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Abstract

In this paper we present fuzzy coupled fixed point results in the turf of complete b-metric spaces via nonlinear F-
contraction; in follow we derive some interesting results as byproducts. Further, we apply our results in solving fuzzy
Volterra integral equations and Caputo-Hadamard type of fractional differential equations.
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1. Introduction

The notion of F-contraction is defined and discussed by Wardowski[23] in 2012. Ahmad, Piri and Nguyena[2,
20, 19] are others who extended the theory further. Recently, Wardowski[25] introduced a nonlinear form of F-
contraction. Bakhtin[7] defined the concept of b-metric spaces so as to study pattern matching problems; significant
works in this context are presented by Alqahtani, Czerwik, Kutbi, and Qawaqneh. [4, 11, 17, 21].
The idea of coupled fixed points is initiated by Bhaskar and Lakshmikantham[8] in 2006; notable works in this
context are seen in [22]. Heilpern [13] posted a generalization of Nadler’s fixed point theorem via fuzzy mappings.
Abu, Azam et al. and Lee et al.[1, 5, 18] are some others who presented certain substantial results in the turf of fuzzy
mappings. Recently, Zhu[28] extended the concepts of coupled coincidence and common fixed points in this context.
Fuzzy integral and fractional differential equations are widely used in modelling many real life problems. Existence
theorems for Volterra type integral equations presented in [3, 12] are some important works related to the theory
developed here. In 2012, Jarad et al.[14] defined and discussed the notion of Caputo-Hadamard fractional derivatives.
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Recently, Boutiara[9] proved an existence result for a Caputo-Hadamard fractional boundary value problem using
Monch’s fixed point theorem.
In section 3, we present fuzzy coupled fixed point theorems via nonlinear F-contraction; subsequently, we extract
some interesting results as corollaries. In section 4, we apply the theory to solve a system of fuzzy Volterra integral
equations; in section 5, we exhibit the existence of solution for a system of Caputo-Hadamard fractional differential
equations through the theory developed.

2. Preliminaries

Any function from a nonempty set X to [0, 1] is called a fuzzy set [27]. As usual, IX denotes the family of all fuzzy
sets in X. An α-level set of a fuzzy set µ denoted by [µ]α is defined as

[µ]α = {u : µ(u) ≥ α} if α ∈ (0, 1].

For α = 0, the level set is given by
[µ]0 = {u : µ(u) > 0}.

Here for any subset A of X, Ā denotes its closure.

Definition 2.1. [17] Let (M, d) be a b-metric space and CB(M) be the class of nonempty, closed and bounded subsets of
M. For any A, B ∈ CB(M), define

H(A, B) = max
{

sup
u∈A
d(u, B), sup

u′∈B

d(u′, A)
}
,

where
d(u, A) = inf

u′∈A
d(u, u′).

Lemma 2.2. [17] Let A and B be nonempty closed and bounded subsets of a
b-metric space (M, d). If u ∈ A, then d(u, B) ≤ H(A, B).

Let X and Y be two non empty sets, then any mapping � from X into IY is called a fuzzy mapping[15].
For any two fuzzy sets µ and ν of M. If there exists an α ∈ [0, 1] so that [µ]α, [ν]α ∈ CB(M), then define

pα(µ, ν) = inf
u∈[µ]α,u′∈[ν]α

d(u, u′)

and
Dα(µ, ν) = H([µ]α, [ν]α).

If [A]α, [B]α ∈ CB(M) for all α ∈ [0, 1], then define

p(A, B) = sup
α∈[0,1]

pα(A, B)

and
d∞(A, B) = sup

α∈[0,1]
Dα(A, B).

For conventional reason, we use p(u, B) instead of p({u}, B) unless otherwise stated.
A fuzzy set µ in a metric linear space M is said to be an approximate quantity if [µ]α is compact and convex in M

for each α ∈ [0, 1] and sup
u∈M

µ(u) = 1. The collection of all such approximate quantities in M is denoted by WM.

