krasner (m, n)-
hyperring which is a generalization of J-ideals. We give several characterizations of n-ary
J-hyperideals. Afterward, we study the concept of n-ary δ-J-hyperideals as an expansion
of n-ary J-hyperideals. Several properties of them are provided. Moreover, we extend the
notion of n-ary δ-J-hyperideals to (k, n)-absorbing δ-J-hyperideals.

2. Preliminaries
In this section we recall some definitions and results concerning n-ary hyperstructures

which we need to develop our paper.
Let H be a nonempty set. Then the mapping f : Hn −→ P ∗(H), where P ∗(H) is the
set of all the nonempty subsets of H, is called an n-ary hyperoperation and the algebraic
system (H, f) is called an n-ary hypergroupoid. Suppose that H1, ..., Hn are non-empty
subsets of H. We define f(Hn

1 ) = f(H1, ..., Hn) =
∪

{f(xn
1 ) | xi ∈ Hi, i = 1, ..., n}. The

sequence xi, xi+1, ..., xj will be denoted by xj
i and it is the empty symbol when j < i. Using

this notation, f(x1, ..., xi, yi+1, ..., yj , zj+1, ..., zn) will be written as f(xi
1, yj

i+1, zn
j+1). The

expression will be written in the form f(xi
1, y(j−i), zn

j+1) if yi+1 = ... = yj = y . Assume
that for all 1 ≤ i < j ≤ n and every x1, x2, ..., x2n−1 ∈ H,

f(xi−1
1 , f(xn+i−1

i ), x2n−1
n+i ) = f(xj−1

1 , f(xn+j−1
j ), x2n−1

n+j ).
Then the n-ary hyperoperation f is associative. An n-ary hypergroupoid with the asso-
ciative n-ary hyperoperation is said to be an n-ary semihypergroup.

An n-ary hypergroupoid (H, f) in which the equation b ∈ f(ai−1
1 , xi, an

i+1) has a solution
xi ∈ H for every ai−1

1 , an
i+1, b ∈ H and i ∈ {1, 2, . . . , n}, is called an n-ary quasihypergroup,

when (H, f) is an n-ary semihypergroup, (H, f) refers to an n-ary hypergroup.
If for all σ ∈ Sn, the group of all permutations of {1, 2, 3, ..., n}, and for all an

1 ∈ H
we have f(a1, ..., an) = f(aσ(1), ..., aσ(n)), then an n-ary hypergroupoid (H, f) is commu-
tative. If an

1 ∈ H, then the (aσ(1), ..., aσ(n)) is denoted by a
σ(n)
σ(1) . t-ary hyperoperation
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f(l) is given by f(l)(x
l(n−1)+1
1 ) = f(f(..., f(f(xn

1 ), x2n−1
n+1 ), ...), x

l(n−1)+1
(l−1)(n−1)+1) if f is an n-ary

hyperoperation and t = l(n − 1) + 1.

Definition 2.1. [22] Let (H, f) be an n-ary hypergroup and A be a non-empty subset
of H. A is called an n-ary subhypergroup of (H, f), if f(xn

1 ) ⊆ A for xn
1 ∈ A, and the

equation b ∈ f(bi−1
1 , xi, bn

i+1) has a solution xi ∈ A for every bi−1
1 , bn

i+1, b ∈ A and 1 ≤ i ≤ n.
An element e in H is called a scalar neutral element if x = f(e(i−1), x, e(n−i)), for every
1 ≤ i ≤ n and for every x ∈ H.

An element 0 of an n-ary semihypergroup (H, g) is called a zero element if for every
xn

2 ∈ H we have g(0, xn
2 ) = g(x2, 0, xn

3 ) = ... = g(xn
2 , 0) = 0. If 0 and 0′are two zero

elements, then 0 = g(0′, 0(n−1)) = 0′ and so the zero element is unique.

Definition 2.2. [17] An n-ary hypergroup (H, f) is called canonical if
(1) there exists a unique e ∈ H, such that for every x ∈ H, f(x, e(n−1)) = x;
(2) for every x ∈ H there exists a unique x−1 ∈ H, such that e ∈ f(x, x−1, e(n−2));
(3) if x ∈ f(xn

1 ), then for all i, we have xi ∈ f(x, x−1, ..., x−1
i−1, x−1

i+1, ..., x−1
n ).

We say that e is the scalar identity of (H, f) and x−1 is the inverse of x. Notice that
the inverse of e is e.

Definition 2.3. [22] A Krasner (m, n)-hyperring is an algebraic hyperstructure (R, f, g),
or simply R, which satisfies the following conditions:
(1) (R, f) is a canonical m-ary hypergroup;
(2) (R, g) is a n-ary semigroup;
(3) the n-ary operation g is distributive with respect to the m-ary hyperoperation f , i.e.,
for all ai−1

1 , an
i+1, xm

1 ∈ R, and 1 ≤ i ≤ n,
g(ai−1

1 , f(xm
1 ), an

i+1) = f(g(ai−1
1 , x1, an

i+1), ..., g(ai−1
1 , xm, an

i+1));
(4) 0 is a zero element (absorbing element) of the n-ary operation g, i.e., for every xn

2 ∈ R
we have

g(0, xn
2 ) = g(x2, 0, xn

3 ) = ... = g(xn
2 , 0) = 0.

We assume throughout this paper that all Krasner (m, n)-hyperrings are commutative.
Let S is a non-empty subset of R. We say that S is a subhyperring of R if (S, f, g) is a

Krasner (m, n)-hyperring. Let I be a non-empty subset of R. Then I is called a hyperideal
of (R, f, g) if (I, f) is an m-ary subhypergroup of (R, f) and g(xi−1

1 , I, xn
i+1) ⊆ I, for every

xn
1 ∈ R and 1 ≤ i ≤ n.

Definition 2.4. [1] Let a is an element in a Krasner (m, n)-hyperring R. Then the
hyperideal generated by a is denoted by < a > and defined as follows:

< a >= g(R, a, 1(n−2)) = {g(r, a, 1(n−2)) | r ∈ R}

Definition 2.5. [1] A hyperideal M of a Krasner (m, n)-hyperring R is said to be maximal
if for every hyperideal N of R, M ⊆ N ⊆ R implies that N = M or N = R.

The intersection of all maximal hyperideals of R is called the Jacobson radical of a
Krasner (m, n)-hyperring R and it is denoted by J(m,n)(R). If R does not have any
maximal hyperideal, we define J(m,n)(R) = R.

