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UNIQUENESS OF THE SOLUTION TO THE INVERSE

PROBLEM OF SCATTERING THEORY FOR SPECTRAL

PARAMETER DEPENDENT KLEIN-GORDON S-WAVE

EQUATION
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Abstract. In the present work, the inverse problem of the scattering theory

for Klein-Gordon s-wave equation with a spectral parameter in the boundary
condition is investigated. We define the scattering data set, and obtain the

main equation of operator. Furthermore, the uniqueness of the solution of the

inverse problem is proved.

1. Introduction

Scattering problems, which play a role in the structure of matter in Newtonian
mechanics, are an important research topic of mathematical physics. Obtaining the
scattering data by giving the potential function and investigating the properties
of these scattering data is called the direct problem in scattering theory, while
obtaining the potential function according to the scattering data is called the inverse
problem. Therefore, the importance of inverse scattering problems in terms of
natural sciences is an undeniable reality.

The inverse problem of scattering theory for the boundary value problem

−y′′ + q(x)y = λ2y, (1)

y(0) = 0 (2)
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was studied in [13] and the author obtained that the Jost function of (1)-(2) defined
by

e(λ) = 1 +

∞∫
0

K(0, t)eiλtdt , λ ∈ C+ := {λ : λ ∈ C, Imλ ≥ 0} .

has a finite number of simple zeros in C+. The scattering data of (1)-(2) is

{S(λ), λk,mk : k = 1, 2, ..., n} ,

where λk are the zeros of Jost function, m−1
k are the norm of the zeros of Jost

function for λ = λk in L2(0,∞) and S(λ) is scattering function of (1)-(2) given by

S(λ) :=
e(λ)

e(λ)
, λ ∈ (−∞,∞).

As the potential function q is given, the problem of getting scattering data and inves-
tigating the properties of scattering data is called the direct problem for scattering
theory. Oppositely, finding the potential function q according to the scattering data
is known inverse problem of scattering theory. The direct and inverse scattering
problems for a selfadjoint infinite system second-order difference equations with op-
erator valued coefficients were considered in [11]. The uniqueness of the solution to
the inverse problem of scattering theory for equation (1) with a spectral parameter
in the boundary condition

y′(0) + (α0 + α1λ+ α2λ
2)y(0) = 0

was studied bh Kh. R. Mamedov ([12]). Also, the solution to the inverse problem
of scattering theory for spectral parameter dependent Sturm-Liouville operator sys-
tem was founded uniquely by G. Bascanbaz Tunca and E. Kir Arpat in [15], and
the scattering analysis of a transmission boundary value problem which consists
of a discrete Schrodinger equation and transmission conditions was investigated
in [5]. Furthermore, the scattering theory of impulsive Sturm-Liouville equations,
impulsive discrete Dirac systems, impulsive Sturm-Liouville equation in Quantum-
Calculus and Dirac operator with impulsive condition on whole axis were investi-
gated in [1,4,8,9]. The scattering function of impulsive matrix difference operators
and scattering properties of eigenparameter dependent discrete impulsive Sturm-
Liouville equations were studied in [2,3,6]. But scattering theory of Klein-Gordon
s-wave equation with boundary condition depends on spectral parameter has not
been investigated yet.

Let Lµ denotes the Klein-Gordon s-wave operator of second order with boundary
condition generated by

y′′ + [λ− q(x)]
2
y = 0 , 0 ≤ x <∞ (3)

and

y′(0, λ) + (α0 + α1λ+ α2λ
2)y(0, λ) = 0,
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where λ = µ2 is a complex spectral parameter, αi are real numbers for i = 0, 1, 2,
α1 ≤ 0, α2 > 0, (α0 +α1λ+α2λ

2) ̸= 0 and q is a non-negative real valued function
satisfying the following condition

∞∫
0

x [|q(x)|+ |q′(x)|] dx <∞. (4)

In this paper, we examine the inverse problem of scattering theory of Lµ under the
condition (4).

