
Ikonion Journal of Mathematics 4(1) (2022) 17-26

Ikonion Journal of Mathematics
https://dergipark.org.tr/tr/pub/ikjm

Research Article

Open Access

https://doi.org/ 10.54286/ikjm.1089611

ISSN: 2687-6531

On Quasi 2-Crossed Modules for Lie Algebras and Functorial Relations

Ummahan Ege Arslan1 ID and Sultan Kaplan2 ID

Keywords

Quasi 2-Crossed Mod-

ules of Lie Algebras,

2-Crossed Modules of

Lie Algebras

Abstract − In this paper, we have introduced the category of quasi 2-crossed modules for Lie alge-

bras and we have constructed a pair of adjoint functors between this category and that of 2-crossed

modules Lie algebras.

Subject Classification (2020): 18A40,18G45.

1. Introduction

Crossed modules have been introduced for Lie algebras by Kassel and Loday in [6], as well as they initially

originate in Whitehead’s work for groups,[10]. It is known that the notion of crossed modules modelling

homotopy 2-type has become an important tool in various contexts. Some of related works with crossed

modules of Lie algebras are [2], [8], and [9]. The notion of 2-crossed modules of groups based on that of

crossed modules has been introduced by Conduche [3] as an algebraic models of homotopy 3-types. In [5],

Ellis has also presented the Lie algebra version of that for getting the equivalence between the category of 2-

crossed modules and that of simplicial Lie algebras with Moore complex of length 2. Akça and Arvasi apply

higher order Peiffer elements in simplicial Lie algebras to the Lie 2-crossed module in [1].

In this paper, we invented the concept of quasi 2-crossed modules of Lie algebras. In [4], Carrasco and Porter

have mentioned this notion for group cases. We have also intend to use it to work on functorial relations,

similar to how algebraic models of homotopy 2-types are used. We will see that the roles of quasi 2-crossed

modules in Lie algebras and those of pre-crossed modules are similar except dimensionally.
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2. Preliminaries

2.1. Crossed modules of Lie algebras

If Y and Z are two Lie algebras, then a left Lie algebra action of Z on Y is a k-bilinear map

Z ×Y −→ Y

(z, y) 7−→ z ∗ y,

that satisfies the following two axioms:

L1) z ∗ [y, y ′] = [z ∗ y, y ′]+ [y, z ∗ y ′],

L2) [z, z ′]∗ y = z ∗ (z ′∗ y)− z ′∗ (z ∗ y)

for each z, z ′ ∈ Z and each y, y ′ ∈ Y .

A pre-crossed module over Lie algebras (Y , Z , ∂) is given by a Lie homomorphism ∂ : Y → Z , together with

a left Lie algebra action of Z on Y such that the condition

XModL1 ∂(z ∗ y) = [z,∂(y)] is satisfied for each z ∈ Z and each y ∈ Y .

A crossed module over Lie algebras (Y , Z , ∂) is a pre-crossed module satisfying, in addition “Peiffer identity”

condition:

XModL2 ∂(y)∗ y ′ = [y, y ′]

for all y, y ′ ∈ Y .

Example 2.1. An inclusion map i : I −→ Z is a crossed module where I is any ideal of a Lie algebra Z .

Conversely given any crossed module ∂ : I → Z , one can easily verify that ∂(Y ) = I is an ideal in Z .

Example 2.2. Any Z -module Y can be considered as a Lie algebra with zero multiplication, and then 0 : Y →
Z is a crossed module by 0(y)∗ y ′ = 0y ′ = [y, y ′] and 0(z ∗ y) = 0 = [z,0(y)], for all y, y ′ ∈ Y , z ∈ Z .

Example 2.3. A Lie k-algebra morphism

µ : S → Der (S)

s 7→ µ(s) =µs : S → S

s
′ 7→ µs(s

′
) = [s, s

′
]

with the action of Der(S) on S given as

Der (S)×S → S

(d , s) 7→ d ∗ s = d(s)

is a crossed module where Der (S) is a set of derivations of S,i.e.

Der (S) = {d |d : S → S, d([s1, s2]) = [s1,d s2]+ [d s1, s2] s1, s2 ∈ S}.

(See for detail [7].)