Definition 2.6. [1] An element x ∈ R is said to be invertible if there exists y ∈ R with
1R = g(x, y, 1(n−2)

R ). Moreover, the subset U of R is invertible if and only if every element
of U is invertible.

Definition 2.7. [1] A hyperideal P ̸= R of a Krasner (m, n)-hyperring R refers to a
prime hyperideal if for hyperideals P1, ..., Pn of R, g(P n

1 ) ⊆ P implies that Pi ⊆ P for
some 1 ≤ i ≤ n.



174 M. Anbarloei

Lemma 2.8. It was shown (Lemma 4.5 in [1]) that the hyperideal P ̸= R of a Krasner
(m, n)-hyperring R is a prime hyperideal if for all an

1 ∈ R, g(an
1 ) ∈ P implies that ai ∈ P

for some 1 ≤ i ≤ n.
Definition 2.9. [1] Let I be a hyperideal in a Krasner (m, n)-hyperring R with scalar
identity. The radical (or nilradical) of I, denoted by

√
I

(m,n) is the hyperideal
∩

P , where
the intersection is taken over all prime hyperideals P which contain I. If the set of all
prime hyperideals containing I is empty, then

√
I

(m,n) is defined to be R.

It was shown that if a ∈
√

I
(m,n) then there exists t ∈ N such that g(a(t), 1(n−t)

R ) ∈ I for
t ≤ n, or g(l)(a(t)) ∈ I for t = l(n − 1) + 1 [1].

Definition 2.10. [1] Let I be a proper hyperideal in a Krasner (m, n)-hyperring R with
the scalar identity 1R. Then I is called primary if g(an

1 ) ∈ I and ai /∈ I implies that
g(ai−1

1 , 1R, xn
i+1) ∈

√
I

(m,n) for some 1 ≤ i ≤ n.
If I is a primary hyperideal in a Krasner (m, n)-hyperring R with the scalar identity

1R, then
√

I
(m,n) is prime. (Theorem 4.28 in [1])

Definition 2.11. [1] Let S be a hyperideal of a Krasner (m, n)-hyperring (R, f, g). Then
the set

R/S = {f(xi−1
1 , S, xm

i+1) | xi−1
1 , xm

i+1 ∈ R}
endowed with m-ary hyperoperation f which for all x1m

11 , ..., xmm
m1 ∈ R

f(f(x1(i−1)
11 , S, x1m

1(i+1)), ..., f(xm(i−1)
m1 , S, xmm

m(i+1)))
= f(f(xm1

11 ), ..., f(xm(i−1)
1(i−1) ), S, f(xm(i+1)

1(i+1) ), ..., f(xmm
1m ))

and with n-ary hyperoperation g which for all x1m
11 , ..., xnm

n1 ∈ R

g(f(x1(i−1)
11 , S, x1m

1(i+1)), ..., f(xn(i−1)
n1 , S, xnm

n(i+1)))
= f(g(xn1

11 ), ..., g(xn(i−1)
1(i−1) ), S, g(xn(i+1)

1(i+1) ), ..., f(xnm
1m ))

construct a Krasner (m, n)-hyperring, and (R/S, f, g) is called the quotient Krasner (m, n)-
hyperring of R by S.
Definition 2.12. [22] Let (R1, f1, g1) and (R2, f2, g2) be two Krasner (m, n)-hyperrings.
A mapping h : R1 −→ R2 is called a homomorphism if for all am

1 ∈ R1 and bn
1 ∈ R1 we

have
h(f1(a1, ..., am)) = f2(h(a1), ..., h(am))
h(g1(b1, ..., bn)) = g2(h(b1), ..., h(bn)).

Definition 2.13. [3] Let R be a Krasner (m, n)-hyperring. A function δ is called a
hyperideal expansion of R if it assigns to each hyperideal I of R a hyperideal δ(I) of R
with the following conditions:

(i) I ⊆ δ(I).
(ii) if I ⊆ K for any hyperideals I, K of R, then δ(I) ⊆ δ(K) .

Example 2.14. Let R be a Krasner (m, n)-hyperring.
1. Define δ0(I) = I, for each hyperideal I of R. Then δ0 is a hyperideal expansion of R.
2. Define δ1(I) =

√
I

(m,n), for each hyperideal I of R. Then δ1 is a hyperideal expansion
of R.

3. Define δR(I) = R, for each hyperideal I of R. Then δR is a hyperideal expansion of
R.

4. Define δq(I/J) = δ(I)/J , for each hyperideal I of R containing hyperideal J and
expansion function δ of R. Then δq is a hyperideal expansion of R/J .
Definition 2.15. [3] Let (R1, f1, g1) and (R2, f2, g2) be two Krasner (m, n)-hyperrings and
h : R1 −→ R2 a hyperring homomorphism. Let δ and γ be hyperideal expansions of R1
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and R2, respectively. Then h is said to be a δγ-homomorphism if δ(h−1(I2)) = h−1(γ(I2))
for the hyperideal I2 of R2.

Note that γ(h(I1) = h(δ(I1) for δγ-epimorphism h and for hyperideal I1 of R1 with
Ker(h) ⊆ I1. For example, let (R1, f1, g1) and (R2, f2, g2) be two Krasner (m, n)-hyperrings.
If δ1 of R1 and γ1 of R2 be the hyperideal expansions defined in Example 3.2, in ([3]),
then each homomorphism h : R1 −→ R2 is a δ1γ1-homomorphism.

3. n-ary J-hyperideals
Our aim in this section is to study the n-ary J-hyperideals in Krasner (m, n)-hyperrings.

We begin with the following definition.

Definition 3.1. A proper hyperideal Q of a Krasner (m, n)-hyperring with the scalar
identity 1R is said to be n-ary J-hyperideal if whenever xn

1 ∈ R with g(xn
1 ) ∈ Q and

xi /∈ J(m,n)(R) implies that g(xi−1
1 , 1R, xn

i+1) ∈ Q.

Example 3.2. The set A = {0, 1, x} with the following 3-ary hyperoeration f and 3-ary
operation g is a Krasner (3, 3)-hyperring such that f and g are commutative.

f(0, 0, 0) = 0, f(0, 0, 1) = 1, f(0, 1, 1) = 1, f(1, 1, 1) = 1, f(1, 1, x) = A

f(0, 1, x) = A, f(0, 0, x) = x, f(0, x, x) = x, f(1, x, x) = A, f(x, x, x) = x

g(1, 1, 1) = 1, g(1, 1, x) = g(1, x, x) = g(x, x, x) = x

and for x1, x2 ∈ R, g(0, x1, x2) = 0. In the Krasner (3, 3)-hyperring, hyperideals {0}
and {0, x} are two n-ary J-hyperideals of A.

