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QUASI HEMI-SLANT PSEUDO-RIEMANNIAN SUBMERSIONS

IN PARA-COMPLEX GEOMETRY

Esra BAŞARIR NOYAN1 and Yılmaz GÜNDÜZALP2

1,2Department of Mathematics, Dicle University, 21280, Sur, Diyarbakır, TÜRKİYE

Abstract. We introduce a new class of pseudo-Riemannian submersions which

are called quasi hemi-slant pseudo-Riemannian submersions from para-Kaehler
manifolds to pseudo-Riemannian manifolds as a natural generalization of slant

submersions, semi-invariant submersions, semi-slant submersions and hemi-

slant Riemannian submersions in our study. Also, we give non-trivial exam-
ples of such submersions. Further, some geometric properties with two types

of quasi hemi-slant pseudo-Riemannian submersions are investigated.

1. Introduction

A C∞−submersion ψ can be defined according to the following conditions. A
pseudo-Riemannian submersion ( [12], [16], [13], [17], [26]), an almost Hermitian
submersion ( [27], [29]), bi-slant submanifold ( [3], [5]), a slant submersion ( [7],
[11], [1], [19], [23]), bi-slant submersion ( [21]), an anti-invariant submersion ( [8],
[9], [10], [24]), a hemi-slant submersion ( [28], [22]), a quasi-bi-slant Submersion
( [20]), a semi-invariant submersion ( [18], [25]), etc. As we know, Riemannian
submersions were severally introduced by B. O’Neill ( [17]) and A. Gray ( [12])
in 1960s. In particular, by using the concept of almost Hermitian submersions,
B. Watson ( [30]) gave some differential geometric properties among fibers, base
manifolds, and total manifolds. Some interesting results concerning para-Kaehler-
like statistical submersions were obtained by G.E. Vı̂lcu ( [29]).
Motivated by the above studies, we presented quasi hemi-slant pseudo-Riemannian
submersions in para-complex geometry from para-Kaehler manifolds onto pseudo-
Riemannian manifolds. We organized our work in three sections. In section 2, we
gather basic concepts and definitions needed in the following parts. In section 3,
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We examined quasi hemi-slant pseudo-Riemannian submersions in para-complex
geometry that satisfies certain conditions. We give some non-trivial examples of
these submersions which satisfy the conditions of two types, while in we study the
decomposition theorem of two types of the distributions.

2. Preliminaries

By a para-Hermitian manifold we mean a triple (B,P, gB), where B is connected
differentiable manifold of 2n- dimensional , P is a tensor field of type (1,1) and a
pseudo-Riemannian metric gB on B, satisfying

P2E1 = E1, gB(PE1,PE2) = −gB(E1, E2) (1)

where E1, E2 are vector fields on B. Then we can say that B is a para-Kaehler
manifold such that

∇P = 0; (2)

where ∇ denotes the Levi-Civita connection on B ( [15]).

Let (B, gB) and (B̃, gB̃) be two pseudo-Riemannian manifolds. Being a pseudo-

Riemannian submersion ψ : B → B̃ provides the following three properties;
(i) ψ∗|p is onto for all p ∈ B,
(ii) the fibres ψ−1(q), q ∈ B̃, are r− dimensional pseudo-Riemannian submanifolds

of B, where r = dim(B)− dim(B̃),
(iii) ψ∗ preserves scalar products of vectors normal to fibres.

The vectors tangent to the fibres are called vertical and those normal to the
fibres are called horizontal. A vector field U on B is called basic if U is horizontal
and ψ- related to a vector field U∗ on B̃, i.e., ψ∗Up = U∗ψp

for all p ∈ B.We indicate
by V the vertical distribution, by H the horizontal distribution and by v and h the
vertical and horizontal projection. We know that (B, gB) is called total manifold

and (B̃, gB̃) is called base manifold of the submersion ψ : (B, gB) → (B̃, gB̃).
Now, let’s denote O’Neill’s tensors T and A:

TUW = h∇vUvW + v∇vUhW (3)

and
AUW = v∇hUhW + h∇hUvW (4)

for every U,W ∈ χ(B), on B where ∇ is the Levi-Civita connection of gB.

Further, a pseudo-Riemannian submersion ψ : B → B̃ has totally geodesic fibers
if and only if T ≡ 0. Also, if A vanishes then the horizontal distribution is inte-
grable(see [4], [6]). Using (3) and (4), we get

∇UW = TUW + ∇̂UW ; (5)

∇Uζ = TUζ + h∇Uζ; (6)

∇ζU = AζU + v∇ζU ; (7)
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∇ζη = Aζη + h∇ζη, (8)

for any ζ, η ∈ Γ((kerψ∗)
⊥), U,W ∈ Γ(kerψ∗). Also, if ζ is basic then h∇Uζ =

h∇ζU = AζU.