Let En be the family of functions µ : Rn → [0, 1] that satisfy the following conditions:

1. µ is normal, that is, there exists an u ∈ Rn such that µ(u) = 1;
2. µ is fuzzy convex, that is, for 0 ≤ β ≤ 1, µ(βu + (1 − β)u′) ≥ min{µ(u), µ(u′)};
3. µ is upper semicontinuous;
4. [µ]0 = {u ∈ Rn : µ(u) > 0} is compact.
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As we know that [µ]α = {u ∈ Rn : µ(u) ≥ α}, for all α ∈ (0, 1], it is obvious to see that the α-level set [µ]α is a
nonempty compact convex subset of Rn for all α ∈ [0, 1].

If we let D : En × En → [0,∞) as a mapping defined by

D(µ, ν) = sup
α∈[0,1]

H
(
[µ]α, [ν]α

)
for all µ, ν ∈ En, then D is a metric on En.

Definition 2.3. [28] Let � : X2 → IX be a fuzzy mapping. An element (u, u′) ∈ X2 is said to be a fuzzy coupled fixed
point of � if there exists α ∈ (0, 1] so that u ∈ [�(u, u′)]α and u′ ∈ [�(u′, u)]α.

The upcoming class of mappings F is introduced in [23] by Wardowski. A mapping F : R+ → R belongs to the
set F if it satisfy the following conditions:

(F1) F is strictly increasing;

(F2) For every sequence {tn} of nonzero nonnegative numbers, if
lim
n→∞

F(tn) = −∞, then lim
n→∞

tn = 0;

(F3) there exists k ∈
(
0, 1

1+log b

)
so that lim

t→0+
tkF(t) = 0;

(F4) F is lower semi-continuous.

Let Ψ be the class of all mappings ψ : R∗ → R+ with lim inf
x→t

ψ(x) > 0 for any t ≥ 0.

Definition 2.4. [9] The left-sided fractional integral of order α > 0 of a function y : (p, q)→ R is given by

Iαp+y(t) =
1
Γ(α)

tw

p

(
log

t
s

)α−1
y(s)

ds
s

provided the right integral converges.

Definition 2.5. [9] Let α = 0, J = [p, q], n = [α] + 1. If y(x) ∈ ACn
δ[p, q], where 0 < p < q < ∞ and

ACn
δ(J,R) = {h : J → R : δn−1h(t) ∈ AC(J,R)}

The left-sided Caputo-type modification of left-Hadamard fractional derivatives of order α is given by

CDα
p+y(t) =C Dα

p+

y(t) −
n−1∑
k=0

δky(p)
k!

(
log

t
s

)k


Lemma 2.6. [9] Let α ≥ 0, J = [p, q] and n = [α]+1. If y(t) ∈ ACn
δ(J,R), then Caputo fractional differential equation

CDα
p+y(t) = 0 has a solution

y(t) =
n−1∑
k=0

ck

(
log

t
p

)k

and

Iαp+(
CDα

p+y)(t) = y(t) +
n−1∑
k=0

ck

(
log

t
p

)k

where ck ∈ R, k = 1, 2, · · · , n − 1.
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3. Fuzzy coupled fixed point theorem

Let us fix some notations here. Let (M, d) be a complete b-metric space and� : M2 → IM be a fuzzy mapping. For
any α ∈ (0, 1] and (u, u′) ∈ M2, we denote the image of (u, u′) under � as �(u,u′) and the corresponding α level set by
[�]α(u,u′). Meanings of the labels are same, throughout the section, except as otherwise indicated.

Theorem 3.1. If for each (u, u′) ∈ M2, there exists α(u,u′) ∈ (0, 1] so that
∅ , [�]α(u,u′) ∈ CB(M) and if there exist mappings F ∈ F and ψ ∈ Ψ with

ψ
(
P(u, u′, v, v′)

)
+ F

(
bQ(u, u′, v, v′)

)
≤ F

(
R(u, u′, v, v′)

b

)
, (1)

where

P(u, u′, v, v′) = d(u, v) + d(u′, v′);

Q(u, u′, v, v′) = H([�]α(u,u′), [�]α(v,v′)) + H([�]α(u′,u), [�]α(v′,v));

