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Bilal DEMİR1 and Mustafa KARATAŞ2
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Abstract. Fixed points of matrices have many applications in various areas

of science and mathematics. The extended modular group Γ is the group of
2 × 2 matrices with integer entries and determinant ±1. There are strong

connections between the extended modular group, continued fractions and

Farey graph. The Farey graph is a graph with vertex set Q∞ = Q ∪ {∞}. In

this study we consider the elements in Γ that fix rationals. For a given rational

number, we use its Farey neighbours to obtain the matrix representation of
the element in Γ that fixes the given rational. Then we express such elements

as words in terms of generators using the relations between the Farey graph

and continued fractions. Finally we give the new block reduced form of these
words which all blocks have Fibonacci numbers entries.

1. Introduction

The modular group Γ = PSL(2,Z) is the projective special linear group of 2× 2
matrices over the ring of integers with determinant one. This group is the quotient

group SL(2,Z)/±I, hence each matrix

(
a b
c d

)
represents the same element with

its negative

(
−a −b
−c −d

)
. The modular group acts on the upper half plane H via

linear fractional transformations z → az+b
cz+d . These transformations are orientation

preserving isometries of H. Modular group is generated by two elements;

T =

(
0 −1
1 0

)
U =

(
1 1
0 1

)
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The presentation of Γ is;

Γ =< T, S : T 2 = S3 = I >≂ Z2 ∗ Z3,

the free product of Z2 and Z3 where S = TU =

(
0 −1
1 1

)
. Let us denote the set

G =

{(
a b
c d

)
: a, b, c, d ∈ Z, ad− bc = −1

}
. The corresponding transformations

of elements in G are anti-automorphisms. Thus the extended modular group can be
defined as Γ = PSL(2,Z)∪G. Hence, the extended modular group is the projective
linear group PGL(2,Z) and isomorphic to the free product of two dihedral groups
of order four and six amalgamated with the cyclic group of order 2 i.e.

Γ =< T, S,R : T 2 = S3 = R2 = (TR)
2
= (SR)

2
= I >≂ D2 ∗Z2

D3

where R =

(
0 1
1 0

)
as a reflection map. So the modular group is normal in the

extended modular group with index 2.
For each V ∈ Γ; the number z ∈ C∪{∞} is called a fixed point of V if V (z) = z

where V (z) is the corresponding transformation. There is a relation between the
number fixed points and trace of V . Elements of Γ are classified according to the
number of fixed points. There are five types of elements in Γ. Now we list the
certain types of elements.

If V ∈ Γ then V has at most two fixed points. Also if;

• |trV | > 2, then there are two fixed points in R ∪ {∞} and V is called a
hyperbolic element.

• |trV | = 2, then there is one fixed point in R ∪ {∞} and V is called a
parabolic element.

• |trV | < 2, then there are two conjugate fixed points in C ∪ {∞} and V is
called an elliptic element.

If V ∈ G then it has either two fixed points in the real line or the fixed point set is
a circle perpendicular to real line. Also if;

• |trV | ̸= 0, then there is one fixed point in R ∪ {∞} and V is called a glide
reflection.

• |trV | = 0, then the set of fixed points is a circle perpendecular to the real
line and V is called a reflection.

For more information see [1, 2, 11].
There are impressive relations between the modular group and continued frac-

tions. In [25], Rosen defined λ continued fractions for λ ∈ R;

[r0λ; r1λ, ..., rnλ] = r0λ− 1

r1λ− 1
r2λ− 1

...rn−1λ− 1
rnλ
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In this expansion, for i ≤ n, Ci =
pi

qi
= [r0λ; r1λ, ..., riλ] is called ith convergent of

the expansion. And it can be seen by calculation pi.qi−1 − qi.pi−1 = ±1. Owing to
this viewpoint, Rosen revealed a criteria for membership problem for Hecke groups

H(λ), a general class of modular group. He proved that an element

(
a b
c d

)
∈

H(λ) if and only if a
c has a finite λ continued fraction expansion. For λ = 1 this

expression is called integer continued fraction and related to the modular group,
on the contrary the membership problem for the modular group is obvious because
Γ = PSL(2,Z). On the other hand, for λ = 1 it is possible to make connections
between Rosen’s fractions and the Farey sequence.

The Farey sequence of order n is a complete and ordered set of reduced rational
numbers in the interval [0, 1] which have the denominators not exceeding n.