We can easily see that T is symmetric on the vertical distribution and A is
alternating on the horizontal distribution such that

TWU = TUW, W, U ∈ Γ(kerψ∗); (9)

AY V = −AV Y =
1

2
v[Y, V ], Y, V ∈ Γ((kerψ∗)

⊥). (10)

Also, it is easily seen that for any ℘ ∈ Γ(TB), T℘ and A℘ are skew-symmetric
operators on Γ(TB) , such that

gB(TWU,X ) = −gB(TWX , U) (11)

gB(AWU,X ) = −gB(AWX , U) (12)

Definition 1. Let ψ : (B, gB,P) → (B̃, gB̃) be a pseudo-Riemannian submersion.
Let us assume that the total manifold as an almost para-Hermitian manifold and
base manifold as a pseudo-Riemannian manifold. Then, there exists a pseudo-
Riemannian submersion ψ is an invariant pseudo-Riemannian submersion if the
vertical distribution is invariant with respect to P, i.e., P(kerψ∗) = (kerψ∗)( [10].

Definition 2. Let ψ : (B, gB,P) → (B̃, gB̃) be a pseudo-Riemannian submersion.
Let us assume that the total manifold as an almost para-Hermitian manifold and
base manifold as a pseudo-Riemannian manifold. Then, there exists a pseudo-
Riemannian submersion ψ such that kerψ∗ is anti-invariant with respect to P, i.e.,
P(kerψ∗) ⊆ (kerψ∗)

⊥. So, we can say ψ is an anti-invariant pseudo-Riemannian
submersion( [8]).

Definition 3. Let ψ : (B, gB,P) → (B̃, gB̃) be a pseudo-Riemannian submersion.
Let us assume that the total manifold as an almost para-Hermitian manifold and
base manifold as a pseudo-Riemannian manifold. Then, there exists a pseudo-
Riemannian submersion ψ is a semi-invariant pseudo-Riemannian submersion if
there is a distribution D1 ⊆ kerψ∗, such that

kerψ∗ = D1 ⊕ D2,

and

PD1 = D1,PD2 ⊆ (kerψ∗)
⊥

where D2 is orthogonal complementary to D1 in kerψ∗( [2]).

We know that µ is the complementary orthogonal subbundle to P(kerψ∗) in
(kerψ∗)

⊥.
Also we have;

(kerψ∗)
⊥ = PD2 ⊕ µ.
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From here we can say that µ is an invariant subbundle of (kerψ∗)
⊥ with respect to

the para-complex structure P.

For any non-null vector field U2 ∈ (kerψ∗), we get

PU2 = qU2 + rU2,

where qU2 is vertical part and rU2 is horizontal part.

If for non-null vector field U2 ∈ kerψ∗, the quotient gB(qU2,qU2)
gB(PU2,PU2)

is constant,

i.e., it is independent of the choice of the point q̄ ∈ B and choice of the non-null
vector field U2 ∈ Γ(kerψ∗), we can say that ψ is a slant submersion. So, the angle
is called the slant angle of the slant submersion ( [10]).

Let ψ : (B, gB,P) → (B̃, gB̃) be a proper slant submersion. Let us assume that
the total manifold as an almost para-Hermitian manifold and base manifold as a
pseudo-Riemannian manifold. Then, we have;
type ∼1 if for every space-like (time-like) vector field U2 ∈ Γ(kerψ∗), qU2 is time-

like (space-like), and ∥qU2∥
∥PU2∥ > 1,

type ∼ 2 if for every space-like (time-like) vector field U2 ∈ Γ(kerψ∗), qU2 is time-

like (space-like), and ∥qU2∥
∥PU2∥ < 1( [10]).

Theorem 1. ( [10]) Let ψ : (B, gB,P) → (B̃, gB̃) be a proper slant submersion. Let
us assume that the total manifold as an almost para-Hermitian manifold and base
manifold as a pseudo-Riemannian manifold. Then,
(a) ψ is slant submersion of type-1 if and only if for any space-like (time-like)
vector field U1 ∈ kerψ∗, qU1 is time-like (space-like) and there exists a constant
µ ∈ (1,+∞) such that

q2 = µId.

where Id is the identity operator. If ψ is a proper slant submersion of type-1, then
µ = cosh2 φ, with φ > 0.
(b) ψ is slant submersion of type-1 if and only if for any space-like (time-like)
vector field U1 ∈ kerψ∗, qU1 is time-like (space-like) and there exists a constant
µ ∈ (0, 1) such that

q2 = µId.

where Id is identity operator. If ψ is a proper slant submersion of type-1, then
µ = cos2 φ, with 0 < φ < π

2 .

Definition 4. Let (B, gB,P) be an almost para-Hermitian manifold and (B̃, gB̃) be a
pseudo-Riemannian manifold. A pseudo-Riemannian submersion ψ : (B, gB,P) →
(B̃, gB̃) is known a semi-slant submersion if there is a distribution D1 ∈ kerψ∗ such
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that

kerψ∗ = D1 ⊕ D2, P(D1) = D1

and the angle φ is known the semi-slant angle of the submersion where D2 is the
orthogonal complement of D1 in kerψ∗.