Example 3.3. The set R = {0, 1, α, β} with following 2-hyperoperation ”⊕” is a canonical
2-ary hypergroup.

⊕ 0 1 α β
0 0 1 α β
1 1 A β B
α α β 0 1
β β B 1 A

In which A = {0, 1} and B = {α, β}. Define a 4-ary operation g on R as follows:

g(an
1 ) =

{
α if a1, a2, a3, a4 ∈ B

0 otherwise

It follows that (R, ⊕, g) is a Krasner (2,4)-hyperring. In the hyperring, {0} is a 4-ary
J-hyperideal.

Theorem 3.4. Let Q be an n-ary J-hyperideal of a Krasner (m, n)-hyperring R. Then
Q ⊆ J(m,n)(R).

Proof. Let Q be an n-ary J-hyperideal of a Krasner (m, n)-hyperring R such that Q ⊈
J(m,n)(R). Suppose that x ∈ Q but x /∈ J(m,n)(R). Since Q is an n-ary J-hyperideal of
R and g(x, 1(n−1)

R ) ∈ Q, then we have g(1(n)
R ) ∈ Q which is a contradiction. Therefore,

Q ⊆ J(m,n)(R). □

Next, we characterize the Krasner (m, n)-hyperring which every proper hyperideal is an
n-ary J-hyperideal.

Theorem 3.5. Let R be a Krasner (m, n)-hyperring. Then R is local if and only if every
proper hyperideal of R is an n-ary J-hyperideal.



176 M. Anbarloei

Proof. =⇒ Let M be the only maximal hyperideal of R. Then J(m,n)(R) = M . Suppose
that Q is a proper hyperideal of R. Let g(xn

1 ) ∈ Q for xn
1 ∈ R such that xi /∈ M . Therefore

xi is invertible. Then we have

g(x−1
i , g(xn

1 ), 1(n−2)
R ) = g(g(xi, x−1

i , 1(n−2)
R ), g(xi−1

1 , 1R, xn
i+1), 1(n−2)

R )
= g(xi−1

1 , 1R, xn
i+1)

⊆ Q

Hence, Q is a an n-ary J-hyperideal of R.
⇐= Suppose that every proper hyperideal of R is an n-ary J-hyperideal. Assume that

the hyperideal M of R is maximal. Let x ∈ M . By the hypothesis, the principal hyperideal
⟨x⟩ is an n-ary J-hyperideal of R. Since g(x, 1(n−1)

R ) ∈ ⟨x⟩, then we get x ∈ J(m,n)(R) or
g(1(n)

R ) ∈ ⟨x⟩. Since the second case is a contradiction, then x ∈ J(m,n)(R) which implies
J(m,n)(R) = M . Consequently, R is a local Krasner (m, n)-hyperring. □

Theorem 3.6. Let {Qi}i∈∆ be a nonempty set of n-ary J-hyperideals of a Krasner (m, n)-
hyperring R. Then

∩
i∈∆ Qi is an n-ary J-hyperideal of R.

Proof. Since 0 ∈ Qi for all i ∈ ∆, then
∩

i∈∆ Qi ̸= ∅. Let g(xn
1 ) ∈

∩
i∈∆ Qi for some

xn
1 ∈ R such that xi /∈ J(m,n)(R). Then g(xn

1 ) ∈ Qi for every i ∈ ∆. Since Qi is an n-ary
J-hyperideal of R, we have g(xi−1

1 , 1R, xn
i−1) ∈ Qi. Then g(xi−1

1 , 1R, xn
i−1) ∈

∩
i∈∆ Qi. □

Theorem 3.7. Let Q be a proper hyperideal of a Krasner (m, n)-hyperring R. Then the
following statements are equivalent:

(1) Q is an n-ary J-hyperideal of R.
(2) Q = Ux where Ux = {y ∈ R | g(x, y, 1(n−2)

R ) ∈ Q} for every x /∈ J(m,n)(R).
(3) g(In

1 ) ⊆ Q for some hyperideals In
1 of R and Ii ⊈ J(m,n)(R) imply g(Ii−1

1 , 1R, In
i+1) ⊆

Q.

Proof. (1) =⇒ (2) Let Q be an n-ary J-hyperideal of R. We have Q ⊆ Ux for every
x ∈ R. Suppose that y ∈ Ux such that x /∈ J(m,n)(R). This means g(x, y, 1(n−2)

R ) ∈ Q.
Since Q is an n-ary J-hyperideal of R and x /∈ J(m,n)(R), then y = g(y, 1(n−2)

R ) ∈ Q.
Hence, we get Q = Ux.

(2) =⇒ (3) Let g(In
1 ) ⊆ Q for some hyperideals In

1 of R such that Ii ⊈ J(m,n)(R).
Take xi ∈ Ii such that xi /∈ J(m,n)(R). Hence, g(Ii−1

1 , xi, In
I+1) ⊆ Q which means

g(Ii−1
1 , 1R, In

i+1) ⊆ Uxi . Since Q = Uxi for every xi /∈ J(R), then g(Ii−1
1 , 1R, In

i+1) ⊆ Q.
(3) =⇒ (1) Let us consider g(xn

1 ) ∈ Q for some xn
1 ∈ R with xi /∈ J(m,n)(R). We

have g(⟨x1⟩, ..., ⟨xn⟩) = g(⟨g(xn
1 )⟩, 1(n−1)

R ) ⊆ Q but ⟨xi⟩ ⊈ J(m,n)(R). Then we get
g(⟨x1⟩, ..., ⟨xi−1⟩, 1R, ⟨xi+1⟩, ..., ⟨xn⟩) = g(⟨g(xi−1

1 , 1R, xn
i+1)⟩, 1(n−1)) ∈ Q which implies

g(xi−1
1 , 1R, xn

i+1) ∈ Q. Therefore, Q is an n-ary J-hyperideal of R. □

Theorem 3.8. Let Q be a proper hyperideal of a Krasner (m, n)-hyperring R. Then Q is
an n-ary J-hyperideal of R if and only if Ux ⊆ J(m,n)(R) with Ux = {y ∈ R | g(x, y, 1(n−2)

R ) ∈
Q} for every x /∈ Q.

Proof. =⇒ Let y ∈ Ux such that x /∈ Q. So, g(x, y, 1(n−2)) ∈ Q. Then we have y ∈ J(R)
as Q is an n-ary J-hyperideal of R and x = g(x, 1(n−2)) /∈ Q .