F1 =

{
0

1
,
1

1

}

F2 =

{
0

1
,
1

2
,
1

1

}
F3 =

{
0

1
,
1

3
,
1

2
,
2

3
,
1

1

}
F4 =

{
0

1
,
1

4
,
1

3
,
1

2
,
2

3
,
3

4
,
1

1

}
It can be seen that if a

c and b
d appears one after another in some Fn then ad− bc =

±1. We called such rationals Farey neighbours. All Farey neighbours of a rational
x is denoted by N (x). The Farey sum of a

c and b
d defined as;

a

c
⊕ b

d
=

a+ b

c+ d

All Farey neigbours of a rational number can be obtained by Farey sum. More
precisely if a rational p

q first appears in Fn by the Farey sum of a
c and b

d in Fn−1

i.e. a
c ⊕ b

d = a+b
c+d = p

q then a
c and b

d are Farey neighbours of p
q . Here a

c and b
d are

called the Farey parents of p
q , and conversely p

q is called the Farey child of a
c and

b
d . If

ai

ci
is a Farey neighbour of p

q then ai

ci
⊕ p

q is also a Farey neighbour of p
q .

Observe that every Fn includes Fn−1 and new members are obtained by Farey
sum of its neighbours. For instance 1

2 ∈ F2 is the Farey sum of 0
1 and 1

1 in F1.
This rule is known as the mediant rule. It should be noted that if the denominator
of a Farey sum of two neighbours in Fn−1 exceeds n then this will not be appear
in Fn since the definition of Farey sequence. Definition of Farey sequence can
be extended to Q∞ by assuming ∞ = 1

0 . Hence for a given rational a
c ; it is

known that a
c has finite integer continued fraction expansion. In addition b

d is
the penultimate convergent of the integer continued fraction expansion of a

c . This
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Figure 1. Farey graph

yields ad − bc = ±1; in other words a
c and b

d are Farey neighbours. As a result(
a b
c d

)
∈ Γ.

The Farey graph is a graph with vertex set Q∞. And two reduced fractions p
q

and r
s are adjacent if and only if ps− rq = ±1, i.e they are Farey neighbours. An

edge between two vertices is drawn by a hyperbolic line in H. The edges between
1
0 = ∞ and every integer a are vertical lines. To construct the graph, first join the

vertices 1
0 ,

0
1 and 1

1 and obtain a big triangle. Then by induction if the endpoints of

a long edge are a
c and b

d , the label of the third vertex of the triangle is a
c ⊕

b
d = a+b

c+d ,
see Figure 1.

2. Motivation

There are numerous studies about modular and extended modular group in the
literature, related to many branches of mathematics such as group theory, number
theory automorphic functions, etc. Algebric structures of subgroups of modular
and extended modular group and related topics are studied in [3, 4, 8, 17–21, 26,
31, 33, 34]. In recent years, many studies have contributed the theory of continued
fractions related to the action of some subgroups of Möbius transformations. Series
studied the relations between geodesics on the quotient of the hyperbolic plane by
the modular group and continued fractions [28]. In [2], integer continued fraction
expansions and geodesic expansions were studied from the perspective of graph
theory. Short and Walker represented Rosen continued fractions by path in a class
of graphs in hyperbolic geometry [30]. Same authors defined even integer continued
fractions which all digits are even integers. And they studied connections between
even integer continued fractions and the Farey graph [29].

The fixed points of automorphisms and anti-automorphisms of the extended
complex plane have especially been of great interest in many fields of mathematics
such as number theory, functional analysis, theory of complex functions, geometry
and group theory [22,24,27]. Also fixed points of elements in GL (2,R) in tropical
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algebra are discussed in [7]. In this study we focus on the fixed points of the
elements in extended modular group Γ.

Fixed points of an element V =

(
a b
c d

)
∈ Γ can be calculated by solving the

equation az+b
cz+d = z i.e.

z =
a− d±

√
(a+ d)

2 − 4

2c
(1)

where ad − bc = 1 in other words the corresponding transformation V (z) is auto-
morphism. And similarly fixed points of an anti-automorphism are

z =
a− d±

√
(a+ d)

2
+ 4

2c
(2)

where ad − bc = −1. The action of extended modular group on extended rational
numbers Q∞ is intriguing. This action is defined as;(

a b
c d

)
.