Ummahan Ege Arslan, Sultan Kaplan / IKJM / 4(1) (2022) 17-26 19

A crossed module morphism f : (Y , Z ,∂) → (Y ′, Z ′,∂′) is a pair ( f1 : Y → Y ′, f0 : Z → Z ′) of Lie algebra mor-

phisms, making the diagram below commutative:

Y
∂ //

f1

��

Z

f0

��
Y ′

∂′
// Z ′

also preserving action of Z on Y .

Although the following discussion may be found in various algebraic cases, we include it here since we will

need to generalize it later.

If ∂ : M → P is a pre-crossed module of Lie algebras then
−
∂ : M/

−
M → P given by

−
∂([m]) = ∂(m) is a crossed

module where
−

M is the ideal generated by the elements [m,m′]−∂(m)∗m′, for m,m′ ∈ M . It is not difficult

to see that following equations are satisfied

−
∂([m])∗ [m′] = ∂(m)∗ [m′] = [∂(m)∗m′] = [[m,m′]] = [[m], [m′]]

−
∂(p ∗ [m]) =

−
∂([p ∗m]) = ∂(p ∗m) = [p,∂(m)].

For any pre-crossed module morphism ( f1, f0) : (M ,P,∂) → (M ′,P ′,∂′), we get the crossed module morphism

(
−
f 1, f0) : (M/

−
M ,P,∂) → (M ′/

−
M ′,P ′,∂′), where

−
f 1([m]) = [ f1(m)],m ∈ M . Since

f1([m,m′]−∂(m)∗m′) = f1([m,m′])− f1(∂(m)∗m′)
= [ f1(m), f1(m′)]− f0(∂(m))∗ f1(m′)

= [ f1(m), f1(m′)]−∂′( f1(m))∗ f1(m′) ∈
−

M ′

−
f 1 is well-defined morphism. Thus, it can be given a functor

F : P X MOD → X MOD

defined as F ((M ,P,∂)) = (M ′/
−

M ′,P ′,∂′) on object and as F (( f1, f0)) = (
−
f 1, f0) on morphism.

Furthermore, it is clear that there is forgetful functor G : X MOD → P X MOD and the functor F is left adjoint

to G .

2.2. 2-Crossed Modules of Lie algebras

In this section, we recall the definition of 2-crossed modules over Lie algebras given [5].

A pair of Lie homomorphisms L
∂2−→ M

∂1−→ P with an action of P on M and L, and a bilinear function {, } :

M ×M → L such that below axioms are satisfied for every m,m
′
,m

′′ ∈ M , l , l
′ ∈ L and p ∈ P are defined as a

2-crossed module of Lie algebras

1. ∂1∂2 = 0

2. ∂2(p l ) = p (∂2l ), ∂1(p m) = [p,∂1(m)]
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3. ∂2{m,m
′
} = (∂1m)m

′ − [m,m
′
]

4. {∂2l ,∂2l
′
} = [l , l

′
]

5. {∂2l ,m}+ {m,∂2l } = ∂1ml

6. p {m,m
′
} = {p m,m

′
}+ {m, p m

′
}

7. {[m,m
′
],m

′′
} = ∂1m{m

′
,m

′′
}+ {m, [m

′
,m

′′
]}− ∂1m

′
{m,m

′
}− {m

′
, [m,m

′′
]}

8. {m, [m
′
,m

′′
]} = ∂1m

′
{m,m

′′
}− ∂1m

′′
{m,m

′
}− {m

′
,∂1mm

′′ − [m,m
′′
]}+ {m

′′
,∂1mm

′ − [m,m
′
]}

It is denoted by (L, M ,P,∂2,∂1, {, }). If the below diagram is commutative

M ×M

f1× f1

��

{,} // L

f2

��

∂2 // M
∂1 //

f1

��

P

f0

��
M ′×M ′

{,}
′

// L′
∂′2

// M ′
∂′1

// P ′

that is, the equations

∂1
′
f1 = f0∂1

∂2
′
f2 = f1∂2,

f2{, } = {, }
′
( f1, f1)

are satisfied and

f1(p m) = f0(p) f1(m)

f2(p l ) = f0(p) f2(l )

then a triple ( f2, f1, f0) is called by the morphism of between 2-crossed modules (L, M ,P,∂2,∂1, {, }) and

(L
′
, M

′
,P ′,∂′2,∂′1, {, }′).

As a result, the category of 2-crossed modules is obtained, with 2-crossed modules as objects and mor-

phisms between them as morphisms and it is denoted by L2XMOD.