⇐= Let g(xn
1 ) ∈ Q for some xn

1 ∈ R such that xi /∈ J(m,n)(R). If g(xi−1
1 , 1R, xn

i+1) /∈ Q,
then xi ∈ Ug(xi−1

1 ,1R,xn
i+1) ⊆ J(m,n)(R) which is a contradiction. Then we conclude that

g(xi−1
1 , 1R, xn

i+1) ∈ Q. Thus, Q is an n-ary J-hyperideal of R. □
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Theorem 3.9. Let Q be a hyperideal of a Krasner (m, n)-hyperring R and S be a nonempty
subset of R such that S ⊈ Q. If Q is an n-ary J-hyperideal of R, then US = {x ∈
R | g(x, S, 1(n−2)

R ) ∈ Q} is an n-ary J-hyperideal of R.

Proof. Let US = R. Then 1R ∈ US which implies S ⊆ Q a contradiction. Hence,
US is a proper hyperideal of R. Suppose that g(xn

1 ) ∈ US for some xn
1 ∈ R such that

xi /∈ J(m,n)(R). This means g(g(xn
1 ), S, 1(n−2)

R ) =
∪

s∈S g(g(xn
1 ), s, 1(n−2)) ⊆ Q which

implies for each s ∈ S, g(g(xn
1 ), s, 1(n−2)

R ) = g(g(xi−1
1 , s, xn

i+1), xi, 1(n−2)
R ) ∈ Q. Then

g(xi−1
1 , s, xn

i+1) = g(g(xi−1
1 , s, xn

i+1), 1(n−1)) ∈ Q for all s ∈ S as Q is an n-ary J-hyperideal
of R. This means g(xi−1

1 , 1R, xn
i+1) ∈ US . Thus, US is an n-ary J-hyperideal of R. □

Theorem 3.10. Let Q be an n-ary J-hyperideal of a Krasner (m, n)-hyperring R such
that there is no n-ary J-hyperideal which contains Q properly. Then Q is an n-ary prime
hyperideal of R.

Proof. Assume that Q is an n-ary J-hyperideal of a Krasner (m, n)-hyperring R such that
there is no n-ary J-hyperideal which contains Q properly. Suppose that g(xn

1 ) ∈ Q for some
xn

1 ∈ R such that for every 1 ≤ i ≤ n − 1, xi /∈ Q. Put S = {x1, ..., xn−1}. By Theorem
3.9, (Q : S) is an n-ary J-hyperideal of R. Since Q ⊆ US = {x ∈ R | g(x, S, 1(n−2)) ∈ Q},
we conclude that xn ∈ (Q : S) = Q, by the hypothesis. Thus, Q is a prime hyperideal. □

In Theorem 3.10, if Q = J(m,n)(R), then the inverse of the theorem is true.

Theorem 3.11. Let J(m,n)(R) be an n-ary prime of R. Then J(m,n)(R) is an n-ary
J-hyperideal of R such that there is no J-hyperideal which contains J(m,n)(R) properly.

Proof. Put Q = J(m,n)(R) such that J(m,n)(R) is an n-ary prime of R. Let g(xn
1 ) ∈ Q for

some xn
1 ∈ R with xi /∈ J(R). Since Q is an n-ary prime hyperideal of R, then there exists

1 ≤ j ≤ i − 1 or i + 1 ≤ j ≤ n such that xj ∈ Q = J(m,n)(R) which means the hyperideal
J(R) of R is an n-ary J-hyperideal. By Theorem 3.4, there is no J-prime hyperideal which
contains Q properly. □

4. n-ary δ-J-hyperideals
In this section, we define and study the concept of n-ary δ-J-hyperideals as an expansion

of n-ary J-hyperideals.

Definition 4.1. Let δ be a hyperideal expansion of a Krasner (m, n)-hyperring R. A
proper hyperideal Q of R is called n-ary δ-J-hyperideal if for xn

1 ∈ R, g(xn
1 ) ∈ Q implies

that xi ∈ J(m,n)(R) or g(xi−1
1 , 1R, xn

i+1) ∈ δ(Q).

Example 4.2. The hyperideal I = {0Z⋆
12, 4Z⋆

12} in Z12/Z⋆
12 of Example 4.1 in [14] is a

δ1-J-hyperideal.

Theorem 4.3. Let Q be a proper hyperideal of a Krasner (m, n)-hyperring R. If δ(Q) is
an n-ary J-hyperideal of R, then Q is an n-ary δ-J-hyperideal of R.

Proof. Suppose that δ(Q) is an n-ary J-hyperideal of R. Let g(xn
1 ) ∈ Q for some xn

1 ∈ R
such that xi /∈ J(m,n)(R). Since δ(Q) is an n-ary J-hyperideal of R and Q ⊆ δ(Q), then
g(xi−1

1 , 1R, xn
i+1) ∈ δ(Q) which implies Q is a δ-J-hyperideal of R. □

The next Theorem shows that the inverse of Theorem 4.3 is true if δ = δ1.

Theorem 4.4. Let Q be a proper hyperideal of a Krasner (m, n)-hyperring R. If Q is an
n-ary δ1-J-hyperideal of R, then

√
Q

(m,n) is an n-ary J-hyperideal of R.
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Proof. Let for xn
1 ∈ R, g(xn

1 ) ∈
√

Q
(m,n) such that xi /∈ J(m,n)(R). By g(xn

1 ) ∈
√

Q
(m,n),

it follows that there exists t ∈ N such that if t ≤ n, then g(g(xn
1 )(t), 1(n−t)

R ) ∈ Q. Hence by
associativity we get

g(x(t)
i , g(xi−1

i , 1R, xn
i+1)(t), 1(n−2t)

R )
= g(x(t)

i , g(xi−1
i , 1R, xn

i+1)(t), g(1(n)
R ), 1(n−2t−1)

R )
= g(g(x(t)

i , 1(n−t)
R ), g(xi−1

i , 1R, xn
i+1)(t), 1(n−t−1)

R )
⊆ Q.

Since Q is an n-ary δ1-J-hyperideal of R, then
g(x(t)

i , 1(n−t)) ∈ J(m,n)(R)
or g(g(xi−1

i , 1R, xn
i+1)(t), 1(n−t)

R ) ∈ δ1(Q) =
√

Q
(m,n).