(
p
q

)
=

(
ap+ bq
cp+ dq

)
where

(
a b
c d

)
∈ Γ and the column vector

(
p
q

)
represents the rational number p

q .

Fixed points of an element in Γ are rationals if and only if a+ d = 2 or −2 for the
equation (1) and a+ d = 0 for the equation (2). This means that rational numbers
are fixed only by parabolic or reflection elements.

In this study we establish relations between the Farey graph and elements of Γ
that fixes a given rational p

q . Firstly we obtain matrix representation of the element

fixing the rational p
q via the Farey neighbours of p

q . Then, we consider the relations

between paths in the Farey graph and integer continued fractions and obtain the
element as a word of the generators U and T . Afterwards, we express this word in
block reduced forms and new block reduced forms, related to Fibonacci numbers.
Finally, we give some relevant examples of our results.

3. Matrix Representations of the Parabolic and Reflection
Elements

In this section we obtain the parabolic and reflection elements in Γ as matrices
that fix a given rational. To do this, we use Farey neighbours.

Theorem 1. Let z = p
q ∈ Q∞ and r

s ,
m
k ∈ N (z) then the element

V =

(
ps−mq pm− pr
qs− qk pk − qr

)
(3)

fixes the rational z.
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Proof. Since r
s ,

m
k are Farey neighbours of z, the elements V1 =

(
p r
q s

)
and V2 =(

p m
q k

)
belong to Γ. Furhermore V1 and V2 both send ∞ to p

q . As a result

V = V2.V
−1
1 is the desired element. □

Let p
q and r

s are adjacent such that r
s < p

q then ps − qr = 1 otherwise −1.

The trace of the element mentioned in (3) is ps −mq + pk − qr. By the fact that
r
s ,

m
k are Farey neighbours of p

q we have ps − qr = ±1 and pk −mq = ±1. Hence

tr (V ) = 0,±2 and we have proved the following corollary.

Corollary 1. Let z = p
q ∈ Q∞ and r

s ,
m
k ∈ N (z). If r

s and m
k are at the same side

of p
q then the element in (3) is parabolic otherwise a reflection.

We know that the fixed point set of a reflection map is a circle perpendicular to
real axis. If the element V mentioned in (3) is a reflection then we know from [5]

that V fixes the circle centered at
(

ps−mq
qs−qk , 0

)
with radius 1

|qs−qk| .

Example 1. For the rational 8
3 one can choose Farey neighbours as 5

2 and 13
5 .

Then, we have the parabolic element

V =

(
−23 64
−9 25

)
fixes 8

3 . And if one chooses the neighbours as 5
2 and 11

4 then the reflection element

V ′ =

(
−17 48
−6 17

)
fixes not only 8

3 but also the circle centered at
(
17
6 , 0

)
with radius r = 1

6 .

Suppose a Farey neighbour of p
q is r

s . Then some other neighbours can be

obtained by the mediant rule. The following two theorems based on this idea.

Theorem 2. Let p
q ∈ Q∞ then the parabolic element that fixes p

q is

V =

(
±1− pq p2

−q2 ±1 + pq

)
Proof. Let p

q ∈ Q∞ and r
s is a Farey neighbour of p

q . By the mediant rule we have

another Farey neighbour p+r
q+s on the same side with r

s . Using the same technique

in the proof of Theorem 1 we have the element V as stated. Additionally the trace
of the element V is ±2 with determinant 1 which proves V is parabolic in Γ. □

Unlike the Theorem 1, Theorem 2 gives an algorithm to obtain a parabolic
element that fixes a given rational, without using anything but the rational. Here we
do similar things to obtain a reflection whose fixed circle includes a given rational.



FIXED POINTS OF EXTENDED MODULAR GROUP 1035

Theorem 3. Let p
q ∈ Q∞ and r

s is a Farey parent of p
q . Then the reflection element

in Γ that fixes p
q is

V =

(
ps− pq + qr p2 − 2pr
2qs− q2 −qr + qp− ps

)
Proof. Suppose p

q ∈ Q∞ and r
s is a Farey parent of p

q . Another Farey parent of p
q

which is at the opposite side of r
s can be obtained by the madiant rule. So we have

this parent as p−r
q−s . The elements V1 =

(
p r
q s

)
and V2 =

(
p p− r
q q − s

)
belong to Γ.