R(u, u′, v, v′) = max{d(u, v) + d(u′, v′), d(u, [�]α(u,u′)) + d(u
′, [�]α(u′,u)),

d(v, [�]α(v,v′)) + d(v
′, [�]α(v′,v)),

1
2

(d(u, [�]α(v,v′)) + d(u
′, [�]α(v′,v))),

1
2

(d(v, [�]α(u,u′)) + d(v
′, [�]α(u′,u)))}.

for all P(u, u′, v, v′) > 0 and Q(u, u′, v, v′) > 0, then � has a fuzzy coupled fixed point in M2.

To avoid ambiguity, it should be noted that the choice of α relies on (u, u′).

Proof. Let

Pn = P
(
un−1, u′n−1, un, u′n

)
Qn = Q

(
un−1, u′n−1, un, u′n

)
Rn = R

(
un−1, u′n−1, un, u′n

)
.

Let (u0, u′0) ∈ M2, then there exist α(u0,u′0) and α(u′0,u0) such that ∅ , [�]α(u0,u′0) and ∅ , [�]α(u′0,u0) in CB(M); accordingly
we can choose u1 ∈ [�]α(u0,u′0) and u′1 ∈ [�]α(u′0,u0) with

d(u0, u1) = d(u0, [�]α(u0,u′0))

and
d(u′0, u

′
1) = d(u′0, [�]α(u′0,u0)).

Repeating the process, one can construct a sequence {(un, u′n)}∞n=0 so that

d(un−1, un) = d(un−1, [�]α(un−1,u′n−1))

and
d(u′n−1, u

′
n) = d(u′n−1, [�]α(u′n−1,un−1)),

where un ∈ [�]α(un−1,u′n−1) and u′n ∈ [�]α(u′n−1,un−1).

If Pm = 0 or Qm = 0 for some m ∈ N, then um ∈ [�]α(um,u′m) and u′m ∈ [�]α(u′m,um) which implies (um, u′m) is a fuzzy
coupled fixed point of �.

On the other side if we assume Pn > 0 and Qn > 0, for all n. Then from (1), we get

ψ(Pn) + F(bQn) ≤ F
(
Rn

b

)
.
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By lemma 2.2, we get Pn+1 ≤ Qn. Since F is strictly increasing, we have

F(Pn+1) ≤ F(Qn)

≤ F(bQn)

≤ F
(
Rn

b

)
− ψ(Pn)

≤ F (Rn) − ψ(Pn) (2)

Here we claim that Rn ≤ Pn, for all n. It is obvious that Rn cannot be equal to Pn+1 for any n. Therefore by the
definition of Rn the only remaining possibility is

Rn =
1
2
d(un−1, [�]α(un,u′n)) + d(u

′
n−1, [�]α(u′n,un)),

for some n. If we let so, then

Rn ≤
1
2

(d(un−1, un+1) + d(u′n−1, u
′
n+1))

≤
1
2

(Pn + Pn+1), (3)

which in turn implies

F(Rn) ≤ F
(
1
2

(Pn + Pn+1)
)
.

Applying the above inequality in (2), we get

F(Pn+1) ≤ F
(
1
2

(Pn + Pn+1)
)
− ψ(Pn)

≤ F
(
1
2

(Pn + Pn+1)
)
,

which implies Pn+1 ≤ Pn; whence from (3), it follows that Rn ≤ Pn as desired.
Consequently, from (2) it results that

F(Pn+1) ≤ F(Pn) − ψ(Pn) (4)

and hence {Pn} must converge to some point P ≥ 0. Also since

lim inf
Pn→P

ψ(Pn) > 0,

there exists c ∈ R+ and N ∈ N such that ψ(Pn) ≥ c for all n ≥ N. Using equation (4) successively, we get

F(Pn) ≤ F(Pn−1) − ψ(Pn−1)

≤ F(Pn−2) − ψ(Pn−2) − ψ(Pn−1)
...

...

