

On Quasi 2-Crossed Modules for Lie Algebras and Functorial Relations

Ummahan Ege Arslan¹ 🕩 and Sultan Kaplan² 🕩

Keywords Quasi 2-Crossed Modules of Lie Algebras, 2-Crossed Modules of Lie Algebras **Abstract** — In this paper, we have introduced the category of quasi 2-crossed modules for Lie algebras and we have constructed a pair of adjoint functors between this category and that of 2-crossed modules Lie algebras.

Subject Classification (2020): 18A40,18G45.

1. Introduction

Crossed modules have been introduced for Lie algebras by Kassel and Loday in [6], as well as they initially originate in Whitehead's work for groups,[10]. It is known that the notion of crossed modules modelling homotopy 2-type has become an important tool in various contexts. Some of related works with crossed modules of Lie algebras are [2], [8], and [9]. The notion of 2-crossed modules of groups based on that of crossed modules has been introduced by Conduche [3] as an algebraic models of homotopy 3-types. In [5], Ellis has also presented the Lie algebra version of that for getting the equivalence between the category of 2-crossed modules and that of simplicial Lie algebras with Moore complex of length 2. Akça and Arvasi apply higher order Peiffer elements in simplicial Lie algebras to the Lie 2-crossed module in [1].

In this paper, we invented the concept of quasi 2-crossed modules of Lie algebras. In [4], Carrasco and Porter have mentioned this notion for group cases. We have also intend to use it to work on functorial relations, similar to how algebraic models of homotopy 2-types are used. We will see that the roles of quasi 2-crossed modules in Lie algebras and those of pre-crossed modules are similar except dimensionally.

¹uege@ogu.edu.tr (Corresponding Author); ²sltnkpln@gmail.com

^{1,2} Department of Mathematics and Computer Science, Eskişehir Osmangazi University, Eskişehir, Turkey

Article History: Received: 17.03.2022 - Accepted: 11.05.2022 - Published: 07.06.2022

2. Preliminaries

2.1. Crossed modules of Lie algebras

If *Y* and *Z* are two Lie algebras, then a left Lie algebra action of *Z* on *Y* is a *k*-bilinear map

$$\begin{array}{rcccc} Z \times Y & \longrightarrow & Y \\ (z, y) & \longmapsto & z * y, \end{array}$$

that satisfies the following two axioms:

L1)
$$z * [y, y'] = [z * y, y'] + [y, z * y'],$$

L2) [z, z'] * y = z * (z' * y) - z' * (z * y)

for each $z, z' \in Z$ and each $y, y' \in Y$.

A pre-crossed module over Lie algebras (Y, Z, ∂) is given by a Lie homomorphism $\partial : Y \to Z$, together with a left Lie algebra action of *Z* on *Y* such that the condition

XMod_L1 $\partial(z * y) = [z, \partial(y)]$ is satisfied for each $z \in Z$ and each $y \in Y$.

A crossed module over Lie algebras (Y, Z, ∂) is a pre-crossed module satisfying, in addition "Peiffer identity" condition:

XMod_L**2** $\partial(y) * y' = [y, y']$

for all $y, y' \in Y$.

Example 2.1. An inclusion map $i : I \longrightarrow Z$ is a crossed module where I is any ideal of a Lie algebra Z. Conversely given any crossed module $\partial : I \rightarrow Z$, one can easily verify that $\partial(Y) = I$ is an ideal in Z.

Example 2.2. Any *Z*-module *Y* can be considered as a Lie algebra with zero multiplication, and then $\mathbf{0} : Y \to Z$ is a crossed module by $\mathbf{0}(y) * y' = 0y' = [y, y']$ and $\mathbf{0}(z * y) = 0 = [z, \mathbf{0}(y)]$, for all $y, y' \in Y, z \in Z$.

Example 2.3. A Lie k-algebra morphism

$$\mu: S \rightarrow Der(S)$$

$$s \mapsto \mu(s) = \mu_s: S \rightarrow S$$

$$s' \mapsto \mu_s(s') = [s, s']$$

with the action of Der(S) on S given as

$$Der(S) \times S \rightarrow S$$
$$(d, s) \mapsto d * s = d(s)$$

is a crossed module where *Der*(*S*) is a set of derivations of *S*,i.e.