Although one of them is automorphism, the other is anti-automorphism since the
Farey parents are at the opposite side of p

q . Hence the element V = V2.V
−1
1 ∈ Γ

fixes p
q . Since trV = 0, V is a reflection that the fixed point set is a circle that

centered at
(

ps−pq+qr
2qs−q2 , 0

)
with radius r = 1

|2qs−q2| which proves the result. □

So far to this point, we have focused on Farey neighbours. Now observe all
the Farey neighbours of a given reduced rational p

q . Suppose r
s and m

k are Farey

parents of p
q such that r

s < p
q < m

k . Then p
q appears in Fq via r

s ⊕ m
k = p

q . In

other words, the hyperbolic line segment joining r
s and m

k covers all the neighbours.
Consequently all neighbours of p

q can be obtained by the mediant rule;

r

s
<

r

s
⊕ p

q
=

p+ r

q + s
<

p+ r

q + s
⊕ p

q
=

2p+ r

2q + s
< ... <

p

q
< ...

p

q
⊕ m

k
=

p+m

q + k
<

m

k

4. Farey Paths, Integer Continued Fractions and Blocks in
Extended Modular Group Γ

In this section, the relation between integer continued fractions and Farey paths
is used to obtain the word form of the element in Γ, which fixes a given rational
number, in terms of generators. A path in a graph consists of consequtive adjacent
vertices. So a Farey path < v1, v2, ..., vn > is a path such that vi = pi

qi
for i =

1, 2, ..., n are reduced rationals and since the consequtive vi’s are adjacent pi.qi−1−
qi.pi−1 = ±1. The Farey graph is connected hence there is a natural distance
between two rationals v and w that is d(v, w), the minimum number of edges in
any path from v to w in Fn. The distance of an integer to ∞ is d (∞, x) = 1.

Lemma 1. [25] Let p
q = [r0; r1, r2, ..., rn] be a reduced rational number then;

Ur0TUr1TUr2T...UrnT

(
1
0

)
=

(
p
q

)
Theorem 4. Let p

q be a reduced rational and have an integer continued fraction

expansion as [r0; r1, r2, ..., rn], then the parabolic element fixing p
q is

Ur0TUr1TUr2T...UrnT.U.TU−rnTU−rn−1T...U−r1TU−r0 (4)
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Proof. Let p
q = [r0; r1, r2, ..., rn]. By Lemma 1, we have

Ur0TUr1TUr2T...UrnT.U.TU−rnTU−rn−1T...U−r1TU−r0

(
p
q

)
= Ur0TUr1TUr2T...UrnT.U

(
1
0

)
= Ur0TUr1TUr2T...UrnT

(
1
0

)
=

(
p
q

)
Since conjugacy preserves the trace we have

tr
(
Ur0TUr1TUr2T...UrnT.U.TU−rnTU−rn−1T...U−r1TU−r0

)
= tr (U) = 2

which proves the element given in (4) is parabolic. □

We know from [9] that stabilizer of a point in Γ is an infinite cyclic group. So
we can give the following corollary.

Corollary 2. Let p
q = [r0; r1, r2, ..., rn] ∈ Q; then for all 0 ̸= k ∈ Z;

Ur0TUr1TUr2T...UrnT.Uk.TU−rnTU−rn−1T...U−r1TU−r0

is a parabolic element in Γ whose fixed point is p
q .

Now we obtain a reflection element as a word in generators of Γ that fixes a
given rational p

q .

Theorem 5. Let p
q be a reduced rational and have an integer continued fraction

expansion as [r0; r1, r2, ..., rn], then the reflection element in Γ fixing p
q is

Ur0TUr1TUr2T...UrnT.RTU.TU−rnTU−rn−1T...U−r1TU−r0

Proof. We have RTU =

(
1 1
0 −1

)
as a reflection map. Furthermore RTU

(
1
0

)
=(

1
0

)
. The rest of the proof follows similar to the proof of Theorem 4. □

Example 2. Choose the rational 8
5 . The integer continued fraction expansion of 8

5
is

8

5
= 2− 1

3− 1
2

= [2; 3, 2] .