≤ F(P1) −
n−1∑
k=1

ψ(Pk)

< F(P1) −
n−1∑
k=N

ψ(Pk)

< F(P1) − (n − N)c, n ≥ N. (5)

By letting n→ ∞, we have F(Pn)→ −∞ and hence from (F2), it follows that

lim
n→∞
Pn → 0.
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By (F3), there exists k ∈
(
0, 1

1+log b

)
such that

lim
n→∞
Pn

kF(Pn)→ 0.

Also by equation (5), we have

Pn
kF(Pn) < Pn

kF(P1) − Pnk(n − N)W,

= Pn
kF(P1) − nPnk + NWPn

k,

for all n ≥ N, which implies
nPn

k < Pn
kF(P1) − PnkF(Pn) + NWPnk.

If we let n→ ∞ in the above inequality, we get

lim
n→∞
nPn

k = 0.

Therefore there exists N0 ∈ N such that nPnk < 1 for all n ≥ N0 which implies Pn < 1

n
1
k

for all n ≥ N0. Consequently,

d(un, um) + d(u′n, u
′
m) ≤ Pn+1 + Pn+2 + · · · + Pm

≤

∞∑
i=1

Pi

≤

∞∑
i=1

1

i
1
k

for all m > n > N0. But since
∞∑
i=1

1

i
1
k

is convergent, it results that

lim
n→∞

(
d(un, um) + d(u′n, u

′
m)

)
= 0.

Hence {un} and {u′n} must be Cauchy and have to converge, as M is complete, let us assume that un → u and u′n → u′.
In follow we claim that

d(u, [�]α(u,u′)) + d(u
′, [�]α(u′,u)) = 0.

Let us assume that
d(u, [�]α(u,u′)) + d(u

′, [�]α(u′,u)) > 0

on the contrary. As
d(un+1, [�]α(u,u′)) ≤ H([�]α(un,u′n), [�]α(u,u′))

and
d(u′n+1, [�]α(u′,u)) ≤ H([�]α(u′n,un), [�]α(u′,u)),

we have

Q(un, u′n, u, u
′) ≥ d(un+1, [�]α(u,u′)) + d(u

′
n+1, [�]α(u′,u))}.

This implies that
lim
n→∞
Q(un, u′n, u, u

′) ≥ d(u, [�]α(u,u′)) + d(u
′, [�]α(u′,u))

and therefore there exists n0 ∈ N,
Q(un, u′n, u, u

′) > 0 for all n ≥ n0.

As Pn > 0 and Qn > 0 ∀ n,
P(un, u′n, u, u

′) > 0 ∀ n.

Also since
lim
n→∞
R(un, u′n, u, u

′) = d(u, [�]α(u,u′)) + d(u
′, [�]α(u′,u)),
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using (F4) it results that

lim
n→∞

F(bQ(un, u′n, u, u
′)) ≥ F(b(d(u, [�]α(u,u′)) + d(u

′, [�]α(u′,u))))

and

lim
n→∞

F
(
R(un, u′n, u, u

′)
b

)
= F

d(u, [�]α(u,u′)) + d(u
′, [�]α(u′,u))

b

 .
From contractive condition (1), we get

F(R(un, u′n, u, u
′)) ≥ ψ(P(un, u′n, u, u

′)) + F(Q(un, u′n, u, u
′))

for all n ≥ n0. Finally using (F1) we get that
lim infn→∞ ψ(P(un, u′n, u, u

′))

≤ lim inf
n→∞

F
(
R(un, u′n, u, u

′)
b

)
− lim inf

n→∞
F(bQ(un, u′n, u, u

′))

< 0,

which is a contradiction. Therefore
d(u, [�]α(u,u′)) + d(u

′, [�]α(u′,u)) = 0,

which implies that (u, u′) is a required fuzzy coupled fixed point of �. □

Example 3.2. Let M = [0, 1] and d : M2 → [0,∞) be the mapping defined as d(u, u′) = |u − u′|2, then (M, d) is a
complete b-metric space with coefficient 2. Let Iuu′ =

[
sin

(
u+u′

4

)
, u+u′

2

]
. Define a mapping � : M2 → IM by

�(u, u′)(t) =

u2+u′2+1
3 if t ∈ Iuu′

0 otherwise.