If g(x(t)
i , 1(n−t)) ∈ J(m,n)(R), then xi ∈

√
J(m,n)(R)

(m,n)
= J(m,n)(R) which is a contradic-

tion. Then we have
g(g(xi−1

i , 1R, xn
i+1)(t), 1(n−t)

R ) ∈
√

Q
(m,n)

which means g(xi−1
i , 1R, xn

i+1) ∈
√

Q
(m,n). Thus we conclude that

√
Q

(m,n) is an n-ary
J-hyperideal of R. If t = l(n − 1) + 1, then by using a similar argument, one can easily
complete the proof. □

Theorem 4.5. Let Q be a proper hyperideal of a Krasner (m, n)-hyperring R and let δ
and γ be two hyperideal expansions of R. If δ(Q) is an n-ary γ-J-hyperideal of R, then Q
is an n-ary γ ◦ δ-J-hyperideal of R.

Proof. Suppose that δ(Q) is an n-ary γ-J-hyperideal of R. Let g(xn
1 ) ∈ Q for some

xn
1 ∈ R such that xi /∈ J(m,n)(R). We get g(xn

1 ) ∈ δ(Q) as Q ⊆ δ(Q). Since δ(Q) is
an n-ary γ-J-hyperideal of R and xi /∈ J(m,n)(R), then g(xi−1

1 , 1R, xn
i+1) ∈ γ(δ(Q)) which

means g(xi−1
1 , 1R, xn

i+1) ∈ γ ◦ δ(Q). Thus, Q is an n-ary γ ◦ δ-J-hyperideal of R. □

Theorem 4.6. Let Q1, Q2 and Q3 be three proper hyperideals of a Krasner (m, n)-hyperring
R such that Q1 ⊆ Q2 ⊆ Q3. If Q3 is an n-ary δ-J-hyperideal of R and δ(Q1) = δ(Q3),
then Q2 is an n-ary δ-J-hyperideal of R.

Proof. Let g(xn
1 ) ∈ Q2 for some xn

1 ∈ R such that xi /∈ J(m,n)(R). Since Q2 ⊆ Q3 and Q3
is an n-ary δ-J-hyperideal of R, then we have g(xi−1

1 , 1R, xn
i+1) ∈ δ(Q3). Then we conclude

that g(xi−1
1 , 1R, xn

i+1) ∈ δ(Q1), by the hypothesis. Since Q1 ⊆ Q2, then δ(Q1) ⊆ δ(Q2).
This implies that g(xi−1

1 , 1R, xn
i+1) ∈ δ(Q2) as needed. □

Theorem 4.7. Let Q be a δ-J-hyperideal of a Krasner (m, n)-hyperring R such that√
δ(Q)(m,n) ⊆ δ(

√
Q

(m,n)). Then
√

Q
(m,n) is a δ-J-hyperideal of R.

Proof. Let for xn
1 ∈ R, g(xn

1 ) ∈
√

Q
(m,n) such that xi /∈ J(m,n)(R). By g(xn

1 ) ∈
√

Q
(m,n),

it follows that there exists t ∈ N such that if t ≤ n, then g(g(xn
1 )(t), 1(n−t)

R ) ∈ Q. Hence by
associativity we get

g(x(t)
i , g(xi−1

i , 1R, xn
i+1)(t), 1(n−2t)

R )
= g(x(t)

i , g(xi−1
i , 1R, xn

i+1)(t), g(1(n)
R ), 1(n−2t−1)

R )
= g(g(x(t)

i , 1(n−t)
R ), g(xi−1

i , 1R, xn
i+1)(t), 1(n−t−1)

R )
⊆ Q.

Since Q is an n-ary δ-J-hyperideal of R, then
g(x(t)

i , 1(n−t)) ∈ J(m,n)(R) or g(g(xi−1
i , 1R, xn

i+1)(t), 1(n−t)
R ) ∈ δ(I).

If g(x(t)
i , 1(n−t)) ∈ J(m,n)(R), then xi ∈

√
J(m,n)(R)

(m,n)
= J(m,n)(R) which is a contradic-

tion. Then we have
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g(g(xi−1
i , 1R, xn

i+1)(t), 1(n−t)
R ) ∈ δ(Q)

which means g(xi−1
i , 1R, xn

i+1) ∈
√

δ(Q)(m,n). Hence, by the assumption, we obtain
g(xi−1

i , 1R, xn
i+1) ∈ δ(

√
Q

(m,n)).
Thus we conclude that

√
Q

(m,n) is a δ-J-hyperideal of R. If t = l(n − 1) + 1, then by using
a similar argument, one can easily complete the proof. □

We say that δ has the property of intersection preserving if it satisfies δ(I ∩ J) =
δ(I) ∩ δ(J), for all hyperideals I, J of R. For example, the hyperideal expansion δ1 of a
Krasner (m, n)-hyperring R has the property of intersection preserving.

Theorem 4.8. Suppose that Qn
1 are n-ary δ-J-hyperideal of a Krasner (m, n)-hyperring

R and the hyperideal expansion δ of R has the property of intersection preserving. Then
Q =

∩n
i=1 Qi is an n-ary δ-J-hyperideal of R.

Proof. Let g(xn
1 ) ∈ Q for some xn

1 ∈ R such that g(xi−1
1 , 1R, xn

i+1) /∈ δ(Q). Since the
hyperideal expansion δ of R has the property of intersection preserving, then there exists
1 ≤ j ≤ n such that g(xi−1

1 , 1R, xn
i+1) /∈ δ(Qj). Thus, we get xi ∈ J(m,n)(R) as Qj ia

an n-ary δ-J-hyperideal of R. Consequently, Q =
∩n

i=1 Qi is an n-ary δ-J-hyperideal of
R. □

Theorem 4.9. Let Q be a proper hyperideal of a Krasner (m, n)-hyperring R. Then the
following are equivalent:

(1) Q is an n-ary δ-J-hyperideal of R.
(2) If Qn−1

1 are some hyperideals of R and x ∈ R such that g(Qn−1
1 , x) ⊆ Q, then

x ∈ J(m,n)(R) or g(Qn−1
1 , 1R) ⊆ δ(Q).

(3) If Qn
1 are some hyperideals of R and g(Qn

1 ) ⊆ Q, then either Qi ⊆ J(m,n)(R) or
g(Qi−1

1 , 1R, Qn
i+1) ⊆ δ(Q).