 $Der(S) = \{d \mid d : S \to S, d([s_1, s_2]) = [s_1, ds_2] + [ds_1, s_2] s_1, s_2 \in S\}.$

(See for detail [7].)

A crossed module morphism $f: (Y, Z, \partial) \to (Y', Z', \partial')$ is a pair $(f_1: Y \to Y', f_0: Z \to Z')$ of Lie algebra morphisms, making the diagram below commutative:

also preserving action of Z on Y.

Although the following discussion may be found in various algebraic cases, we include it here since we will need to generalize it later.

If $\partial : M \to P$ is a pre-crossed module of Lie algebras then $\overline{\partial} : M/\overline{M} \to P$ given by $\overline{\partial}([m]) = \partial(m)$ is a crossed module where \overline{M} is the ideal generated by the elements $[m, m'] - \partial(m) * m'$, for $m, m' \in M$. It is not difficult to see that following equations are satisfied

 $\bar{\partial}([m]) * [m'] = \partial(m) * [m'] = [\partial(m) * m'] = [[m, m']] = [[m], [m']]$

$$\partial(p * [m]) = \partial([p * m]) = \partial(p * m) = [p, \partial(m)].$$

For any pre-crossed module morphism $(f_1, f_0) : (M, P, \partial) \to (M', P', \partial')$, we get the crossed module morphism $(f_1, f_0) : (M/M, P, \partial) \to (M'/M', P', \partial')$, where $f_1([m]) = [f_1(m)], m \in M$. Since

$$f_1([m,m'] - \partial(m) * m') = f_1([m,m']) - f_1(\partial(m) * m')$$

= $[f_1(m), f_1(m')] - f_0(\partial(m)) * f_1(m')$
= $[f_1(m), f_1(m')] - \partial'(f_1(m)) * f_1(m') \in \overline{M'}$

 \overline{f}_1 is well-defined morphism. Thus, it can be given a functor

$$F: PXMOD \rightarrow XMOD$$

defined as $F((M, P, \partial)) = (M'/M', P', \partial')$ on object and as $F((f_1, f_0)) = (f_1, f_0)$ on morphism.

Furthermore, it is clear that there is forgetful functor $G: XMOD \rightarrow PXMOD$ and the functor F is left adjoint to G.

2.2. 2-Crossed Modules of Lie algebras

In this section, we recall the definition of 2-crossed modules over Lie algebras given [5].

A pair of Lie homomorphisms $L \xrightarrow{\partial_2} M \xrightarrow{\partial_1} P$ with an action of P on M and L, and a bilinear function $\{,\}$: $M \times M \to L$ such that below axioms are satisfied for every $m, m', m'' \in M, l, l' \in L$ and $p \in P$ are defined as a 2-crossed module of Lie algebras

1.
$$\partial_1 \partial_2 = 0$$

2.
$$\partial_2({}^pl) = {}^p(\partial_2l), \partial_1({}^pm) = [p,\partial_1(m)]$$

- 3. $\partial_2 \{m, m'\} = {}^{(\partial_1 m)} m' [m, m']$ 4. $\{\partial_2 l, \partial_2 l'\} = [l, l']$ 5. $\{\partial_2 l, m\} + \{m, \partial_2 l\} = {}^{\partial_1 m} l$ 6. ${}^{p} \{m, m'\} = \{{}^{p} m, m'\} + \{m, {}^{p} m'\}$ 7. $\{[m, m'], m''\} = {}^{\partial_1 m} \{m', m''\} + \{m, [m', m'']\} - {}^{\partial_1 m'} \{m, m'\} - \{m', [m, m'']\}$
- 8. $\{m, [m', m'']\} = \partial_1 m' \{m, m''\} \partial_1 m'' \{m, m'\} \{m', \partial_1 m m'' [m, m'']\} + \{m'', \partial_1 m m' [m, m']\}$