Then the parabolic element fixing 8
5 is

U2TU3TU2TUTU−2TU−3TU−2 =

(
−39 64
−25 41

)
.
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And the reflection element is

U2TU3TU2TRTUTU−2TU−3TU−2 =

(
−89 104
−55 89

)
Here we mention about relations between paths in the Farey graph and integer

continued fractions. The convergents of a certain continued fraction expansion of
a reduced rational p

q = [r0; r1, ..., rn], are defined as Ci = pi

qi
= [r0; r1, ..., ri] for

0 ≤ i ≤ n, where C0 = p0

q0
= r0

1 and Cn = pn

qn
= p

q . Furthermore we know

that pi.qi−1 − qi.pi−1 = ±1. Hence every consequtive pair Ci and Ci−1 are Farey
neighbours. Also, since C0 = r0 ∈ Z and every integer is adjacent to infinity with
a vertical line, < ∞, C0, C1, ..., Cn−1, Cn > is a path from ∞ to p

q . To sum up

every integer fraction expansion of a rational p
q is related to a path from ∞ to

p
q . Moreover the shortest integer continued fraction of p

q is related to a geodesic

path from ∞ to p
q . In Theorem 4 and Theorem 5, the integer continued fraction

expansion of a given rational is related to an element in Γ that fixes the rational.
It is possible to make connections with Farey paths.

5. Block Reduced Forms in the Extended Modular Group Γ

Every element in Γ can be expressed as a word of T, S and R denoted by
W (T, S,R). Consider the blocks

TS =

(
1 1
0 1

)
and TS2 =

(
1 0
1 1

)
Using these blocks every reduced word W (T, S,R) in Γ where the sum of exponents
of R is an even number can be expressed as;

Si (TS)
m0

(
TS2

)n0
... (TS)

mk
(
TS2

)nk
T j ,

and every reduced word W (T, S,R) in Γ where the sum of exponents of R is an
odd number can be expressed as;

Si (TS)
m0

(
TS2

)n0
... (TS)

mk
(
TS2

)nk
T jR

Here i = 0, 1, 2, j = 0, 1, m0 and nk may be zero and other exponents are pos-
itive integers. This representetion is known as the block reduced form [13]. For
example, the block reduced form of the word W (T, S,R) = TSTSTSSTSST is

(TS)
2
.
(
TS2

)2
T . And the block reduced form of the wordW (T, S,R) = RTS2RTS2R

is (TS) .
(
TS2

)2
R. Trace classes of the modular group and extended modular group

are studied in [6, 13] by using the block reduced form. In this section we give the
block reduced form of the element in Γ fixing a given rational p

q .

Theorem 6. Let p
q be a reduced rational number and have an integer continued

fraction expansion [r0; r1, ..., rn] then the block form of the parabolic element fixing
p
q is
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W (T, S,R) = (TS)
r0−1 (

TS2
)
(TS)

r1−2 (
TS2

)
... (TS)

rn−1−2 (
TS2

)
.

(TS)
rn−1 (

TS2
)−1

(TS)
−rn−1 (

TS2
)
(TS)

−rn−1−2 (
TS2

)
.

... (TS)
−r1−2 (

TS2
)
(TS)

−r0−1

Proof. By Theorem 4, we know that

Ur0TUr1TUr2T...UrnT.U.TU−rnTU−rn−1T...U−r1TU−r0

fixes p
q . Considering U = TS we have

W (T, S,R) = (TS)
r0 .T. (TS)

r1 .T... (TS)
rn−1 .T. (TS)

rn .T

(TS) .T. (TS)
−rn .T. (TS)

−rn−1 .T..... (TS)
−r1 .T. (TS)

−r0

= (TS)
r0−1

TS.T.TS. (TS)
r1−2

TS.T...TS (TS)
rn−1−2

TS.

T.TS (TS)
rn−1

.T (TS) .T. (TS)
−rn−1

TS.T.TS (TS)
−rn−2

.

TS.T.....TS (TS)
−r1−2

TS.T.TS (TS)
−r0−1

Using the relations T 2 = I and
(
TS2

)−1
= ST ,

W (T, S,R) = (TS)
r0−1

.
(
TS2

)
. (TS)

r1−2
.
(
TS2

)
...
(
TS2

)
. (TS)

rn−1−2
.(

TS2
)
. (TS)

rn−1
.
(
TS2

)−1
(TS)

−rn−1
.
(
TS2

)
. (TS)

−rn−2 .(
TS2

)
.....

(
TS2

)
. (TS)

−r1−2
.
(
TS2

)
. (TS)

−r0−1

□

Theorem 7. Let p
q be a reduced rational number and have an integer continued

fraction expansion [r0; r1, ..., rn] then the block form of the reflection element fixing
p
q is

W (T, S,R) = (TS)
r0−1

.
(
TS2

)
. (TS)

r1−2
.
(
TS2

)
..... (TS)

rn−1−2
.
(
TS2

)
.