2. Preliminaries

To be able to well defined mapping between λ and µ, we will study on the region
Reµ ≥ 0. If the condition (4) is satisfied, equation (3) has the following solutions

f (1)(x, µ) = f(x, µ2) = ei[α(x)+µ2x] +

∞∫
x

K(x, t)eiµ
2tdt, (5)

f (1)(x, µ) = f(x, µ2) = e−i[α(x)+µ2x] +

∞∫
x

K(x, t)e−iµ2tdt

for µ ∈ R1 := {µ : Reµ ≥ 0, Imµ = 0} and they have analytic continuation to

C+
1 := {µ ∈ C : Reµ ≥ 0, Imµ ≥ 0} and C−

1 := {µ ∈ C : Reµ ≥ 0, Imµ ≤ 0}, re-

spectively where α(x) =

∞∫
x

q(t)dt and K(x, t) is solution of integral equations of

Volterra type which has continuous derivatives with respect to their arguments
([7]). Moreover, K(x, t), Kx(x, t), Kt(x, t) satisfy the following inequalities

|K(x, t)| ≤ cω
(
x+t
2

)
exp (γ(x)) ,

|Kx(x, t)| , |Kt(x, t)| ≤ c
[
ω2

(
x+t
2

)
+ θ

(
x+t
2

)]
,

where

ω (x) =

∞∫
x

[
|q(t)|2 +

∣∣∣q′
(t)

∣∣∣] dt ,
γ(x) =

∞∫
x

[
t |q(t)|2 + 2 |q(t)|

]
dt ,

θ (x) = 1
4

[
2 |q(x)|2 +

∣∣∣q′
(x)

∣∣∣]
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and c > 0 is a constant. In addition, the function K(x, t) and potential are related
to

K(x, x) = 2

∞∫
x

q(t)dt

([14]). Furthermore, f (1)(x, µ) and f (1)(x, µ) are respectively analytic in C+
1 :=

{µ ∈ C : Reµ > 0, Imµ > 0} and C−
1 := {µ ∈ C : Reµ > 0, Imµ < 0} and they

are continuous on real and imaginary axes with respect to µ. The solutions f (1)(x, µ)

and f (1)(x, µ) are called Jost solutions of Lµ ([10]). From (5), f (1)(x, µ) satisfies
the asymptotic equalities

f (1)(x, µ) = eiµ
2x [1 + o(1)] , x→ ∞ ,

f
(1)
x (x, µ) = eiµ

2x
[
iµ2 + o(1)

]
, x→ ∞

(6)

and

f (1)(x, µ) = ei[α(x)+µ2x] + o(1) , |µ| → ∞ (7)

([14]). From (6), the Wronskian of the solutions of f (1)(x, µ) and f (1)(x, µ) is

W
[
f (1)(x, µ), f (1)(x, µ)

]
= lim

x→∞
W

[
f (1)(x, µ), f (1)(x, µ)

]
= −2iµ2 (8)

for µ ∈ R1. Hence f (1)(x, µ) and f (1)(x, µ) are the fundamental solutions of (3) for
µ ∈ R∗

1 = R1\ {0} .

Let φ(1)(x, µ) = φ(x, µ2) denotes the solution of (3) satisfying the initial condi-
tions

φ(1)(0, µ) = φ(0, µ2) = 1,

φ(1)
x (0, µ) = φx(0, µ

2)− (α0 + α1µ
2 + α2µ

4).

Definition 1.

W
[
φ(1)(x, µ), f (1)(x, µ)

]
= φ(1)(0, µ)f (1)x (0, µ)− φ(1)

x (0, µ)f (1)(0, µ)

= f (1)x (0, µ) + (α0 + α1µ
2 + α2µ

4)f (1)(0, µ)

= F (µ2) = F1(µ) (9)

is called Jost function of Lµ ([10]).

Theorem 1. Under the condition (4), Jost function has following asymptotic equal-
ity

F1(µ) ≈
{
iµ2(1− iα1)e

iα(0) , α1 ̸= 0, |µ| → ∞
α2µ

4 , α1 = 0, |µ| → ∞ , (10)

where α1 ≤ 0 and α2 > 0.

Proof. This aymptotic equality can be seen smoothly from (7) and Definition 1. □
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3. Main Equation of Lµ

Definition 2. We can define scattering function using Jost function as follows for
µ ∈ R1:

S1(µ) = S(µ2) =
F (µ2)

F (µ2)
=
F1(µ)

F1(µ)
. (11)

Theorem 2. Under the condition (4), the scattering function satisfies following
asymptotic equality

S1(µ) = 1 +O

(
1

µ2

)
, |µ| → ∞. (12)

Proof. The proof can be easily attained using definition of scattering function and
(7). □

Lemma 1. Under the condition (4),

F1(µ) = f (1)x (0, µ) + (α0 + α1µ
2 + α2µ

4)f (1)(0, µ) ̸= 0

for all µ ∈ R∗
1.

Proof. Let F1(µ0) = 0 for any µ0 ∈ R∗
1. Then, we obtain

f (1)x (0, µ0) = −(α0 + α1µ0 + α2µ
4
0)f

(1)(0, µ0).