It is denoted by $(L, M, P, \partial_2, \partial_1, \{,\})$. If the below diagram is commutative

$$\begin{array}{c|c} M \times M \xrightarrow{\{,\}} & L \xrightarrow{\partial_2} & M \xrightarrow{\partial_1} & P \\ f_1 \times f_1 & \downarrow & \downarrow f_2 & \downarrow f_1 & \downarrow f_0 \\ M' \times M' \xrightarrow{\{,\}'} & L' \xrightarrow{\partial_2} & M' \xrightarrow{\partial_1} & P' \end{array}$$

that is, the equations

$$\partial_1 f_1 = f_0 \partial_1$$

 $\partial_2 f_2 = f_1 \partial_2,$
 $f_2 \{,\} = \{,\}'(f_1, f_1)$

are satisfied and

$$f_1(^p m) = {}^{f_0(p)} f_1(m)$$
$$f_2(^p l) = {}^{f_0(p)} f_2(l)$$

then a triple (f_2, f_1, f_0) is called by the morphism of between 2-crossed modules $(L, M, P, \partial_2, \partial_1, \{,\})$ and $(L', M', P', \partial'_2, \partial'_1, \{,\}')$.

As a result, the category of 2-crossed modules is obtained, with 2-crossed modules as objects and morphisms between them as morphisms and it is denoted by L2XMOD.

When the morphisms f_1 and f_0 above are the identity, we will get a subcategory L2XMOD/(M, P), the category of 2-crossed modules, over fixed pre-crossed module $\partial_1 : M \to P$.

2.3. Quasi 2-Crossed Modules of Lie Algebras

A quasi 2-crossed module of Lie algebras is a sequence $L \xrightarrow{\partial_2} M \xrightarrow{\partial_1} P$ of Lie algebra homomorphisms together with a bilinear map {, } : $M \times M \to L$ satisfying the below axioms

LQ2X1) $\partial_1 \partial_2 = 0$

LQ2X2) $\partial_2({}^p l) = {}^p(\partial_2 l), \partial_1({}^p m) = [p, \partial_1(m)]$

LQ2X3)
$${}^{p}{m_0, m_1} = {}^{p}{m_0, m_1} + {m_0, {}^{p}{m_1}}$$

LQ2X4) $\partial_2\{m_0, m_1\} = \partial_1 m_0 m_1 - [m_0, m_1]$

LQ2X5)
$$\{m_0, [m_1, m_2]\} = \partial_1 m_1 \{m_0, m_2\} - \partial_1 m_2 \{m_0, m_1\} - \{m_1, \partial_1 m_2 - [m_0, m_2]\} + \{m_2, \partial_1 m_0 m_1 - [m_0, m_1]\}$$

LQ2X6) { $[m_0, m_1], m_2$ } = $\partial_1 m_0 \{m_1, m_2\} + \{m_0, [m_1, m_2]\} - \partial_1 m_1 \{m_1, m_2\}$

 $-\{m_1, [m_0, m_2]\}$

LQ2X7) $[\{m_0, m_1\}, \partial_1 m_0 (m_1 \triangleleft l)] = \{\partial_1 m_0 [m_1, \partial_2 l], \partial_2 \{m_0, m_1\}\}$

for all $m, m_0, m_1, m_2 \in M$ and $l \in L$. Also, the action on *L* of *M* is given by

$$m \triangleleft l = {}^{\partial_1 m} l - \{m, \partial_2 l\} = \{\partial_2 l, m\}.$$

We get the category LQ2XMOD quasi 2-crossed modules of Lie algebras by defining whose morphisms similar to that of L2XMOD and it is obtained a subcategory L2XMOD/(M, P) with base $\hat{A}\hat{A} \partial_1 : M \to P$, [7]. **Proposition 2.4.** Every 2-crossed module is a quasi 2-crossed module.

Proof.

Let $(L, M, P, \partial_2, \partial_1, \{,\})$ be a 2-crossed module. To complete the proof, just axiom 7 has to be verified.