(TS)
rn .

(
TS2

)−rn−2
. (TS) .

(
TS2

)−rn−1−2
. (TS) ....

(TS) .
(
TS2

)−r1−2
. (TS)

(
TS2

)−r0−1
.R

Proof. From Theorem 5, the reflection element fixing p
q is

Ur0TUr1TUr2T...UrnT.RTU.TU−rnTU−rn−1T...U−r1TU−r0 .

After substituting U = TS in the word above, we have

W (T, S,R) = (TS)
r0 T (TS)

r1 T... (TS)
rn−1 T (TS)

rn T

RT (TS)T (TS)
−rn T (TS)

−rn−1 T... (TS)
−r1 T (TS)

−r0

= (TS)
r0−1

TSTTS (TS)
r1−2

TSTTS...TS (TS)
rn−1−2

TS

TTS (TS)
rn−1

TRST (TS) (TS)
−rn−2

TSTTS (TS)
−rn−1−2
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TST...TS (TS)
−r1−2

TSTTS (TS)
−r0−1

Since (TR)
2
= (SR)

2
= I we obtain TR = RT and SR = RS2. Hence,

W (T, S,R) = (TS)
r0−1 (

TS2
)
(TS)

r1−2 (
TS2

)
... (TS)

rn−1−2 (
TS2

)
(TS)

rn
(
TS2

)−rn−2
(TS)

(
TS2

)−rn−1−2
(TS) ...

(TS)
(
TS2

)−r1−2
(TS)

(
TS2

)−r0−1
R

□

We can obtain elements which fix a given rational p
q in terms of TS and TS2 by

finding a path from ∞ to p
q in the Farey graph. We explain this with an example:

Example 3. Suppose the given rational is −10
3 . Then one may choose the path <

∞,−3, −13
4 , −10

3 >, see Figure 2. We know the consequtive vertices in this path are
consequtive convergents of the integer continued fraction expansion of the rational
−10
3 i.e., C0 = −3, C1 = −13

4 and C2 = −10
3 . Hence, we obtain the integer continued

fraction expansion as

−3− 1

4− 1
1

= [−3, 4, 1]

Using the values r0 = −3, r1 = 4 and r2 = 1 in Theorem 6 we have the parabolic
element fixing −10

3 in blocks TS and TS2 as follows:

W (T, S,R) = (TS)
−4 (

TS2
)
(TS)

2 (
TS2

)
(TS)

0 (
TS2

)−1
(TS)

−2(
TS2

)
(TS)

−6
.
(
TS2

)
(TS)

2

We can reduce this word by the presentation of Γ as;

W (T, S,R) = S2.
(
TS2

)2
. (TS)

2
.
(
TS2

)4
. (TS)

3

For the reflection element fixing −10
3 we use Theorem 7;

W (T, S,R) = (TS)
−4 (

TS2
)
(TS)

2 (
TS2

)
(TS)

1 (
TS2

)−3
(TS)(

TS2
)−6

(TS)
(
TS2

)2
R

The block reduced form of this word can be obtained by the relators of Γ;

W (T, S,R) = S2.
(
TS2

)2
. (TS)

3
.
(
TS2

)3
. (TS)

3
.
(
TS2

)3
.R

6. Fibonacci Sequence and New Block Reduced Forms

Jones and Thornton obtained relations between elements of extended modular
group and Fibonacci numbers in [10]. Özgür defined two new sequences which are
generalizations of Fibonacci and Lucas sequences for the Hecke group H(

√
q) where

q ≥ 5 prime [32]. Also there are some results for Modular group and Pell Fibonacci
and Lucas numbers in [14–16, 23]. Koruoğlu and Şahin used a generalized version
of Fibonacci sequence to get relations with extended Hecke groups H (λ) in [12]. In
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Figure 2. The path < ∞,−3, −13
4 , −10

3 >

same study they give an application to extended modular group Γ. They considered
the following elements:

f = RTS =

(
0 1
1 1

)
and h = TSR =

(
1 1
1 0

)
The kth power of f and h are;

fk =

(
fk−1 fk
fk fk+1

)
and hk =

(
fk+1 fk
fk fk−1

)
where fk denotes the kth Fibonacci number. Hence every element in extended
modular group can be expressed as a word in f and h. This reduced word called
New Block Reduced Form. The relations between block reduced forms and new
block reduced forms are;

TS = Rf = hR (5)

TS2 = Rh = fR (6)

It is proved that every block reduced word has a New Block Reduced Form. From
this viewpoint we can express the element given in Theorem 6 and Theorem 7 in
new block reduced form. We explain this with an example.