Also,

W
[
f (1)(x, µ),f (1)(x, µ)

]
= 2iµ2.

for all µ ∈ R1. So,

f (1)x (0, µ0)f
(1)(0, µ0)− f (1)(0, µ0)f

(1)
x (0, µ0) = 2iµ2

0

and, we get

−(α0+α1µ
2
0+α2µ

4
0)f

(1)(0, µ0)f
(1)(0, µ0)+(α0+α1µ

2
0+α2µ

4
0)f

(1)(0, µ0)f
(1)(0, µ0) = 2iµ2

0.

From last equation, we can write

2iµ2
0 = 0.

But this is a contradiction because of µ0 ∈ R∗
1. □

Lemma 2. The following equation

2iµ2φ(1)(x, µ)

f
(1)
x (0, µ) + (α0 + α1µ2 + α2µ4)f (1)(0, µ)

= f (1)(x, µ)− S1(µ)f
(1)(x, µ) (13)

holds. Furthermore, S1(µ) = [S1(µ)]
−1
.
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Proof. Since f (1)(x, µ) and f (1)(x, µ) are basic solutions of Lµ,

φ(1)(x, µ) = c1f
(1)(x, µ) + c2f (1)(x, µ). (14)

From (14),

c1 (µ) f
(1)(0, µ) + c2 (µ) f (1)(0, µ) = 1

and

c1f
(1)
x (x, µ) + c2f

(1)
x (x, µ) = −(α0 + α1µ

2 + α2µ
4).

By finding c1 (µ) and c2 (µ) from last two equations and using (8), we can obtain
(13). In addition, we hold easily

S1(µ) =
F1(µ)

F1(µ)
= [S1(µ)]

−1

from (11). □

Lemma 3. The all zeros of Jost function F1(µ) are finite and on the imaginary
axis. Also, they are simply on the upper imaginary axis.

Proof. Using asymptotic equality (10), Lemma 1, uniqueness theorems for analytic
functions and Bolzano-Weierstrass Theorem we can easily reach finiteness of the
zeros of Jost function. Now, we will show that the zeros of F1(µ) are on the
imaginary axis. Let µ0 be an arbitrary zero of F1(µ). We can write

0 = F1(µ0) = f (1)x (0, µ0) + (α0 + α1µ
2
0 + α2µ

4
0)f

(1)(0, µ0)

and {
f
(1)
xx (x, µ0) +

[
µ4
0 − 2µ2

0q(x) + q2(x)
]
f
(1)
x (x, µ0) = 0,

f
(1)
xx (x, µ0) +

[
µ4
0 − 2µ2

0q(x) + q2(x)
]
f
(1)
x (x, µ0) = 0

from (3) and (9). By using the last equalities together the definition of Wronskian
and the partial integration method, we find that

0 =
(
µ2
0 − µ2

0

)α1

∣∣∣f (1)(0, µ0)
∣∣∣2 + (

µ2
0 + µ2

0

)α2 +

∞∫
0

∣∣∣f (1)(x, µ0)
∣∣∣2 dx


−2

∞∫
0

q(x)
∣∣∣f (1)(x, µ0)

∣∣∣2 dx


and then

0 =
(
µ2
0 − µ2

0

)α1

∣∣∣f (1)(0, µ0)
∣∣∣2 + [

(Reµ0)
2 − (Imµ0)

2
]α2 +

∞∫
0

∣∣∣f (1)(x, µ0)
∣∣∣2 dx


−2

∞∫
0

q(x)
∣∣∣f (1)(x, µ0)

∣∣∣2 dx
 .
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The last equality is satisfied if µ2
0 −µ2

0 = 0 and (Reµ0)
2
= 0, i.e. Reµ0 = 0. So, all

zeros of F1(µ) are on the imaginary axis. Finally, to get the simplicity of any zero
µ0 = iω0, ω0 > 0, we need to prove that

∂F1(µ0)

∂µ
̸= 0.

From equation (3), we have

f
(1)
xx (x, µ) + q2(x)f (1)(x, µ) = 2µ2q(x)f (1)(x, µ)− µ4f (1)(x, µ) ,

•(
f (1)xx

)
(x, µ) + q2(x)

•(
f (1)

)
(x, µ) = 4µq(x)f (1)(x, µ) + 2µ2q(x)

•(
f (1)

)
(x, µ)

−4µ3f (1)(x, µ)− µ4

•(
f (1)

)
(x, µ)

and then

4µ

∞∫
0

[
q(x)− µ2

] ∣∣∣f (1)(x, µ)∣∣∣2 dx =

•(
f (1)