$$\begin{split} [\{m_0, m_1\}, \partial^{m_0}(m_1 \triangleleft l)] &= \partial_2 \{m_0, m_1\} \triangleleft^{\partial m_0} \{\partial_2 l, m\} \\ &= \partial_2 \{m_0, m_1\} \triangleleft \{\partial^{m_0} \partial_2 l, m\} + \{\partial_2 l, \partial^{m_0} m_1\} \\ &= \partial_2 \{m_0, m_1\} \triangleleft \{\partial^{m_0} \partial_2 l, m\} + \partial_2 \{m_0, m_1\} \triangleleft \{\partial_2 l, \partial^{m_0} m_1\} \\ &= \{\partial_2 \left(\{\partial_{m_0} \partial_2 l, m\}\right), \partial_2 \{m_0, m_1\}\} + \\ &\{\partial_2 \left(\{\partial_2 l, \partial^{m_0} m_1\}\right), \partial_2 \{m_0, m_1\}\} \\ &= \{(\partial_1 (\partial^{m_0} \partial_2 l)) m - (\partial^{m_0} \partial_2 l, m]\} + \\ &\{(\partial_1 (\partial_2 l)) (\partial^{m_0} m_1) - [\partial_2 l, \partial^{m_0} m_1 - [m_0, m_1]\} + \\ &\{0 - [\partial_2 l, \partial^{m_0} m_1], \partial^{m_0} m_1 - [m_0, m_1]\} + \\ &\{-[\partial^{2} l, \partial^{m_0} m_1], \partial^{m_0} m_1 - [m_0, m_1]\} + \\ &\{-[\partial_2 l, \partial^{m_0} m_1], \partial^{m_0} m_1 - [m_0, m_1]\} \\ &= \{[m_1, \partial^{m_0} \partial_2 l] + [\partial^{m_0} m_1, \partial_2 l], \partial_2 \{m_0, m_1\}\} \\ &= \{\partial^{m_0} [m_1, \partial_2 l], \partial_2 \{m_0, m_1]\} \end{split}$$

for all $m, m_0, m_1 \in M$ and $l \in L$.

Proposition 2.5. If $(L, M, P, \partial_2, \partial_1, \{,\})$ is a Lie quasi 2-crossed module, then ideal \overline{L} generated by the elements of the type

$$m * l = {}^{\partial_1 m} l - \{m, \partial_2 l\} - \{\partial_2 l, m\}$$
$$l \circledast l' = [l, l'] - \{\partial_2 l, \partial_2 l'\}$$

is a *P*-invariant ideal in Lie algebra *L*, for all $l, l' \in L, m \in M$.

Proof.

$$p(m * l) = p(\partial_1 m l - \{m, \partial_2 l\} - \{\partial_2 l, m\})$$

$$= p(\partial_1 m l) - p\{m, \partial_2 l\} - p\{\partial_2 l, m\}$$

$$= \{p, \partial_1 m\} \cdot l + (\partial_1 m) \cdot (p \cdot l) - \{pm, \partial_2 l\} - \{m, \partial_2 (pl)\} - \{\partial_2 (pl), m\} - \{\partial_2 l, pm\}$$

$$= m * pl + \partial_1 (pm) l - \{pm, \partial_2 l\} - \{\partial_2 l, pm\}$$

$$= m * pl + (pm * l) \in \overline{L}$$

for $p \in P$, $m \in M$, $l \in L$, and we also get

$$p(l \circledast l') = p([l, l'] - \{\partial_2 l, \partial_2 l'\})$$

$$= [l, pl'] - \{p\partial_2 l, \partial_2 l'\} - \{\partial_2 l, p\partial_2 l'\}$$

$$= [pl, l'] + [l, pl'] - \{\partial_2 (pl), \partial_2 l'\} - \{\partial_2 l, \partial_2 (pl')\}$$

$$= [pl, l'] - \{\partial_2 (pl), \partial_2 l'\} + [l, pl'] - \{\partial_2 l, \partial_2 (pl')\}$$

$$= (pl \circledast l') + (l \circledast pl') \in \overline{L}$$

for $p \in P$, $l, l' \in L$

Theorem 2.6. Let $(L, M, P, \partial_2, \partial_1, \{,\})$ be a Lie quasi 2-crossed module and \overline{L} be as in previous proposition. Then $(L/\overline{L}, M, P, \overline{\partial}, \partial_1, \overline{\{,\}})$ is a 2-crossed module where $\overline{\partial} : L/\overline{L} \longrightarrow M$, is given by $\overline{\partial}(l + \overline{L}) = \partial_2 l$ and $\overline{\{,\}} : M \times M \longrightarrow L/\overline{L}$ is defined by $\overline{\{,\}}(m_1, m_2) = \{m_1, m_2\} + \overline{L}$ for $l \in L$ and $m_1, m_2 \in M$, respectively.