Definition 5. Let (B, gB,P) be an almost para-Hermitian manifold and (B̃, gB̃) be a
pseudo-Riemannian manifold. A pseudo-Riemannian submersion ψ : (B, gB,P) →
(B̃, gB̃) is known a hemi-slant submersion if the vertical distribution kerψ∗ of ψ

accepts two orthogonal complementary distribution Dφ and D⊥, such that Dφ is slant
and D⊥ is anti-invariant, i.e., we can show

kerψ∗ = Dφ ⊕ D⊥

Therefore, the angle φ is known the hemi-slant angle of the submersion.

ψ : B → B̃ is a differentiable map and (B, gB) and (B̃, gB̃) be pseudo-Riemannian
manifolds. Then, the second fundamental form of ψ is described by

(∇ψ∗)(ζ, V ) = ∇ψ
ζ ψ∗V − ψ∗(∇ζV ) (13)

for ζ, V ∈ Γ(B). When trace(∇ψ∗) = 0, we can say that ψ is harmonic and ψ is a
totally geodesic map when (∇ψ∗)(ζ, V ) = 0 for ζ, V ∈ Γ(TB) ( [14]). Recall that

∇ψ is the pullback connection.

3. Quasi Hemi-Slant Submersions

Definition 6. Let (B, gB,P) be an almost para-Hermitian manifold and (B̃, gB̃) be a
pseudo-Riemannian manifold. A pseudo-Riemannian submersion ψ : (B, gB,P) →
(B̃, gB̃) is known a quasi hemi-slant submersion if there are three orthogonal distri-

butions D, Dφand D⊥, such that

• kerψ∗ = D⊕ Dφ ⊕ D⊥,
• P(D) = D i.e., D is invariant,
• the angle φ between PU and Dφ is constant. Also, the angle φ is known

slant angle.
• D⊥ is anti-invariant, PD⊥ ⊆ (kerψ∗)

⊥.

We can say that φ is quasi hemi-slant angle of B.

Now, if we show the dimension of D, Dφand D⊥, by n1, n2 and n3, respectively,
we can easily notice the following situations:

(1) If n1 = 0, then B is a hemi-slant submersion
(2) If n2 = 0, then B is a semi-invariant submersion
(3) If n3 = 0, then B is a semi-slant submersion
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If we observe the three items above , we can say that also they are all examples of
quasi hemi-slant submersion.

Let ψ : (B, gB,P) → (B̃, gB̃) be a quasi hemi-slant submersion with type-1 or 2.
Then, we obtain;

TB = kerψ∗ ⊕ (kerψ∗)
⊥ (14)

For any non-null vector field U ∈ (kerψ∗), we get

U = KU + LU +RU, (15)

where KU,LU and RU are projection morphisms of kerψ∗ onto D, Dφ and D⊥,
respectively.
We denote endomorphisms ϕ, the projection morphisms f on B. For non-null vector
field U ∈ (kerψ∗), we have

PU = ϕU + fU, (16)

where ϕU ∈ kerψ∗ and fU ∈ (kerψ∗)
⊥.

From (15) and (16) we get:

PU = P(KU) + P(LU) + P(RU),

= ϕ(KU) + f(KU) + ϕ(LU) + f(LU) + ϕ(RU) + f(RU).

Since P(D) = (D) and PD⊥ ⊆ (kerψ∗)
⊥ we obtain f(KU) = 0 and ϕ(RU) = 0.

Now, let us arrange the above equation

PU = ϕ(KU) + ϕ(LU) + f(LU) + f(RU). (17)

So, we have the following decomposition:

P(kerψ∗) = D⊕ ϕDφ ⊕ fDφ ⊕ PD⊥. (18)

Since, fDφ ⊆ (kerψ∗)
⊥ and PD⊥ ⊆ (kerψ∗)

⊥, we have;

(kerψ∗)
⊥ = fDφ ⊕ PD⊥ ⊕ µ

where µ is the orthogonal complementary distribution of fDφ ⊕ PD⊥ in (kerψ∗)
⊥.

In adittion, for any non-null vector field W ∈ (kerψ∗)
⊥ is decomposed as

PW = BW + CW (19)

where BW ∈ Γ(Dφ ⊕ D⊥) and CW ∈ Γ(µ).

Lemma 1. Let ψ : (B, gB,P) → (B̃, gB̃) is a quasi hemi-slant submersion with type
∼1 or 2. Let us suppose the total manifold as an almost para-Hermitian manifold
and base manifold as a pseudo-Riemannian manifold. Then, we obtain the following
equations:
(a) ϕDφ = Dφ (b) ϕD⊥ = {0}
(c) BfDφ = Dφ (d) BfD⊥ = D⊥.
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Proof. For any non-null vector fieldW ∈ Γ(Dφ), by (16), we have PW = ϕW+fW .
On the other hand, with the help of (18), PW ∈ Γ(Dφ), i.e., fW = 0. Thus,
we obtain ϕDφ = Dφ. For any non-null vector field U ∈ Γ(D⊥), by (16), we have
PU = ϕU+fU . Beside this, by using (18), PW ∈ (kerψ∗)

⊥, i.e., ϕU = 0. Thus, we
obtain ϕD⊥ = {0}. To prove (c) and (d), the same method above can be used. □

Lemma 2. Let ψ : (B, gB,P) → (B̃, gB̃) is a quasi hemi-slant submersion with type
∼1 or 2. Let us suppose the total manifold as an almost para-Hermitian manifold
and base manifold as a pseudo-Riemannian manifold. Then, we obtain the following
equations:
(a) ϕ2Z +BfZ = Z (b) C2U + fBU = U
(c) ϕBU + BCU = {0} (d) fϕZ + CfZ = {0} for all non-null vectors Z ∈
Γ(kerψ∗) and U ∈ Γ(kerψ∗)

⊥.