Let (u, u′) ∈ M2, then the α-level sets of the fuzzy set �(u, u′) are given by

[�]α(u,u′) =

Iuu′ if 0 ≤ α ≤ u2+u′2+1
3

∅ otherwise.

Therefore, for any (u, u′) ∈ M2, if we take α(u,u′) =
u2+u′2+1

3 , then α(u,u′) ∈ (0, 1] and the α-level set [�]α(u,u′) = Iuu′ is
closed and bounded. Also

P(u, u′, v, v′) = |u − v|2 + |u′ − v′|2;

Q(u, u′, v, v′) = 2H(Iuu′ , Ivv′);

R(u, u′, v, v′) = max
{
|u − v|2 + |u′ − v′|2, |u − Iuu′ |

2 +
∣∣∣u′ − Iuu′

∣∣∣2 ,
|v − Ivv′ |

2 +
∣∣∣v′ − Ivv′

∣∣∣2 , 1
2

(
|u − Ivv′ |

2 +
∣∣∣u′ − Ivv′

∣∣∣2) ,
1
2

(
|v − Iuu′ |

2 +
∣∣∣v′ − Iuu′

∣∣∣2)} .
In this plot, if we let

F(x) = ln x and ψ(x) =
x + 1
10

,

then

ψ(P(u, u′, v, v′)) + F
(
bQ(u, u′, v, v′)

)
≤ F

(
R(u, u′, v, v′)

b

)
for all P(u, u′, v, v′) > 0 and Q(u, u′, v, v′) > 0. Hence by Theorem 3.1, � has a fuzzy coupled fixed point. Indeed the
elements of the form (u, u) ∈ M2 are coupled fixed points of �.
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Corollary 3.3. Let M be a complete b-metric linear space and � : M2 → WM be a mapping. Suppose there exist
functions F ∈ F and ψ ∈ Ψ with

ψ
(
P(u, u′, v, v′)

)
+ F

(
bQ(u, u′, v, v′)

)
≤ F

(
R(u, u′, v, v′)

b

)
(6)

where

P(u, u′, v, v′) = d(u, v) + d(u′, v′);

Q(u, u′, v, v′) = d∞(�(u, u′),�(v, v′)) + d∞(�(u′, u),�(v′, v));

R(u, u′, v, v′) = max
{
d(u, v) + d(u′, v′), p(u,�(u, u′)) + p(u′,�(u′, u)),

p(v,�(v, v′)) + p(v′,�(v′, v)),
1
2

(p(u,�(v, v′)) + p(u′,�(v′, v))),

1
2

(p(v,�(u, u′)) + p(v′,�(u′, u)))
}
,

for all P(u, u′, v, v′) > 0 and Q(u, u′, v, v′) > 0, then there exists (u0, u′0) ∈ M2 such that {u0} ⊂ �(u0, u′0) and
{u′0} ⊂ �(u′0, u0).

Proof. From the definition of d∞ metric, we get

H([�]α(u,u′),�
α
(v,v′)) ≤ d∞(�(u, u′),�(v, v′))

H([�]α(u′,u),�
α
(v′,v)) ≤ d∞(�(u′, u),�(v′, v))

∀ u, u′, v, v′ ∈ M.
Further we know that [�]1

(u,u′) ⊆ [�]α(u,u′), for all α ∈ (0, 1] and (u, u′) ∈ M. Therefore

d(u, [�]α(u,u′)) ≤ d(u, [�]1
(u,u′)),

which results that p(u,�(u, u′)) ≤ d(u, [�]α(u,u′)).
Analogously, it can be seen that

p(u′,�(u′, u)) ≤ d(u′, [�]α(u′,u));

p(v,�(v, v′)) ≤ d(v, [�]α(v,v′));

p(v′,�(v′, v)) ≤ d(v′, [�]α(v′,v)).