Proof.

$$\begin{aligned} \partial_2(m*l) &= \partial_2(^{\partial_1 m}l - \{m, \partial_2 l\} - \{\partial_2 l, m\}) \\ &= \partial_2(^{\partial_1 m}l) - \partial_2(\{m, \partial_2 l\}) - \partial_2(\{\partial_2 l, m\}) \\ &= \partial_1 m \partial_2 l - \partial_1 m \partial_2 l + [m, \partial_2 l] - \partial_1(\partial_2 l) m + [\partial_2 l, m] \\ &= 0 + [m, \partial_2 l] - 0 m - [m, \partial_2 l] \\ &= 0 \end{aligned}$$

and

$$\partial_2(l \circledast l') = \partial_2([l, l'] - \{\partial l, \partial l'\})$$

= $\partial_2([l, l']) - \partial_2(\{\partial l, \partial l'\})$
= $[\partial_2 l, \partial_2 l'] - \partial_1(\partial_2 l) \partial_2 l' - [\partial_2 l, \partial_2 l']$
= 0

for all $m \in M$, l, $l' \in L$, that is $\partial_2(\overline{L}) = 0$. Thus

$$\overline{\partial}: L/\overline{L} \to M$$
$$l+\overline{L} \mapsto \overline{\partial}(l+\overline{L}) = \partial_2 l$$

is well-defined. It is seen that some of the axioms of the 2-crossed module are verified.

$$\overline{\{\overline{\partial}(l+\overline{L}),\overline{\partial}(l'+\overline{L})\}} = \overline{\{\partial_2 l, \partial_2 l'\}} = \{\partial_2 l, \partial_2 l'\} + \overline{L} = [l, l'] + \overline{L} \quad (\because \{\partial_2 l, \partial_2 l'\} - [l, l'] \in \overline{L})$$

$$\overline{\{\overline{\partial}(l+\overline{L}),m\}} + \overline{\{m,\overline{\partial}(l+\overline{L})\}} = \overline{\{\partial_2 l,m\}} + \overline{\{m,\partial_2 l\}}$$

$$= \{\partial_2 l,m\} + \overline{L} + \{m,\partial_2 l\} + \overline{L}$$

$$= \partial_1 m l + \overline{L}$$

$$= \partial_1 m (l + \overline{L})$$

$$\overline{\partial}\overline{\{m_1,m_2\}} = \overline{\partial}(\{m_1,m_2\} + \overline{L})$$

$$= \partial_2(\{m_1,m_2\})$$

$$= \partial_1 m (m_1,m_2)$$

for all $m, m_1, m_2 \in M$, $l + \overline{L}, l' + \overline{L} \in L/\overline{L}$. The validity of other axioms can be seen similarly. Therefore we have following result:

Corollary 2.7. There is (*F*, *G*) adjoint functor pair,

$$LQ2XMOD \stackrel{F}{\underset{G}{\leftrightarrow}} L2XMOD.$$

Proof.

Let $\mathscr{L} = (L, M, P, \partial_2, \partial_1, \{,\})$ and $\mathscr{L}' = (L', M', P', \partial'_2, \partial'_1, \{,\}')$ be two Lie quasi 2-crossed module and (f_2, f_1, f_0) be morphism between them. The functor

$$F: LQ2XMOD \rightarrow L2XMOD$$

is given by $F(\mathcal{L}) = (L/\overline{L}, M, P, \overline{\partial}, \partial_1, \overline{\{,\}}), F(\mathcal{L}') = (L'/\overline{L'}, M', P', \overline{\partial'}, \partial_1', \overline{\{,\}'})$ and $F(f_2, f_1, f_0) = (f_2^*, f_1, f_0)$ where $f_2^*(l + \overline{L}) = f_2(l) + \overline{L'}$. We have

$$\begin{aligned} f_2(m*l) &= f_2(^{\partial_1 m}l - \{m, \partial_2 l\} - \{\partial_2 l, m\}) \\ &= f_2(^{\partial_1 m}l) - f_2(\{m, \partial_2 l\}) - f_2(\{\partial_2 l, m\}) \\ &= f_0(^{\partial_1 m)}f_2(l) - \{f_1(m), f_1(\partial_2 l)\}' - \{f_1(\partial_2 l), f_1(m)\}' \\ &= \partial_1' f_1(m) f_2(l) - \{f_1(m), \partial_2'(f_2(l))\}' - \{\partial_2'(f_2(l)), f_1(m)\}' \\ &= f_1(m) * f_2(l) \in \overline{L'} \end{aligned}$$