Proof. For any non-null vector field Z ∈ Γ(kerψ∗), by (1), we have P2Z = Z.
Using (16) and (19), we have Z = ϕ2Z + fϕZ + BfZ + CfZ. If this equation is
considered as decomposed into the vertical and horizontal parts, we obtain (a) and
(d). (b) and (c) can be proved with the same method above. □

Theorem 2. Let ψ : (B, gB,P) → (B̃, gB̃) be a quasi hemi-slant submersion with
type∼1. Let us suppose the total manifold as an almost para-Hermitian manifold
and base manifold as a pseudo-Riemannian manifold. In this case, ψ is quasi-hemi-
slant submersion such that:

(a) ϕ2Z = cosh2 φZ
(b) gB(ϕZ, ϕY ) = − cosh2 φgB(Z, Y )
(c) gB(fZ, fY ) = sinh2 φgB(Z, Y )

for any space-like(time-like) vector field Z, Y ∈ Γ(Dφ).

Proof. (a) If ψ is a quasi hemi-slant submersion of type 1, for any space-like vector
field Z ∈ Γ(Dφ), ϕZ is timelike and by virtue of (1), PZ is time-like. Then, there
exists φ > 0 such that

coshφ =
∥ϕZ∥
∥PZ∥

=

√
−gB(ϕZ, ϕZ)√
−gB(PZ,PZ)

.

Using the above equation, (1) and (16), we get:

gB(ϕ
2Z,Z) = −gB(ϕZ, ϕZ) = − cosh2 φgB(PZ,PZ) = cosh2 φgB(P2Z,Z).

From the above equation and (1), we obtain ϕ2Z = cosh2 φZ.
Everything works in a similar way for any time-like vector field Z ∈ Γ(Dφ).

(b) For any space-like(time-like) vector field Z, Y ∈ Γ(Dφ), by virtue of (1),
we get gB(PZ, Y ) = −gB(Z,PY ). On the other hand, with the help of (16), we
get gB(ϕZ + fZ, Y ) = −gB(Z, ϕY + fY ). If we arrange the last equation, we
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obtain gB(ϕZ, Y ) = −gB(Z, ϕY ). Beside this, if Y = ϕY is accepted, we ob-
tain gB(ϕZ, ϕY ) = −gB(Z, ϕ2Y ). Using Theorem 2(a), we get gB(ϕZ, ϕY ) =
− cosh2 φgB(Z, Y )
To prove (c), the same method above can be used. □

Theorem 3. Let ψ : (B, gB,P) → (B̃, gB̃) be a quasi hemi-slant submersion with
type∼2. Let us suppose the total manifold as an almost para-Hermitian manifold
and base manifold as a pseudo-Riemannian manifold. In this case, ψ is quasi hemi-
slant submersion such that:

(a) ϕ2Z = cos2 φZ
(b) gB(ϕZ, ϕY ) = − cos2 φgB(Z, Y )
(c) gB(fZ, fY ) = − sin2 φgB(Z, Y )

for any space-like(time-like) vector field Z, Y ∈ Γ(Dφ).

Proof. This proof can be done using the techniques of the proof of Theorem 2.

Let’s consider para-complex structure on R2n
n :

P (
∂

∂y2i
) =

∂

∂y2i−1
, P (

∂

∂y2i−1
) =

∂

∂y2i
, g = (dy1)2−(dy2)2+(dy3)2− ...−(dy2n)2

here i ∈ {1, ..., n}. Also, (y1, y2, ..., y2n) denotes the cartesian coordinates over R2n
n .
□

We can easily present non-trivial examples of proper quasi hemi-slant pseudo-
Riemannian submersions of type∼1 and 2.

Example 1. Let’s determine map ψ : R10
5 → R5

2

ψ(y1, ..., y10) = (y2 sinhβ + y3 coshβ, y4, y6, y9, y10),

So, ψ is a proper quasi hemi-slant pseudo-Riemannian submersion with type ∼ 1.
By direct calculations, we have

D =< ∂
∂y7

, ∂
∂y8

>

Dφ =< coshβ ∂
∂y2

− sinhβ ∂
∂y3

, ∂
∂y1

>

D⊥ =< ∂
∂y5

>

with hemi-slant angle φ with ϕ2 = cosh2 βI.