Proof. (1) =⇒ (2) Let Q be an n-ary δ-J-hyperideal of R. Assume that g(Qn−1
1 , x) ⊆ Q

for some hyperideals Qn−1
1 of R such that x /∈ J(m,n)(R). Therefore, for each qi ∈ Qi

with 1 ≤ i ≤ n − 1 we have g(qn−1
1 , x) ∈ Q. Since Q is an n-ary δ-J-hyperideal of R and

x /∈ J(m,n)(R), then g(qn−1
1 , 1R) ∈ δ(Q) which means g(Qn−1

1 , 1R) ⊆ Q.
(2) =⇒ (3) Let g(Qn

1 ) ⊆ Q for some hyperideals Qn
1 of R such that Qi ⊈ J(m,n)(R).

Take x ∈ Qi but x /∈ J(m,n)(R). Since g(Qi−1
1 , x, Qn

i+1) ⊆ Q and x /∈ J(m,n), then
g(Qi−1

1 , 1R, Qn
i+1) ⊆ δ(Q), by the hypothesis.

(3) =⇒ (1) Let g(xn
1 ) ∈ Q for some xn

1 ∈ R and xi /∈ J(m,n)(R). Therefore we get
g(⟨x1⟩, ..., ⟨xn⟩) ⊆ Q but ⟨xi⟩ ⊈ J(m,n). Thus we have

g(⟨x1⟩, ..., ⟨xi−1⟩, 1R, ⟨xi+1⟩, ..., ⟨xn⟩) ⊆ δ(Q).
This means g(xi−1

1 , 1R, xn
i+1) ∈ δ(Q). □

Theorem 4.10. Let Q be a proper hyperideal of a Krasner (m, n)-hyperring R. Then the
following are equivalent:

(1) Q is an n-ary δ-J-hyperideal of R.
(2) Q ⊆ J(m,n)(R) and if g(xn

1 ) ∈ Q for some xn
1 ∈ R, then either xi is in the intersection

of all maximal hyperideals of R containing Q or g(xi−1
1 , 1R, xn

i+1) ∈ δ(Q).

Proof. (1) =⇒ (2) Suppose that Q is an n-ary δ-J-hyperideal of R. Let Q ⊈ J(m,n)(R).
Take x ∈ Q such that x /∈ J(m,n)(R). Since g(x, 1(n−1)) ∈ Q, then g(1(n)) ∈ Q, a
contradiction. Hence, Q ⊆ J(m,n)(R). Since J(m,n)(R) is in the intersection of all maximal
hyperideals of R containing Q, then the second assertion follows.

(2) =⇒ (1) Let g(xn
1 ) ∈ Q for some xn

1 ∈ R such that xi /∈ J(m,n)(R). The intersection
of all maximal hyperideals of R containing Q is in J(m,n)(R) as Q ⊆ J(m,n)(R). This
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means xi is not in the intersection of all maximal hyperideals of R containing Q. Then
g(xi−1

1 , 1R, xn
i+1) ∈ δ(Q). Consequently, Q is an n-ary δ-J-hyperideal of R. □

Theorem 4.11. Let R be a Krasner (m, n)-hyperring. Then the following are equivalent:
(1) R is a local Krasner (m, n)-hyperring such that J(m,n)(R) is the only maximal hy-

perideal of R.
(2) Every proper principal hyperideal is an n-ary δ-J-hyperideal of R.
(3) Every proper hyperideal is an n-ary δ-J-hyperideal of R.

Proof. (1) =⇒ (2) Let R be a local Krasner (m, n)-hyperring such that J(m,n)(R) is the
only maximal hyperideal of R. Consider the principal hyperideal Q = ⟨a⟩ for some element
a of R which is not invertible. Suppose that g(xn

1 ) ∈ Q such that xi /∈ J(m,n)(R). This
means xi is invertible member of R. Then we have

g(g(xn
1 ), x−1

i , 1(n−2)
R ) = g(g(xi−1

1 , 1R, xn
i+1), xi, x−1

i , 1(n−3)
R ) = g(xi−1

1 , 1R, xn
i+1) ⊆ Q ⊆

δ(Q).
Thus, Q is an n-ary δ-J-hyperideal of R.

(2) =⇒ (3) Suppose that P is a proper hyperideal of R and g(xn
1 ) ∈ P for some

xn
1 ∈ R such that xi /∈ J(m,n)(R). Consider the principal hyperideal Q = ⟨g(xn

1 )⟩. By the
assumption, Q is an n-ary δ-J-hyperideal of R. Since g(xn

1 ) ∈ Q and xi /∈ J(m,n)(R), then
g(xi−1

1 , 1R, xn
i+1) ∈ δ(Q). Since Q ⊆ P , then δ(Q) ⊆ δ(P ) and so g(xi−1

1 , 1R, xn
i+1) ∈ δ(P ).

This completes the proof.
(3) =⇒ (1) Suppose that M is a maximal hyperideal of R. By the hypothesis, M is an n-

ary δ-J-hyperideal of R. By theorem 4.10, we have M ⊆ J(m,n)(R). Since J(m,n)(R) ⊆ M ,
then M = J(m,n)(R). This implies that J(m,n)(R) is the only maximal hyperideal of R.
Thus, R is a local Krasner (m, n)-hyperring. □

Recall that a proper hyperideal I of R is said to be δ-primary if for all xn
1 ∈ R, g(xn

1 ) ∈ I
implies that xi ∈ I or g(xi−1

1 , 1R, xn
i+1) ∈ δ(I) for some 1 ≤ i ≤ n [3].

Theorem 4.12. Let Q be a δ-primary hyperideal of R. Then Q is an n-ary δ-J-hyperideal
of R if and only if Q ⊆ J(m,n)(R).

Proof. =⇒ It follows by Theorem 4.10.
⇐= Let Q ⊆ J(m,n)(R). Suppose that g(xn

1 ) ∈ Q for some xn
1 ∈ R such that xi /∈

J(m,n)(R). Then xi /∈ Q. Thus, we get g(xi−1
1 , 1R, xn

i+1) ∈ δ(Q) as Q is a δ-primary
hyperideal of R. This implies that Q is an n-ary δ-J-hyperideal of R. □

Theorem 4.13. Let Q be a maximal hyperideal of R. Then Q is an n-ary δ-J-hyperideal
of R if and only if Q = J(m,n)(R).