)
(0, µ)f

(1)
x (0, µ)−

•(
f (1)x

)
(0, µ)f (1)(0, µ) ,

where ∂f(1)(x,µ)
∂µ

∣∣∣
x=0

:=
•(
f (1)

)
(0, µ) and µ = iω, ω ≥ 0. Also, we find the following

equation

4iω

∞∫
0

[
q(x) + ω2

] ∣∣∣f (1)(x, iω)∣∣∣2 dx =

•(
f (1)

)
(0, iω)f

(1)
x (0, iω)

−
•(
f (1)x

)
(0, iω)f (1)(0, iω). (15)

By the definition of F1(µ), we hold

f (1)x (0, µ) = F1(µ)− (α0 + α1µ
2 + α2µ

4)f (1)(0, µ) ,
•(
f (1)x

)
(0, µ) =

•
(F1)(µ)−

(
2α1µ+ 4α2µ

3
)
f (1)(0, µ)− (α0 + α1µ

2 + α2µ
4)

•(
f (1)

)
(0, µ).

These derivatives are taken into account in the equation (15) with µ0 = iω0, ω0 > 0,

4iω0

∞∫
0

[
q(x) + ω2

0

] ∣∣∣f (1)(x, iω0)
∣∣∣2 dx = −

•
(F1)(iω0)f (1)(0, iω0)

+i
(
2α1ω0 − 4α2ω

3
0

) ∣∣∣f (1)(0, iω0)
∣∣∣2(16)

and from (3.6)

−
•

(F1)(iω0)f (1)(0, iω0) = i

[(
−2α1ω0 + 4α2ω

3
0

) ∣∣∣f (1)(0, iω0)
∣∣∣2
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+4ω0

∞∫
0

[
q(x) + ω2

0

] ∣∣∣f (1)(x, iω0)
∣∣∣2 dx

 . (17)

If f (1)(0, iω0) = 0 in (17), then it is occured that f (1)(x, iω0) ≡ 0 but this can not
be. So, it is clear that the left side of (17) is nonzero. Therefore, it is attained that

•
(F1)(µ0) ̸= 0 with F1(µ0) = 0. So, the zeros of Jost function are simply on the
upper imaginary axis. □

Lemma 4. If the function

FS1
(x) =

1

π

∞∫
0

µ [1− S1(µ)] e
iµ2xdµ (18)

is Fourier transformation of µ [1− S1(µ)] for all x ≥ 0, it belongs to the L2 (0,∞)
space.

Proof. From (12), we can easily verify that

µ [1− S1(µ)] ≈ O

(
1

µ

)
, |µ| → ∞.

It follows that µ [1− S1(µ)] ∈ L2 (0,∞) and hence the function FS1
(x) also belongs

to the space L2 (0,∞) . □

Definition 3. For k = 1, 2, ..., n,

m−1
k =

[
f (1) (0, µk)

]2
µ2
k

 1∣∣f (1) (0, µk)
∣∣2

∞∫
0

[
q(x)− µ2

k

] ∣∣∣f (1) (x, µk)
∣∣∣2 dx− α1 + 2α2µ

2
k

2

 ,

where µk are zeros of Jost function on the upper imaginary axis.

Lemma 5. The kernel function K(x, t) satisfies the main equation of Lµ

eiα(x)G(x+ y) +K(x, y) +

∞∫
x

K(x, t)G(t+ y)dt = 0 , (x < y), (19)

where

G(x) =

n∑
k=1

mke
iµ2

kx + FS1
(x). (20)

Proof. Lets rewrite (13) as follows

2iµ2φ(1)(x, µ)

F1(µ)
= f (1)(x, µ)− S1(µ)f

(1)(x, µ),
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and substitute f (1)(x, µ) in this by its expression (13), we get that

2iµ2φ(1)(x, µ)

F1(µ)
= e−i[α(x)+µ2x] +

∞∫
x

K(x, t)e−iµ2tdt

− S1(µ)

ei[α(x)+µ2x] +

∞∫
x

K(x, t)eiµ
2tdt

 .
Also, by making the necessary arrangements and using (18), we reach

2i

π

∞∫
0

µ3φ(1)(x, µ)eiµ
2y

F1(µ)
dµ = eiα(x)FS1

(x+y)+K(x, y)+

∞∫
x

K(x, t)FS1
(t+y)dt. (21)

By using Jordan Lemma and Residue Theorem,

2i

π

∞∫
0

µ3φ(1)(x, µ)eiµ
2y

F1(µ)
dµ = 2πi

2i

π

n∑
k=1

Res(F1, µk)

= −
n∑

k=1

4µ3
kφ

(1)(x, µk)e
iµ2

ky

•
(F1)(µk)

and then

2i

π

∞∫
0

µ3φ(1)(x, µ)