Example 2. Let’s determine map ψ : R10
5 → R5

2

ψ(y1, ..., y10) = (y1 sinα+ y3 cosα, y2 sinβ + y4 cosβ, y6, y9, y10)
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So, ψ is a proper quasi hemi-slant pseudo-Riemannian submersion with type ∼ 2.
By direct calculations, we get

D =< ∂
∂y7

, ∂
∂y8

>

Dφ =< − cosα ∂
∂y1

+ sinα ∂
∂y3

,− cosβ ∂
∂y2

+ sinβ ∂
∂y4

>

D⊥ =< ∂
∂y5

> with hemi-slant angle φ with ϕ2 = cos2(α− β)I.

Lemma 3. Let ψ : (B, gB,P) → (B̃, gB̃) be a quasi hemi-slant pseudo-Riemannian
submersion with type ∼1 or 2. Let us suppose the total manifold as a para-Kaehler
manifold and base manifold as a pseudo-Riemannian manifold. So, we obtain the
following equations.

∇̂UϕW + TUfW = ϕ∇̂UW + BT UW (20)

TUϕW +H∇UfW = f∇̂UW + CT UW (21)

V∇XBY +AXCY = ϕAXY + BH∇XY (22)

AXBY +H∇XCY = fAXY + CH∇XY (23)

∇̂UBX + TUCX = ϕTUX + BH∇UX (24)

TUBX +H∇UCX = fTUX + CH∇UX , (25)

for any non-null vector fields U,W ∈ Γ(kerψ∗) and X ,Y ∈ Γ(kerψ∗)
⊥.

Proof. For any non-null vector fields U,W ∈ Γ(kerψ∗), using (2), we get

P∇UW = ∇UPW

Hence, using (5)∼(6)∼(16) and (19), we get

BT UW + CT UW + ϕ∇̂UW + f∇̂UW = TUϕW + ∇̂UϕW + TUfW +H∇UfW

Taking the vertical and horizontal parts of this equation, we get (20) and (21). The
other assertions can be obtained by using (7)∼(8)∼(16) and (19).

Now we can show

(∇Uϕ)W = ∇̂UϕW − ϕ∇̂UW

(∇Uf)W = H∇UfW − f∇̂UW,

(∇XB)ζ = ∇̂XBζ −BH∇Xζ

(∇XC)ζ = H∇XCζ − CH∇Xζ

for any non-null vector fields U,W ∈ kerψ∗ and X, ζ ∈ (kerψ∗)
⊥.

The above assertions can be obtained by using (20)∼(21)∼(22) and (23), respec-
tively. □
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Lemma 4. Let ψ : (B, gB,P) → (B̃, gB̃) be a quasi-hemi-slant pseudo-Riemannian
submersion with type ∼1 and type ∼ 2. Let us suppose the total manifold as a
para-Kaehler manifold and base manifold as a pseudo-Riemannian manifold. So,
we obtain the following equations.

(∇Uϕ)W = BT UW − TUfW (26)

(∇Uf)W = CT UW − TUϕW (27)

(∇XB)ζ = ϕAXζ −AXBζ (28)

(∇XC)ζ = fAXζ −AXCζ (29)

for any non-null vector fields U,W ∈ kerψ∗ and X, ζ ∈ (kerψ∗)
⊥.

Proof. The proof is simple.
If ϕ and f are parallel with respect to ∇ on B, from (26) and (27), we have

BT UW = TUfW and CT UW = TUϕW for any U,W ∈ Γ(TB). □

Theorem 4. Let ψ : (B, gB,P) → (B̃, gB̃) be a proper quasi hemi-slant pseudo-
Riemannian submersion with type∼1 or 2 from a para-Kaehler manifold to a pseudo-
Riemannian manifold. The invariant distribution D is integrable if and only if

gB(TWϕU − TUϕW, fLζ + fRζ) = gB(V∇UϕW − V∇WϕU, ϕLζ) (30)

for any non-null vector fields U,W ∈ Γ(D) and ζ ∈ Γ(Dφ ⊕ D⊥).

Proof. For any non-null vector fields U,W ∈ Γ(D) and ζ ∈ Γ(Dφ ⊕ D⊥). Then using
(1),(2),(5) and (16) obtained:

gB([U,W ], ζ) = −gB(∇UPW,Pζ) + gB(∇WPU,Pζ)
= −gB(∇UϕW,Pζ) + gB(∇WϕU,Pζ)
= gB(TWϕU − TUϕW, fLζ + fRζ)

+ gB(V∇WϕU − V∇UϕW,ϕLζ). (31)

So, the proof is complete. □

Theorem 5. Let ψ : (B, gB,P) → (B̃, gB̃) be a proper quasi hemi-slant pseudo-
Riemannian submersion with type∼1 or 2 from a para-Kaehler manifold to a pseudo-
Riemannian manifold. The slant distribution Dφ is integrable if and only if

gB(TUfϕW − TW fϕU,X ) = gB(TUfW − TW fU, ϕKX )

+ gB(H∇UfW −H∇W fU, fRX ) (32)

for any non-null vector fields U,W ∈ Γ(Dφ) and X ∈ Γ(D⊕ D⊥).
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Proof. We only give its proof ψ is type∼1. For any non-null vector fields U,W ∈
Γ(Dφ) and X ∈ Γ(D⊕ D⊥). Then using (1),(2),(6), (16) and Theorem 2(a), we get:

gB([U,W ],X ) = −gB(∇UPW,PX ) + gB(∇WPU,PX )

= −gB(∇UϕW,PX )− gB(∇UfW,PX )

+ gB(∇WϕU,PX ) + gB(∇W fU,PX )

= − cosh2 φgB([U,W ],X )

− gB(TUfϕW − TW fϕU,X )

+ gB(TUfW +H∇UfW, ϕKX + fRX )

− gB(TW fU +H∇W fU, ϕKX + fRX ).