When the morphisms f1 and f0 above are the identity, we will get a subcategory L2X MOD/(M ,P ), the cat-

egory of 2-crossed modules, over fixed pre-crossed module ∂1 : M → P .

2.3. Quasi 2-Crossed Modules of Lie Algebras

A quasi 2-crossed module of Lie algebras is a sequence L
∂2−→ M

∂1−→ P of Lie algebra homomorphisms to-

gether with a bilinear map {, } : M ×M → L satisfying the below axioms

LQ2X1) ∂1∂2 = 0

LQ2X2) ∂2(p l ) = p (∂2l ), ∂1(p m) = [p,∂1(m)]

LQ2X3) p {m0,m1} = {p m0,m1}+ {m0, p m1}
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LQ2X4) ∂2{m0,m1} = ∂1m0 m1 − [m0,m1]

LQ2X5) {m0, [m1,m2]} = ∂1m1 {m0,m2}− ∂1m2 {m0,m1}− {m1,∂1 m2 − [m0,m2]}

+{m2,∂1m0 m1 − [m0,m1]}

LQ2X6) {[m0,m1],m2} = ∂1m0 {m1,m2}+ {m0, [m1,m2]}− ∂1m1 {m1,m2}

−{m1, [m0,m2]}

LQ2X7) [{m0,m1},∂1m0 (m1◁ l )] = {∂1m0 [m1,∂2l ],∂2{m0,m1}}

for all m,m0,m1,m2 ∈ M and l ∈ L. Also, the action on L of M is given by

m◁ l = ∂1ml − {m,∂2l } = {∂2l ,m}.

We get the category LQ2X MOD quasi 2-crossed modules of Lie algebras by defining whose morphisms

similar to that of L2XMOD and it is obtained a subcategory L2X MOD/(M ,P ) with base ÃÂ ∂1 : M → P , [7].

Proposition 2.4. Every 2-crossed module is a quasi 2-crossed module.

Proof.

Let (L, M ,P,∂2,∂1, {, }) be a 2-crossed module. To complete the proof, just axiom 7 has to be verified.

[{m0,m1},∂m0 (m1◁ l )] = ∂2{m0,m1}◁ ∂m0 {∂2l ,m}

= ∂2{m0,m1}◁ {∂m0∂2l ,m}+ {∂2l ,∂m0 m1}

= ∂2{m0,m1}◁ {∂m0∂2l ,m}+∂2{m0,m1}◁ {∂2l ,∂m0 m1}

= {
∂2

(
{∂m0∂2l ,m}

)
,∂2{m0,m1}

}+{
∂2

(
{∂2l ,∂m0 m1}

)
,∂2{m0,m1}

}
=

{
(∂1(∂m0∂2l ))m − [∂m0∂2l ,m]

}
+{

(∂1(∂2l ))(∂m0 m1)− [∂2l ,∂m0 m1]
}

= {
[∂m0,∂1(∂2l )]m − [∂m0∂2l ,m],∂m0 m1 − [m0,m1]

}+
{0− [∂2l ,∂m0 m1],∂m0 m1 − [m0,m1]}

= {−[∂m0∂2l ,m],∂m0 m1 − [m0,m1]}+
{−[∂2l ,∂m0 m1],∂m0 m1 − [m0,m1]}

= {[m1,∂m0∂2l ]+ [∂m0 m1,∂2l ],∂2{m0,m1}}

= {∂m0 [m1,∂2l ],∂2{m0,m1}}

for all m,m0,m1 ∈ M and l ∈ L.

Proposition 2.5. If (L, M ,P,∂2,∂1, {, }) is a Lie quasi 2-crossed module, then ideal L generated by the elements

of the type

m ∗ l = ∂1ml − {m,∂2l }− {∂2l ,m}

l ⊛ l
′ = [l , l

′
]− {∂2l ,∂2l

′
}

is a P-invariant ideal in Lie algebra L, for all l , l
′ ∈ L, m ∈ M .
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Proof.

p (m ∗ l ) = p (∂1m l − {m,∂2l }− {∂2l ,m})

= p (∂1m l )− p {m,∂2l }− p {∂2l ,m}

= {p,∂1m} · l + (∂1m) · (p · l )− {p m,∂2l }− {m,∂2(p l )}− {∂2(p l ),m}− {∂2l , p m}