Proof. =⇒ Let Q be an n-ary δ-J-hyperideal of R. Since Q is a maximal hyperideal of
R, then J(m,n)(R) ⊆ Q. Let g(xn

1 ) ∈ Q for some xn
1 ∈ R such that xi /∈ Q. Then xi /∈

J(m,n)(R). Since Q is an n-ary δ-J-hyperideal of R and xi /∈ J(m,n)(R), we conclude that
g(xi−1

1 , 1R, xn
i+1) ∈ δ(Q). This implies that Q is a δ-primary hyperideal of R. Therefore,

we get Q ⊆ J(m,n)(R), by Theorem 4.12. Hence Q = J(m,n)(R).
⇐= It is obvious. □

Theorem 4.14. Let (R1, f1, g1) and (R2, f2, g2) be two Krasner (m, n)-hyperrings and
h : R1 −→ R2 be a δγ-homomorphism such that δ and γ be hyperideal expansions of R1
and R1, respectively. Then the following statements hold :

(1) If h is a monomorphism and I2 is an n-ary γ-J2-hyperideal of R2, then h−1(I2) is
an n-ary δ-J1-hyperideal of R1.

(2) Let h be an epimorphism and I1 be a hyperideal of R such that Ker(h) ⊆ I1. If I1
is an n-ary δ-J1-hyperideal of R1, then h(I1) is an n-ary γ-J2-hyperideal of R2.
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Proof. (1) Let for xn
1 ∈ R1, g1(xn

1 ) ∈ h−1(I2). Then we get h(g1(xn
1 )) = g2(h(xn

1 )) ∈ I2.
Since I2 is a γ-J2-hyperideal of R2, it implies that either h(xi) ∈ J(m,n)(R2) which follows
xi ∈ J(m,n)(R1) as h is a monomorphism, or

g2(h(x1), ..., h(xi−1), 1R2 , h(xi+1), ..., h(xn))
= h(g1(xi−1

1 , 1R1 , xn
i+1))

∈ γ(I2),
which follows g1(xi−1

1 , 1R1 , xn
i+1) ∈ h−1(γ(I2)) = δ(h−1(I2). Thus h−1(I2) is a δ-J1-

hyperideal of R1.
(2) Let for yn

1 ∈ R2, g2(yn
1 ) ∈ h(I1) such that yi /∈ J(m,n)(R2). Since h is an epimorphism,

then there exist xn
1 ∈ R1 such that h(x1) = y1, ..., h(xn) = yn. Hence

h(g1(xn
1 )) = g2(h(x1), ..., h(xn)) = g2(yn

1 ) ∈ h(I1).
Since Ker(h) ⊆ I1, then we get g1(xn

1 ) ∈ I1. Since yi /∈ J(m,n)(R2), then xi /∈ J(m,n)(R1).
Since I1 is a δ-J1-hyperideal of R1 and xi /∈ J(m,n)(R1), it implies that g1(xi−1

1 , 1R1 , xn
i+1) ∈

δ(I1) which implies
h(g1(xi−1

1 , 1R1 , xn
i+1)) = g2(h(x1), ..., h(xi−1), 1R2 , h(xi+1), ..., h(xn))

= g2(yi−1
1 , 1R2 , yn

i+1)
∈ h(δ(I1))
= γ(h(I1))

Thus h(I1) is a γ-J2-hyperideal of R2. □
Corollary 4.15. Let Q and J be hyperideals of a Krasner (m, n)-hyperring R such that
I ⊆ Q. If Q is an n-ary δ-J-hyperideal of R, then Q/I is an n-ary δq -J-hyperideal of
R/I.

Proof. Consider the map π : R −→ R/I, defined by r −→ f(r, I, 0(m−2)). The map is
a homomorphism of Krasner (m, n)-hyperrings, by Theorem 3.2 in [1]. Now, by using
Theorem 4.14 (2), the claim can be proved. □

5. (k, n)-absorbing δ-J-hyperideals
In this section, we extend the notion of n-ary δ-J-hyperideals to (k, n)-absorbing δ-J-

hyperideals.

Definition 5.1. Let δ be a hyperideal expansion of a Krasner (m, n)-hyperring R and k be
a positive integer. A proper hyperideal Q of R is called (k, n)-absorbing δ-J-hyperideal if
for xkn−k+1

1 ∈ R, g(xkn−k+1
1 ) ∈ Q implies that g(x(k−1)n−k+2

1 ) ∈ J(m,n)(R) or a g-product
of (k − 1)n − k + 2 of x,

i s except g(x(k−1)n−k+2
1 ) is in δ(Q).

Example 5.2. Suppose that H = [0, 1] and define a 2-ary hyperoperation ” ⊞ ” on H as
follows:

a ⊞ b =
{

{max{a, b}}, if a ̸= b

[0, a] if a = b

Let ” · ” is the usual multiplication on real numbers. In the Krasner (2, 3)-hyperring H,
the hyperideal T = [0, 0.5] is a (2, 2)-absorbing δ1-J-hyperideal of R.

Theorem 5.3. If Q is δ-J-hyperideal of a Krasner (m, n)-hyperring R, then Q is (2, n)-
absorbing δ-J-hyperideal.

Proof. Let for x2n−1
1 ∈ R, g(x2n−1

1 ) ∈ Q. Since Q is a δ-J-hyperideal of R, then g(xn
1 ) ∈

J(m,n)(R) or g(x2n−1
n+1 ) ∈ δ(Q). This implies that for 1 ≤ i ≤ n, g(xi, x2n−1

n+1 ) ∈ δ(Q), since
xn

1 ∈ R and δ(Q) is a hyperideal of R. Consequently, hyperideal Q is (2, n)-absorbing
δ-primary. □
Theorem 5.4. If Q is (k, n)-absorbing δ-J-hyperideal of a Krasner (m, n)-hyperring R,
then Q is (s, n)-absorbing δ-J-hyperideal for s > n.
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Proof. Let for x
(k+1)n−(k+1)+1
1 ∈ R, g(x(k+1)n−(k+1)+1

1 ) ∈ Q. Put g(xn+2
1 ) = x. Since

hyperideal Q of R is (k, n)-absorbing δ-J-hyperideal, g(x, x
(k+1)n−(k+1)+1
n+3 ) ∈ J(m,n)(R) or

a g-product of kn − k + 1 of the x,
is except g(x, x

(k+1)n−(k+1)+1
n+3 ) is in δ(I). This implies

that for 1 ≤ i ≤ n+2, g(xi, x
(k+1)n−(k+1)+1
n+3 ) ∈ δ(I) which means hyperideal Q is (k+1, n)-

absorbing δ-J-hyperideal. Thus hyperideal Q of R is (s, n)-absorbing δ-J-hyperideal for
s > n. □
Theorem 5.5. If Q is a (k, n)-absorbing J-hyperideal of a Krasner (m, n)-hyperring R,
then

√
Q

(m,n) is a (k, n)-absorbing δ-J-hyperideal.