Then, we have;

(1 + cosh2 φ)gB([U,W ],X ) = gB(TUfW − TW fU, ϕKX )

+ gB(H∇UfW −H∇W fU, fRX )

− gB(TUfϕW − TW fϕU,X )

which completes proof. □

Corollary 1. Let ψ : (B, gB,P) → (B̃, gB̃) be a proper quasi hemi-slant pseudo-
Riemannian submersion with type∼1 or 2 from a para-Kaehler manifold to a pseudo-
Riemannian manifold. If for any non-null vector fields U,W ∈ Γ(Dφ) and X ∈
Γ(D⊕ D⊥)

H∇UfW −H∇W fU ∈ Γ(fDφ ⊕ µ)

TUfϕW − TW fϕU ∈ Γ(Dφ)

TUfW − TW fU ∈ Γ(D⊥ ⊕ Dφ)

Theorem 6. Let ψ : (B, gB,P) → (B̃, gB̃) be a proper quasi hemi-slant pseudo-
Riemannian submersion with type∼1 or 2 from a para-Kaehler manifold to a pseudo-
Riemannian manifold. The slant distribution D⊥ is integrable.

Proof. The proof of Theorem 6 is similar to those given in ( [28]). Therefore we
skip its proof. □

Corollary 2. Let ψ : (B, gB,P) → (B̃, gB̃) be a proper quasi hemi-slant pseudo-
Riemannian submersion with type∼1 or 2 from a para-Kaehler manifold to a pseudo-
Riemannian manifold. In this case, for any non-null vector fields U,W ∈ Γ(D⊥)
we get

TUPW = TWPU. (33)

Proof. Using Lemma 1(b), from (20), we obtain

TUfW = ϕ(∇̂UW ) + BT WU (34)

If we take U =W in (34) and subtracting it from (34), we get

TUfW − TW fU = ϕ [U,W ] (35)
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By Theorem 6 and Lemma 1(b), we get ϕ [U,W ] = 0 from (35). This gives (33),
since fU = PU for every non-null vector field U ∈ D⊥. □

Theorem 7. Let ψ : (B, gB,P) → (B̃, gB̃) be a proper quasi hemi-slant pseudo-
Riemannian submersion with type∼1 from a para-Kaehler manifold to a pseudo-
Riemannian manifold. In this case, the horizontal distribution (kerψ∗)

⊥ describes
a totally geodesic foliation on B if and only if

gB(AWZ,Kζ + cosh2 φLζ) = −gB(H∇WZ, fϕKζ + fϕLζ)

+gB(AWBZ +H∇WCZ, fζ) (36)

for any non-null vector fields W,Z ∈ (kerψ∗)
⊥ and ζ ∈ (kerψ∗).

Proof. For any non-null vectors W,Z ∈ (kerψ∗)
⊥ and ζ ∈ (kerψ∗), we get:

gB(∇WZ, ζ) = gB(∇WZ,Kζ + Lζ +Rζ)

Then using (1), (2), (7), (8), (16), (17) and Theorem 2(a), we get

gB(∇WZ, ζ) = −gB(∇WPZ,PKζ)− gB(∇WPZ,PLζ)
− gB(∇WPZ,PRζ)
= gB(AWZ,Kζ +BfKζ + cosh2 φLζ)

+ gB(H∇WZ, fϕKζ + fϕLζ)

− gB(AWBZ +H∇WCZ, fKζ + fLζ + fRζ).

Since fKζ = 0 and fKζ + fLζ + fRζ = fζ, we obtain;

gB(∇WZ, ζ) = gB(AWZ,Kζ + cosh2 φLζ)

+ gB(H∇WZ, fϕKζ + fϕLζ)

− gB(AWBZ +H∇WCZ, fζ)

which gives proof. □

Similarly, the following conclusion is obtained.

Theorem 8. Let ψ : (B, gB,P) → (B̃, gB̃) be a proper quasi hemi-slant pseudo-
Riemannian submersion with type∼1 from a para-Kaehler manifold to a pseudo-
Riemannian manifold. In this case, the vertical distribution (kerψ∗) describes a
totally geodesic foliation on B if and only if

gB(TUζ + cosh2 φTULζ,W) = gB(H∇UfϕKζ +H∇UfϕLζ,W)

+gB(TUfζ,BW) + gB(H∇Ufζ, CW). (37)

for any non-null vector fields U, ζ ∈ Γ(kerψ∗) and W ∈ Γ(kerψ∗)
⊥.