= m ∗ p l + ∂1(p m)l − {pm ,∂2l }− {∂2l , p m}

= m ∗ p l + (p m ∗ l ) ∈ L

for p ∈ P , m ∈ M , l ∈ L, and we also get

p (l ⊛ l
′
) = p ([l , l

′
]− {∂2l ,∂2l

′
})

= [l , p l
′
]− {p∂2l ,∂2l

′
}− {∂2l , p∂2l

′
}

= [p l , l
′
]+ [l , p l

′
]− {∂2(p l ),∂2l

′
}− {∂2l ,∂2(p l

′
)}

= [p l , l
′
]− {∂2(p l ),∂2l

′
}+ [l , p l

′
]− {∂2l ,∂2(p l

′
)}

= (p l ⊛ l
′
)+ (l ⊛ p l

′
) ∈ L

for p ∈ P , l , l ′ ∈ L

Theorem 2.6. Let (L, M ,P,∂2,∂1, {, }) be a Lie quasi 2-crossed module and L be as in previous proposition.

Then (L/L, M ,P,∂,∂1, {, }) is a 2-crossed module where ∂ : L/L −→ M , is given by ∂(l +L) = ∂2l and {, } : M ×
M −→ L/L is defined by {, }(m1,m2) = {m1,m2}+L for l ∈ L and m1,m2 ∈ M ,respectively.

Proof.

∂2(m ∗ l ) = ∂2(∂1ml − {m,∂2l }− {∂2l ,m})

= ∂2(∂1ml )−∂2({m,∂2l })−∂2({∂2l ,m})

= ∂1m∂2l − ∂1m∂2l + [m,∂2l ]− ∂1(∂2l )m + [∂2l ,m]

= 0+ [m,∂2l ]− 0m − [m,∂2l ]

= 0

and
∂2(l ⊛ l

′
) = ∂2([l , l

′
]− {∂l ,∂l

′
})

= ∂2([l , l
′
])−∂2({∂l ,∂l

′
})

= [∂2l ,∂2l
′
]− ∂1(∂2l )∂2l

′ − [∂2l ,∂2l
′
]

= 0

for all m ∈ M , l , l
′ ∈ L, that is ∂2(L) = 0. Thus

∂ : L/L → M

l +L 7→ ∂(l +L) = ∂2l

is well-defined. It is seen that some of the axioms of the 2-crossed module are verified.

{∂(l +L),∂(l ′ +L)} = {∂2l ,∂2l ′}

= {∂2l ,∂2l
′
}+L

= [l , l
′
]+L (∵ {∂2l ,∂2l

′
}− [l , l

′
] ∈ L)
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{∂(l +L),m}+ {m,∂(l +L)} = {∂2l ,m}+ {m,∂2l }

= {∂2l ,m}+L+ {m,∂2l }+L

= ∂1ml +L

= ∂1m(l +L)

∂ {m1,m2} = ∂({m1,m2}+L)

= ∂2({m1,m2})

= ∂1m1 m2 − [m1,m2]

for all m,m1,m2 ∈ M , l +L, l
′ +L ∈ L/L. The validity of other axioms can be seen similarly. Therefore we

have following result:

Corollary 2.7. There is (F,G) adjoint functor pair,

LQ2X MOD
F
⇄
G

L2X MOD.

Proof.

Let L = (L, M ,P,∂2,∂1, {, }) and L
′ = (L

′
, M

′
,P

′
,∂

′
2,∂

′
1, {, }

′
) be two Lie quasi 2-crossed module and ( f2, f1, f0)

be morphism between them. The functor

F : LQ2X MOD → L2X MOD

is given by F (L ) = (L/L, M ,P,∂,∂1, {, }),F (L
′
) = (L

′
/L′ , M

′
,P

′
,∂′ ,∂

′
1, {, }′) and F ( f2, f1, f0) = ( f ∗

2 , f1, f0) where

f ∗
2 (l +L) = f2(l )+L′ . We have

f2(m ∗ l ) = f2(∂1ml − {m,∂2l }− {∂2l ,m})

= f2(∂1ml )− f2({m,∂2l })− f2({∂2l ,m})

= f0(∂1m) f2(l )− { f1(m), f1(∂2l )}
′ − { f1(∂2l ), f1(m)}

′

= ∂
′
1 f1(m) f2(l )− { f1(m),∂

′
2( f2(l ))}

′ − {∂
′
2( f2(l )), f1(m)}

′

= f1(m)∗ f2(l ) ∈ L′

and
f2(l1 ⊛ l2) = f2([l1, l

′
2]− {∂2l ,∂2l

′
})