In example 3 the parabolic element fixing −10
3 is;

S2
(
TS2

)2
(TS)

2 (
TS2

)4
(TS)

3

Using the relations 5 and 6 and S2 = TfR; we can write this word;

TfR. (Rh.fR) . (Rf.hR) . (Rh.fR.Rh.fR) . (Rf.hR.Rf)
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Since R2 = I we have the block reduced form;

T.f.h.f2.h2.f.h.f2.h.f =

(
0 −1
1 0

)(
0 f1
f1 f2

)
.

(
f2 f1
f1 0

)(
f1 f2
f2 f3

)(
f3 f2
f2 f1

)
(
0 f1
f1 f2

)(
f2 f1
f1 0

)(
f1 f2
f2 f3

)(
f2 f1
f1 0

)(
0 f1
f1 f2

)
It is stated in the same example that the reflection element fixing −10

3 is;

S2
(
TS2

)2
(TS)

3 (
TS2

)3
(TS)

3 (
TS2

)3
R

Following the same procedure above we have the new block reduced form of this
word as;

T.f.h.
(
f2.h

)4
.f =

(
0 −1
1 0

)(
0 f1
f1 f2

)(
f2 f1
f1 0

)[(
f1 f2
f2 f3

)(
f2 f1
f1 f0

)]4 (
0 f1
f1 f2

)
7. Conclusion

In this article, elements in the extended modular group Γ which fix rationals,
are considered. Matrix representations of parabolic and reflection elements which
fix a given rational are mentioned in Section 3 via Farey neighbours. In Section
4 relationship between Farey paths and elements of Γ which have rational fixed
points, is established. And these elements obtained as words in generators U and
T . Then, block reduced form of these words are given in Section 5. We use new
block reduced forms in Section 6 to establish relations with Fibonacci numbers. As
a summary of this work we give a final example, see Table 1.

Path < ∞, 0, 1
2 ,

3
7 >

ICF [0;−2, 3]
W(U,T) for parabolic element T.U−2.T.U3.T.U.T.U−3.T.U2.T

BRF for parabolic element
(
TS2

)2
. (TS)

2
.
(
TS2

)4
. (TS)

2
.T

NBRF for parabolic element f.h2.f2.h.f.h2.f.T
W(U,T) for reflection element T.U−2.T.U3.T.R.T.U.T.U−3.T.U2.T

BRF for reflection element
(
TS2

)2
. (TS)

3
.
(
TS2

)
. (TS)

3
.
(
TS2

)2
.T.R

NBRF for reflection element f.h2.f.h3.f.h2.f.T

Table 1. Elements in Γ fixing 3
7
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[26] Şahin, R., İkikardeş, S., Koruoğlu, Ö., On the power subgroups of the ex-

tended modular group, Turkish Journal of Mathematics, 28 (2) (2004), 143–152,
https://dx.doi.org/10.3906/mat-0301-2.

[27] Schmidt, T. A., Sheingorn, M., Length spectra of the Hecke triangle groups, Mathematische

Zeitschrift, 220 (1) (1995), 369–397.
[28] Series, C., The modular surface and continued fractions, Journal of the London Mathematical

Society, 2 (1) (1985), 69–80, https://dx.doi.org/10.1112/jlms/s2-31.1.69.
[29] Short, I., Walker, M., Even-integer continued fractions and the Farey tree, In Sym-

metries in Graphs, Maps, and Polytopes Workshop (2014), Springer, pp. 287–300,

https://dx.doi.org/10.1007/978-3-319-30451-9 15.
[30] Short, I., Walker, M., Geodesic Rosen continued fractions, The Quarterly Journal of Mathe-

matics (2016), 1–31, https://dx.doi.org/doi.org/10.1093/qmath/haw025.

[31] Yılmaz, N., Cangul, I. N., The normaliser of the modular group in the Picard group, Bulletin-
Institue of Mathematics Academia Sinica, 28 (2) (2000), 125–130.
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