and

$$\begin{split} f_2(l_1 \circledast l_2) &= f_2([l_1, l_2'] - \{\partial_2 l, \partial_2 l'\}) \\ &= f_2[l_1, l_2] - f_2(\{\partial_2 l_1, \partial_2 l_2\}) \\ &= [f_2 l_1, f_2 l_2] - (f_2(\{\})(\partial_2 l_1, \partial_2 l_2)) \\ &= [f_2 l_1, f_2 l_2] - \{\}'(f_1, f_2)(\partial_2 l_1, \partial_2 l_2) \\ &= [f_2 l_1, f_2 l_2] - \{f_1 \partial_2 l_1, f_1 \partial_2 l_2\}' \\ &= [f_2 l_1, f_2 l_2] - \{\partial_2' f_2 l_1, \partial_2' f_2 l_2\}' \\ &= f_2(l_1) * f_2(l_2) \in \overline{L'} \end{split}$$

for m * l and $l_1 \circledast l_2 \in \overline{L}$, and so $f_2(\overline{L}) \subseteq \overline{L'}$.

The morphism $f_2^* : L/\overline{L} \to L'/\overline{L'}$ given by $f_2^*(l + \overline{L}) = f_2(l) + \overline{L'}$ is well-defined, since $f_2(l_1 - l_2) \in f_2(\overline{L}) \subseteq \overline{L'}$ for $l_1 - l_2 \in \overline{L}$.

We have

$$\overline{\partial'_{2}}(f_{2}^{*}(l+\overline{L})) = \overline{\partial'_{2}}((f_{2}l) + \overline{L'})$$

$$= \partial'_{2}(f_{2}l)$$

$$= f_{1}(\partial_{2}(l))$$

$$= f_{1}(\overline{\partial}(l+\overline{L}))$$

and also

 $\partial_1' f_1 = f_0 \partial_1$

since (f_2, f_1, f_0) is a morphism of quasi 2-crossed modules of Lie algebras. Therefore we get following commutative diagram:

L/\overline{L} —	$\overline{\partial}$	$\rightarrow M -$	∂_1	$\rightarrow P$
\int_{2}^{*}		f_1		f
$\sqrt[4]{1'}$		$\sim M'$		\downarrow
$L \mid L$	$\overline{\partial}_2'$	~ WI	∂_1'	~1

Furthermore we have below equations:

$$f_{2}^{*}\overline{\{,\}}(m_{1},m_{2}) = f_{2}^{*}(\{m_{1},m_{2}\}+\overline{L})$$

$$= f_{2}(\{m_{1},m_{2}\})+\overline{L}$$

$$= \{f_{1}(m_{1}),f_{1}(m_{2})\}'$$

$$= \{,\}(f_{1},f_{1})(m_{1},m_{2})$$

$$\begin{array}{c|c} M \times M & \xrightarrow{\{,\}} & L/\overline{L} & \overline{\partial} & M & \xrightarrow{\partial_1} & P \\ f_1 \times f_1 & & & \downarrow f_2^* & & \downarrow f_1 & & \downarrow f_0 \\ M' \times M' & \xrightarrow{\{,\}'} & L'/\overline{L'} & \xrightarrow{\overline{\partial}_2} & M' & \xrightarrow{\partial_1} & P' \end{array}$$

Thus (f_2^*, f_1, f_0) is a morphism of 2-crossed modules, as seen above.

For $\mathcal{K} = (K, N, Q, \partial'_2, \partial'_1, \{,\}')$ and $(f, f_1, f_0) : F(\mathcal{L}) \to \mathcal{K} \in Mor(L2XMOD)$, the morphism $(fq_L, f_1, f_0) : \mathcal{L} \to \mathcal{K}$ is in Mor(LQ2XMOD), where $q_L : L \to L/\overline{L}$. Conversely, for $(f_2, f_1, f_0) : \mathcal{L} \to G(\mathcal{K}) \in Mor(LQ2XMOD)$,

$$(f_2^*, f_1, f_0) : (L/\overline{L}, M, P, \overline{\partial}, \partial, \overline{\{,\}}) \to (K, N, Q, \partial_2', \partial_1', \{,\}')$$