Consequently,

ψ
(
P(u, u′, v, v′)

)
+ F

(
bQ(u, u′, v, v′)

)
≤ ψ

(
P(u, u′, v, v′)

)
+ F

(
bQ(u, u′, v, v′)

)
≤ F

(
R(u, u′, v, v′)

b

)
≤ F

(
R(u, u′, v, v′)

b

)
.

Thus by Theorem 3.1, there exists (u0, u′0) ∈ M2 such that u0 ∈ [�]1
(u0,u′0) and

u′0 ∈ [�]1
(u′0,u0), which implies u0 ⊂ �(u0, u′0) and u′0 ⊂ �(u′0, u0). □

Let � : M2 → IM be a fuzzy mapping. If we define �̃ : M2 → CB(M) as

�̃(u, u′) = {v′ ∈ M : �(u,u′)(v′) = max
v∈M
�(u,u′)(v)},

then we can conclude that (u0, u′0) is a coupled fixed point of �̃ if and only if �(u0,u′0)(u0) ≥ �(u0,u′0)(v) and
�(u′0,u0)(u′0) ≥ �(u′0,u0)(v) for all v ∈ M.
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Corollary 3.4. Let ∅ , �̃(u, u′) ∈ CB(M). If there exist mappings F ∈ F and ψ ∈ Ψ so that

ψ
(
P(u, u′, v, v′)

)
+ F

(
bQ(u, u′, v, v′)

)
≤ F

(
R(u, u′, v, v′)

b

)
where

P(u, u′, v, v′) = d(u, v) + d(u′, v′);

Q(u, u′, v, v′) = H(�̃(u, u′), �̃(v, v′)) + H(�̃(u′, u), �̃(v′, v));

R(u, u′, v, v′) = max{d(u, v) + d(u′, v′), p(u, �̃(u, u′)) + p(u′, �̃(u′, u)),

p(v, �̃(v, v′)) + p(v′, �̃(v′, v)),
1
2

(p(u, �̃(v, v′)) + p(u′, �̃(v′, v))),

1
2

(p(v, �̃(u, u′)) + p(v′, �̃(u′, u)))},

for all P(u, u′, v, v′) > 0 and Q(u, u′, v, v′) > 0, then there exists a point (u0, u′0) ∈ M2 such that

�(u0,u′0)(u0) ≥ �(u0,u′0)(v, v′)

and
�(u′0,u0)(u′0) ≥ �(u′0,u0)(v, v′)

for all (v, v′) ∈ M2.

Proof. By Theorem 3.1, there exits a coupled fixed point (u0, u′0) ∈ M2. Hence �(u0,u′0)(u0) ≥ �(u0,u′0)(v, v′) and
�(u′0,u0)(u′0) ≥ �(u′0,u0)(v) for all v ∈ M as desired. □

Corollary 3.5. Let G : M2 → CB(M) be a mapping. Suppose there exist functions F ∈ F and ψ ∈ Ψ with

ψ
(
P(u, u′, v, v′)

)
+ F

(
bQ(u, u′, v, v′)

)
≤ F

(
R(u, u′, v, v′)

b

)
(7)

where

P(u, u′, v, v′) = d(u, v) + d(u′, v′);

Q(u, u′, v, v′) = H(G(u, u′), G(v, v′)) + H(G(u′, u), G(v′, v));

R(u, u′, v, v′) = max{d(u, v) + d(u′, v′), d(u, G(u, u′)) + d(u′, G(u′, u)),

d(v, G(v, v′)) + d(v′, G(v′, v)),
1
2

(d(u, G(v, v′)) + d(u′, G(v′, v))),

1
2

(d(v, G(u, u′)) + d(v′, G(u′, u)))},

for all P(u, u′, v, v′) > 0 and Q(u, u′, v, v′) > 0, then G has a coupled fixed point in M2.