Using Theorem 7 and Theorem 8, we get the Theorem 9.
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Theorem 9. Let ψ : (B, gB,P) → (B̃, gB̃) be a proper quasi hemi-slant pseudo-
Riemannian submersion with type∼1 from a para-Kaehler manifold to a pseudo-
Riemannian manifold. In this case, the total space is a locally product Bkerψ∗ ×
Bkerψ⊥

∗
where Bkerψ∗ and Bkerψ⊥

∗
are leaves of (kerψ∗) and (kerψ∗)

⊥, respectively,

if and only if (36) and (37) are satisfied.

Theorem 10. Let ψ : (B, gB,P) → (B̃, gB̃) be a proper quasi hemi-slant pseudo-
Riemannian submersion with type∼1 or 2 from a para-Kaehler manifold to a pseudo-
Riemannian manifold. In this case, the invariant distribution D describes a totally
geodesic foliation on B if and only if

gB(TWϕZ, fLY + fRY ) = −gB(V∇WϕZ, ϕLY ) (38)

and

gB(TWϕZ, Cξ) = −gB(V∇WϕZ, Bξ) (39)

Proof. For all non-null vectors W,Z ∈ Γ(D) and Y ∈ Γ(Dφ1 ⊕ Dφ2) and ξ ∈
Γ(kerψ∗)

⊥. Then using (1),(2),(5),(16) and fZ = 0, we get:

gB(∇WZ, Y ) = −gB(∇WPZ,PY )

= −gB(∇WPZ,PLY + PRY )

= −gB(TWϕZ, fLY + fRY )− gB(V∇WϕZ, ϕLY )

Then, again using (1),(2),(5),(16),(19) and fZ = 0, we get:

gB(∇WZ, ξ) = −gB(∇WPZ,Pξ)
= −gB(∇WϕZ, Bξ + Cξ)

= −gB(TWϕZ, Cξ)− gB(V∇WϕZ, Bξ).
So, the proof is complete. □

Theorem 11. Let ψ : (B, gB,P) → (B̃, gB̃) be a proper quasi hemi-slant pseudo-
Riemannian submersion with type∼1 or 2 from a para-Kaehler manifold to a pseudo-
Riemannian manifold. In this case, the slant distribution Dφ describes a totally
geodesic foliation on B if and only if

gB(TUfϕV, Y ) = gB(TUfV, ϕKY ) + gB(H∇UfV, fRY ) (40)

and

gB(H∇UfϕV, ξ) = gB(H∇UfV,Cξ) + gB(TUfV,Bξ) (41)

for any non-null vector fields U, V ∈ Γ(Dφ) and Y ∈ Γ(D⊕D⊥) and ξ ∈ Γ(kerψ∗)
⊥.

Proof. We will show it when ψ is type∼1. For all non-null vectors U, V ∈ Γ(Dφ)
and Y ∈ Γ(D ⊕ D⊥) and ξ ∈ Γ(kerψ∗)

⊥. Then using (1),(2),(6),(16) and Theorem
2(a), we get:

gB(∇UV, Y ) = −gB(∇UϕV,PY )− gB(∇UfV,PY )

= cosh2 φgB(∇UV, Y ) + gB(TUfϕV, Y )
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− gB(TUfV, ϕKY )− gB(H∇UfV, fRY ).

Hence we obtain;

− sinh2 φ1gB(∇UV, Y ) = gB(TUfϕV, Y )− gB(TUfV, ϕKY )

− gB(H∇UfV, fRY ).

Similarly, using (1),(2),(6),(16),(19) and Theorem 3.4(a), we get:

gB(∇UV, ξ) = −gB(∇UϕV,Pξ)− gB(∇UfV,Pξ)
= cosh2 φ1gB(∇UV, ξ) + gB(H∇UfϕV, ξ)

− gB(H∇UfV,Cξ)− gB(TUfV,Bξ).
Hence, arrive at

− sinh2 φ1gB(∇UV, ξ) = gB(H∇UfϕV, ξ)− gB(H∇UfV,Cξ)

− gB(TUfV,Bξ)
which gives proof. □

Theorem 12. Let ψ : (B, gB,P) → (B̃, gB̃) be a proper quasi-hemi-slant pseudo-
Riemannian submersion with type∼1 or 2 from a para-Kaehler manifold to a pseudo-
Riemannian manifold. In this case, the anti-invariant distribution D⊥ describes a
totally geodesic foliation on B if and only if

gB(AUζ, fϕKV + fϕLV ) = −gB(H∇Ufζ, fV ) (42)

and

gB(AUPζ,Bξ) = −gB(H∇UPζ, Cξ) (43)

for any non-null vector fields U, ζ ∈ Γ(D⊥) and V ∈ Γ(D⊕ Dφ) and ξ ∈ Γ(kerψ∗)
⊥.