Proof. Let for xkn−k+1
1 ∈ R, g(xkn−k+1

1 ) ∈
√

Q
(m,n). We suppose that none of the g-

products of (k − 1)n − k + 2 of the x,
is other than g(x(k−1)n−k+2

1 ) are in δ(
√

Q
(m,n)). Since

g(xkn−k+1
1 ) ∈

√
Q

(m,n) then for some t ∈ N we have for t ≤ n, g(g(xkn−k+1
1 )(t), 1(n−t)

R ) ∈ Q

or for t > n with t = l(n − 1) + 1, g(l)(g(xkn−k+1
1 )(t)) ∈ Q. In the former case, since all g-

products of the x,
is other than g(x(k−1)n−k+2

1 ) are not in δ(
√

Q
(m,n)), then they are not in Q.

Since Q is a (k, n)-absorbing J-hyperideal of R, then we have g(g(x(k−1)n−k+2)
1 )(l), 1(n−t)

R ) ∈

J(m,n)(R) which means g(x(k−1)n−k+2
1 ) ∈

√
J(m,n)(R)

(m,n)
= J(m,n)(R). By using similar

argument for the second case, the claim is completed. □
Theorem 5.6. If δ(Q) is (2, n)-absorbing J-hyperideal for hyperideal Q of a Krasner
(m, n)-hyperring R, then Q is a (3, n)-absorbing δ-J-hyperideal of R.

Proof. Let for x3n−2
1 ∈ R, g(x3n−2

1 ) ∈ Q but g(x2n−1
1 ) /∈ J(m,n)(R). By g(x3n−2

1 ) ∈ Q it fol-
lows that g(g(x1, x3n−2

2n ), x2n−1
2 ) ∈ Q ⊆ δ(Q). Since δ(Q) is a (2, n)-absorbing J-hyperideal

and g(x2n−1
2 ) /∈ J(m,n)(R), then we have g(xn

1 , x3n−2
2n ) ∈ δ(Q) or g(x1, x2n−1

n+1 , x3n−2
2n ) ∈ δ(Q).

Hence Q is a (3, n)-absorbing δ-J-hyperideal of R. □
Theorem 5.7. If δ(Q) is a (k + 1, n)-absorbing δ-J-hyperideal for the hyperideal Q of a
Krasner (m, n)-hyperring R, then Q is (k + 1, n)-absorbing δ-J-hyperideal.

Proof. Let for x
(k+1)n−(k+1)+1
1 ∈ R, g(x(k+1)n−(k+1)+1

1 ) ∈ Q but g(xkn−k+1
1 ) /∈ J(m,n)(R).

Then we get g(x(k+1)n−(k+1)+1
1 ) = g(xkn−k

1 , g(x(k+1)n−(k+1)+1
kn−k+1 )) ∈ Q ⊆ δ(Q). Since hy-

perideal δ(I) is (k + 1, n)-absorbing δ-J-hyperideal and g(xkn−k
1 ) /∈ J(m,n)(R), we get for

1 ≤ i ≤ n, g(xi−1
1 , xkn−k

i+1 , g(x(k+1)n−(k+1)+1
kn−k+1 )) ∈ δ(I). Consequently, hyperideal I is a

(k + 1, n)-absorbing δ-J-hyperideal. □
Theorem 5.8. Let (R1, f1, g1) and (R2, f2, g2) be two Krasner (m, n)-hyperrings and h :
R1 −→ R2 be a δγ-homomorphism such that δ and γ are two hyperideal expansions of
Krasner (m, n)-hyperring R1 and R2, respectively. Then the following statements hold :

(1) Let h be a monomorphism. If Q2 is a (k, n)-absorbing γ-J2-hyperideal of R2, then
h−1(Q2) is a (k, n)-absorbing δ-J1-hyperideal of R1.

(2) If h is an epimorphism and Q1 is a (k, n)-absorbing δ-J1-hyperideal of R1 such that
Ker(h) ⊆ Q1, then h(Q1) is a γ-J2-hyperideal of R2.

Proof. (1) Let for xkn−k+1
1 ∈ R1, g1(xkn−k+1

1 ) ∈ h−1(Q2). It means h(g1(xkn−k+1
1 )) =

g2(h(x1), ..., h(xkn−k+1)) ∈ Q2. Since Q2 is a (k, n)-absorbing γ-J2-hyperideal of R2, we
get g2(h(x1), ..., h(x(k−1)n−k+2)) = h(g1(x(k−1)n−k+2

1 ) ∈ J(m,n)(R2). This implies that
g1(x(k−1)n−k+2

1 ) ∈ J(m,n)(R1), as h is a monomorphism, or
g2(h(x1), ..., h(xi−1), h(xi+1), ..., h(xkn−k+1)) = h(g1(xi−1

1 , xkn−k+1
i+1 )) ∈ γ(Q2)

which means g1(xi−1
1 , xkn−k+1

i+1 )) ∈ h−1(γ(Q2) for 1 ≤ i ≤ n. Since h is a δγ-homomorphism
then g1(xi−1

1 , xkn−k+1
i+1 )) ∈ δ(h−1(Q2)) for 1 ≤ i ≤ n. Therefore we conclude that h−1(Q2)
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is a (k, n)-absorbing δ-J1-hyperideal of R1. (2) Let for ykn−k+1
1 ∈ R2, g2(ykn−k+1

1 ) ∈ h(Q1)
such that g2(y(k−1)n−k+2

1 ) /∈ J(m,n)(R2). Then there are x
(k−1)n−k+2
1 ∈ R1 such that

h(xi) = yi for 1 ≤ i ≤ (k − 1)n − k +2. Hence, h(g1(xkn−k+1
1 ) = g2(h(x1), ..., h(xkn−k+1) ∈

h(Q1). Since Q1 containing Ker(h) then g1(xkn−k+1
1 ) ∈ Q1. Since Q1 is a (k, n)-absorbing

δ-J1-hyperideal of R1 and g1(x(k−1)n−k+2
1 ) /∈ J(m,n)(R1) , then g1(xi−1

1 , xkn−k+1
i+1 ) ∈ δ(Q1)

which means
h(g1(xi−1

1 , xkn−k+1
i+1 )) = g2(h(x1), ..., h(xi−1), h(xi+1), ..., h(xkn−k+1))

= g2(yi−1
1 , ykn−k+1

i+1 ) ∈ h(δ(Q1))
for 1 ≤ i ≤ (k −1)n−k +2. Since h is a δγ-epimorphism then we have g2(yi−1

1 , ykn−k+1
i+1 ) ∈

γ(h((Q1)). Consequently, h(Q1) is a γ-J2-hyperideal of R2. □
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