F1(µ)
eiµ

2ydµ =

n∑
k=1

mkf
(1)(x, µk)e

iµ2
ky

because of the fact that φ(1)(x, µk) and f (1)(x, µk) are linearly dependent with

φ(1)(x, µk) =
f(1)(x,µk)

f(1)(0,µk)
since F1(µk) = 0. If we consider the last equation and (21)

together, we get

n∑
k=1

mk

[
f (1)(x, µk)e

iµ2
ky
]
= eiα(x)FS1

(x+ y) +K(x, y) +

∞∫
x

K(x, t)FS1
(t+ y)dt,

and from (20), we obtain the main equation (19). □

Clearly, to form the main equation, it suffices to know the function G(x). On
the other hand, to find the function G(x), it suffices to know only the set of values

{S1(µ), (0 < µ <∞) ;µk;mk, (k = 1, 2, ..., n)} .
which is called the scattering data for Lµ. Given the scattering data, we can use
formula (20) to construct the function G(x) and write out the main equation (19)
for the unknown functionK(x, y). Solving this equation, we find the KernelK(x, y)
of the transformation operator, and hence the potential

q(x) = −1

2

d

dx
K(x, x).
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Theorem 3. The equation (19) has a unique solution K(x, y) ∈ L1 [x,∞) .

Proof. We need to show that the homogeneous equation

ψ(y) +

∞∫
x

ψ(t)G(t+ y)dt = 0 (22)

has only the zero solution in L2 (0,∞) .
We assume that (22) has a nonzero solution. Multiplying ψ(y) both sides of (22)

and integrating,

∞∫
x

ψ2(y)dy +

∞∫
x

ψ(y)

∞∫
x

ψ(t)G(t+ y)dtdy = 0.

After that,

0 =

∞∫
x

ψ2(y)dy +

∞∫
x

ψ(y)

∞∫
x

ψ(t)FS(t+ y)dtdy

+

∞∫
x

ψ(y)

∞∫
x

ψ(t)

n∑
k=1

mke
iµ2

k(t+y)dtdy

from (20). Using (18) in last equation,

0 =

∞∫
x

ψ2(y)dy +

∞∫
x

ψ(y)

∞∫
x

ψ(t)

n∑
k=1

mke
iµ2

k(t+y)dtdy

+

∞∫
x

ψ(y)

∞∫
x

ψ(t)

 1

π

∞∫
0

µ [1− S1(µ)] e
iµ2(t+y)dµ

 dtdy. (23)

In (23) interchanging integrals and using the uniform convergence of

n∑
k=1

mke
iµ2

k(t+y)ψ(t),

(23) can be integrated by terms. So we obtain following equation

0 =

∞∫
x

ψ2(y)dy +

n∑
k=1

mk

 ∞∫
x

ψ(t)eiµ
2
ktdt

2

+
1

π

∞∫
0

µ [1− S1(µ)]

 ∞∫
x

ψ(t)eiµ
2tdt

2

dµ. (24)
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On the other hand, by using Parseval equation of Fourier transformation in (24),

0 =
1

π

∞∫
0

µ |Φ(µ)|2 dµ+

n∑
k=1

mk [Φ(µk)]
2

+
1

π

∞∫
0

µ [1− S1(µ)] [Φ(µ)]
2
dµ, (25)

where Parseval equation of

Φ(µ) =

∞∫
x

ψ(t)eiµ
2tdt

is
∞∫
x

ψ2(y)dy =
1

π

∞∫
0

µ |Φ(µ)|2 dµ.

Since

argµ = 0, arg(mk) = η1(µ), arg [Φ(µ)] = η2(µ) and arg [1− S1(µ)] = η3(µ),

(25) rewrite as polar form

0 =

n∑
k=1

|mk| |Φ(µk)|
2
ei[η1(µk)+2η2(µk)]

+
1

π

∞∫
−∞

|µ| |Φ(µ)|2
{
1 + |1− S1(µ)| ei[2η2(µ)+η3(µ)]

}
dµ. (26)

Real part of (26) is

0 =

n∑
k=1

|mk| |Φ(λk)|2 cos (η1(µk) + 2η2(µk))

+
1

π

∞∫
−∞

|µ| |Φ(µ)|2 {1 + |1− S1(µ)| cos [2η2(µ) + η3(µ)]} dµ.

Therefore, the last equation is equal to zero only situation is

Φ(µ) = 0 and so ψ(t) = 0.

But this is a contradiction. So, the equation (19) has a unique solution for finite
x. □
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