= f2[l1, l2]− f2({∂2l1,∂2l2})

= [ f2l1, f2l2]− ( f2({ })(∂2l1,∂2l2))

= [ f2l1, f2l2]− { }
′
( f1, f2)(∂2l1,∂2l2)

= [ f2l1, f2l2]− { f1∂2l1, f1∂2l2}
′

= [ f2l1, f2l2]− {∂
′
2 f2l1,∂

′
2 f2l2}

′

= f2(l1)∗ f2(l2) ∈ L′

for m ∗ l and l1 ⊛ l2 ∈ L, and so f2(L) ⊆ L′ .

The morphism f ∗
2 : L/L → L

′
/L′ given by f ∗

2 (l +L) = f2(l )+L′ is well-defined, since f2(l1 − l2) ∈ f2(L) ⊆ L′ for

l1 − l2 ∈ L.
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We have
∂

′
2( f ∗

2 (l +L)) = ∂
′
2(( f2l )+L′)

= ∂
′
2( f2l )

= f1(∂2(l ))

= f1(∂(l +L))

and also

∂
′
1 f1 = f0∂1

since ( f2, f1, f0) is a morphism of quasi 2-crossed modules of Lie algebras. Therefore we get following com-

mutative diagram:

L/L

f ∗
2
��

∂ // M
∂1 //

f1

��

P

f0

��
L′/L′

∂
′
2

// M ′
∂′1

// P ′

Furthermore we have below equations:

f ∗
2 {, }(m1,m2) = f ∗

2 ({m1,m2}+L)

= f2({m1,m2})+L

= { f1(m1), f1(m2)}
′

= {, }( f1, f1)(m1,m2)

M ×M

f1× f1

��

{,} // L/L

f ∗
2
��

∂ // M
∂1 //

f1

��

P

f0

��
M ′×M ′

{,}
′

// L′/L′

∂
′
2

// M ′
∂′1

// P ′

Thus ( f ∗
2 , f1, f0) is a morphism of 2-crossed modules, as seen above.

For K = (K , N ,Q,∂
′
2,∂

′
1, {, }

′
) and ( f , f1, f0) : F (L ) →K ∈ Mor (L2X MOD), the morphism ( f qL , f1, f0) : L →

K is in Mor (LQ2X MOD), where qL : L → L/L. Conversely, for ( f2, f1, f0) : L →G(K ) ∈ Mor (LQ2X MOD),

( f ∗
2 , f1, f0) : (L/L, M ,P,∂,∂, {, }) → (K , N ,Q,∂

′
2,∂

′
1, {, }

′
)

is a morphism in Mor (L2X MOD). Thus, we get the bijection

L2X MOD(F (L ),K ) ∼= LQ2X MOD(L ,G(K ))

such that this family of bijections is natural in L and K . Clearly; for h : (h2,h1,h0) =L
′ →L ∈ Mor (LQ2X MOD),

we have following commutative diagram

L2X MOD(F (L ),K )
ηL ,K //

F (h)∗=−◦F (h)
��

LQ2X MOD(L ,G(K ))

−◦h=h∗

��
L2X MOD(F (L

′
),K )

η
L

′
,K

// LQ2X MOD(L
′
,G(K ))
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since
f2h∗

2 qL (l
′
) = f2h∗

2 (l
′ +L′)

= f2(h2(l
′
)+L)

= f2(qL (h2(l
′
))),

and for k : (k2,k1,k0) =K →K
′ ∈ Mor (LX2MOD), we get commutative diagram

L2X MOD(F (L ),K )
ηL ,K //

k∗=k◦−
��

LQ2X MOD(L ,G(K ))

G(k)◦−=G(k)∗

��
L2X MOD(F (L ),K

′
)

η
L ,K

′
// LQ2X MOD(L ,G(K

′
))

because of

(k2 f2)qL = k2( f2qL ).

Hence, it is concluded that there is an adjunction between LQ2XMOD and L2XMOD.

3. Conclusion

In this paper, the category of quasi 2-crossed modules for Lie algebras has been introduced, and an adjunc-

tion between this category and that of 2-crossed modules for Lie algebras is constructed. It is concluded

that this category has a similar role to that of pre-crossed modules in corresponding adjunction to their

1-dimensional analogous.
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