is a morphism in *Mor*(*L2XMOD*). Thus, we get the bijection

$$L2XMOD(F(\mathcal{L}),\mathcal{K}) \cong LQ2XMOD(\mathcal{L},G(\mathcal{K}))$$

such that this family of bijections is natural in \mathscr{L} and \mathscr{K} . Clearly; for $h: (h_2, h_1, h_0) = \mathscr{L}' \to \mathscr{L} \in Mor(LQ2XMOD)$, we have following commutative diagram

$$L2XMOD(F(\mathcal{L}),\mathcal{K}) \xrightarrow{\eta_{\mathcal{L},\mathcal{K}}} LQ2XMOD(\mathcal{L},G(\mathcal{K}))$$

$$\downarrow^{-\circ h=h^{*}}$$

$$L2XMOD(F(\mathcal{L}'),\mathcal{K}) \xrightarrow{\eta_{\mathcal{L}',\mathcal{K}}} LQ2XMOD(\mathcal{L}',G(\mathcal{K}))$$

since

$$\begin{aligned} f_2 h_2^* q_L(l') &= f_2 h_2^* (l' + L') \\ &= f_2 (h_2(l') + \overline{L}) \\ &= f_2 (q_L(h_2(l'))), \end{aligned}$$

and for $k: (k_2, k_1, k_0) = \mathcal{K} \to \mathcal{K}' \in Mor(LX_2MOD)$, we get commutative diagram

$$\begin{split} L2XMOD(F(\mathcal{L}),\mathcal{K}) & \xrightarrow{\eta_{\mathscr{L},\mathcal{K}}} LQ2XMOD(\mathcal{L},G(\mathcal{K})) \\ & & \downarrow^{G(k)\circ - = G(k)^*} \\ L2XMOD(F(\mathcal{L}),\mathcal{K}') & \xrightarrow{\eta_{\mathscr{L},\mathcal{K}'}} LQ2XMOD(\mathcal{L},G(\mathcal{K}')) \end{split}$$

because of

$$(k_2 f_2) q_L = k_2 (f_2 q_L).$$

Hence, it is concluded that there is an adjunction between LQ2XMOD and L2XMOD.

3. Conclusion

In this paper, the category of quasi 2-crossed modules for Lie algebras has been introduced, and an adjunction between this category and that of 2-crossed modules for Lie algebras is constructed. It is concluded that this category has a similar role to that of pre-crossed modules in corresponding adjunction to their 1-dimensional analogous.

4. Acknowledgements

This work has been supported by Eskisehir Osmangazi University Scientific Research Projects Coordination Unit under grant number 202019A107.

Author Contributions

All authors contributed equally to this work. They all read and approved the final version of the manuscript.

Conflicts of Interest

The authors declare no conflict of interest.

References

- İ.İ. Akça and Z. Arvasi, *Simplicial and crossed Lie algebras*, Homology, Homotopy and Applications 4 (1), 43-57, 2002.
- [2] İ. Akça and Yavuz Sıdal, *Homotopies of Lie Crossed module morphisms*, Konuralp Journal of Mathematics, 6,2, 259-263, 2018.
- [3] D. Conduché, Modules croisés généralisés de longueur 2, J. Pure Appl. Algebra, 34:155-178,1984.
- [4] P. Carrasco, T. Porter, *Coproduct of 2-crossed modules:applications to a definition of a tensor product for 2-crossed complexes*, Collect. Math., 3,67, 2016

- [5] G. J. Ellis, *Homotopical aspects of Lie algebras*, J. Austral. Math. Soc. (Series A) 54, 393-419, 1993.
- [6] C. Kassel and J.L. Loday, *Extensions centrales d'algébres de Lie*, Ann. Inst. Fourier (Grenoble) 33, 119-142, 1982.
- [7] S. Kaplan, *Lie Cebirlerin Çaprazlanmış Modüllerinin ve 2-Çaprazlanmış Modüllerinin Eşçarpımı*, M. Sc. Thesis, Eskişehir Osmangazi University, 2020.
- [8] E. Ulualan, *Braiding for Categorical and Crossed Lie Algebras and Simplicial Lie Algebras*, Turk J Math., 31, 239-255, 2007.
- [9] K. Yılmaz and E. Soylu Yılmaz, A. Güzelkokar, *XModLie Fibred Over Lie Algebras*, Ikonion Journal of Mathematics, 3, 2, 9-16, 2021.
- [10] J.H.C. Whitehead, *Combinatorial homotopy II*, Bulletin of the American Mathematical Society, vol. 55, 453-496, 1949.