Proof. We will show it when ψ is type∼1. For all non-null vectors U, ζ ∈ Γ(D⊥) and
KV + LV ∈ Γ(D⊕ Dφ) and ξ ∈ Γ(kerψ∗)

⊥. Then using (1),(16),(19) and Theorem
2(a), we get:

gB(∇Uζ, V ) = −gB(∇UPζ,PV ) = −gB(∇UPζ, ϕV )− gB(∇UPζ, fV )

= cosh2 φgB(∇Uζ, LV )− gB(∇Uζ,KV ) + gB(∇Uζ,BfKV )

− gB(∇Uζ, fϕKV )− gB(∇Uζ, fϕLV )

− gB(∇UPζ, fV ). (44)

We know that gB(∇Uζ, V ) = gB(∇Uζ,KV ) + gB(∇Uζ, LV ) and using (8) and (16)
from equation (44), we arrive at;

gB(∇Uζ,− sinh2 φLV −BfKV ) = −gB(AUζ, fϕKV + fϕLV )

− gB(H∇Ufζ, fV ) (45)

which gives (42). Similarly, using (8) and (19), we get:

gB(∇Uζ, ξ) = −gB(∇UPζ,Pξ) = −gB(AUPζ,Bξ)− gB(H∇UPζ, Cξ) (46)
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which gives (43). □

Now, from Theorem 10, Theorem 11 and Theorem 12 we arrive at the Theorem
13. This is decomposition theorem for the fiber:

Theorem 13. Let ψ : (B, gB,P) → (B̃, gB̃) be a proper quasi-hemi-slant pseudo-
Riemannian submersion with type∼1 or 2 from a para-Kaehler manifold to a pseudo-
Riemannian manifold. In this case, the fibers of ψ are locally product BD×BDφ×BD⊥

are leaves of D, Dφ and D⊥ ,respectively, if and only if the conditions (38),(39),(40),
(41),(42) and (43) hold.

Theorem 14. Let ψ : (B, gB,P) → (B̃, gB̃) be a proper quasi hemi-slant pseudo-
Riemannian submersion with type∼1 from a para-Kaehler manifold to a pseudo-
Riemannian manifold. In this case, ψ is a totally geodesic map on B if and only
if

gB(cosh
2 φ∇ULW +H∇UfϕLW, Y )

= gB(V∇UPKW + TUfLW + TUfRW,PY )

+gB(TUPKW +H∇UfLW +H∇UfRW,CY ) (47)

and

gB(cosh
2 φ∇Y LU +H∇Y fϕLU,Z)

= gB(V∇Y PKU +AY fLU +AY PRU,BZ)
gB(AY PKU +H∇Y fLU +H∇Y fRU,CZ) (48)

For any non-null vector fields U,W ∈ Γ(kerψ∗) and Y,Z ∈ Γ(kerψ∗)
⊥.

Proof. For any non-null vector fields U,W ∈ Γ(kerψ∗) and Y, Z ∈ Γ(kerψ∗)
⊥.

Then, using (1),(2),(5),(16),(19) and Theorem 2(a) we get:

gB(∇UW,Y ) = −gB(∇UPW,PY )

= −gB(∇UPKW,PY )− gB(∇UPLW,PY )

− gB(∇UPRW,PY )

= −gB(V∇UPKW + TUfLW + TUfRW,PY )

+ gB(cosh
2 φ∇ULW +H∇UfϕLW, Y )

− gB(TUPKW +H∇UfLW +H∇UfRW,CY )

Then, again using (1),(7),(8),(16),(19) and Theorem 2(a), we get:

gB(∇Y U,Z) = −gB(∇Y PU,PZ)
= −gB(∇Y PKU,PZ)− gB(∇Y PLU,PZ)
− gB(∇Y PRU,PZ)
= −gB(V∇Y PKU +AY fLU +AY fRU,BZ)

− gB(cosh
2 φ∇Y LU +H∇Y fϕLU,Z)
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− gB(AY PKU +H∇Y fLU +H∇Y fRU,CZ).

Therefore, a pseudo-Riemannian submersion ψ is said to be totally umbilical if

TU1U2 = g(U1, U2)H, (49)

here H is the mean curvature vector field of the fibre in B for all non-null vector
fields U1, U2 ∈ Γ(kerψ∗). The fibre is said to be minimal if H = 0( [4]). □

Theorem 15. Let ψ : (B, gB,P) → (B̃, gB̃) be a proper quasi-hemi-slant pseudo-
Riemannian submersion from a para-Kaehler manifold to a pseudo-Riemannian
manifold with totally umbilical fibers. In that case, either the anti-invariant distri-
bution dim(D⊥) = 1 or the mean curvature vector field H of any fiber ψ−1(q̄), q̄ ∈ B
is perpendicular to PD⊥. Eventually, if ϕ is parallel, then H ∈ Γ(µ). Moreover, if
f is parallel, then T ≡ 0.

Proof. The proof is obtained by simple calculations. □
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[25] Şahin, B., Semi-invariant submersions from almost Hermitian manifold, Canadian Mathe-

matical Bulletin, 56(1) (2013), 173-183. https://doi.org/10.4153/CMB-2011-144-8
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