Proof. Suppose we let � : M2 → IM as

�(u, u′)(t) =

α(u, u′) if t ∈ G(u, u′)
0 otherwise,

where α is a mapping from M2 to (0, 1], then � satisfies all the needs of Theorem 3.1, as

[�]α(u,u′) = {t : �(u, u′)(t) ≥ α(u, u′)} = G(u, u′),

for all u, u′ ∈ M. Hence by Theorem 3.1, we get (u0, u′0) ∈ M2 with u0 ∈ [�]α(u0,u′0) and u′0 ∈ [�]α(u′0,u0) which implies
(u0, u′0) is a coupled fixed point of G. □
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Corollary 3.6. Let f : M2 → M be a mapping. If there exist functions F ∈ F and ψ ∈ Ψ so that

ψ
(
P(u, u′, v, v′)

)
+ F

(
bQ(u, u′, v, v′)

)
≤ F

(
R(u, u′, v, v′)

b

)
where

P(u, u′, v, v′) = d(u, v) + d(u′, v′);

Q(u, u′, v, v′) = d(f(u, u′), f(v, v′)) + d(f(u′, u), f(v′, v));

R(u, u′, v, v′) = max
{
d(u, v) + d(u′, v′), d(u, f(u, u′)) + d(u′, f(u′, u)),

d(v, f(v, v′)) + d(v′, f(v′, v)),
1
2

(d(u, f(v, v′)) + d(u′, f(v′, v))),

1
2

(d(v, f(u, u′)) + d(v′, f(u′, u)))
}
,

∀ P(u, u′, v, v′) > 0 and Q(u, u′, v, v′) > 0. Then f has a unique coupled fixed point in M2.

Proof. If we let G(u, u′) = {f(u, u′)}, then by corollary 3.5 f has to possess a
coupled fixed point. Suppose (u, u′) and (v, v′) ∈ M2 are two distinct coupled fixed points of f, then by contrac-
tive condition (7), we have

ψ
(
P(u, u′, v, v′)

)
+ F

(
bQ(u, u′, v, v′)

)
≤ F

(
R(u, u′, v, v′)

b

)
.

Therefore

F(d(u, v) + d(u′, v′)) ≥ ψ
(
d(u, v) + d(u′, v′)

)
+ F

(
d(u, v) + d(u′, v′)

)
,

which is not possible and hence f has to possess a unique coupled fixed point. □

Example 3.7. Let M = [0, 1] and d : M2 → [0,∞) be the mapping defined by d(u, u′) = |u − u′|2. Then clearly (M, d) is
a complete b-metric space with coefficient 2. Define a mapping f : M2 → M by f(u, u′) = sin2 u

4 . Also, we have

P(u, u′, v, v′) = |u − v|2 + |u′ − v′|2;

Q(u, u′, v, v′) =

∣∣∣∣∣∣sin2 u
4
−

sin2 v
4

∣∣∣∣∣∣2 +
∣∣∣∣∣∣sin2 u′

4
−

sin2 v′

4

∣∣∣∣∣∣2 ;

R(u, u′, v, v′) = max

|u − v|2 + |u′ − v′|2,
∣∣∣∣∣u − sin u

4

∣∣∣∣∣2 +
∣∣∣∣∣∣u′ − sin2 u′

4

∣∣∣∣∣∣2 ,∣∣∣∣∣∣v − sin2 v
4

∣∣∣∣∣∣2 +
∣∣∣∣∣∣v′ − sin2 v′

4

∣∣∣∣∣∣2 , 1
2

∣∣∣∣∣∣u − sin2 v
4

∣∣∣∣∣∣2 +
∣∣∣∣∣∣u′ − sin2 v′

4

∣∣∣∣∣∣2 ,
1
2

∣∣∣∣∣v − sin u
4

∣∣∣∣∣2 +
∣∣∣∣∣∣v′ − sin2 u′

4

∣∣∣∣∣∣2
 .

In this scenario, if we let

F(x) =
−1
√

x
and ψ(x) =

2x2 + 1
10

,

then we have

ψ(P(u, u′, v, v′)) + F
(
bQ(u, u′, v, v′)

)
≤ F

(
R(u, u′, v, v′)

b

)
,

for all P(u, u′, v, v′) > 0 and Q(u, u′, v, v′) > 0. Thus by corollary 3.6 , the mapping f has a unique coupled fixed point
and it is easy to note that (0, 0) is the required one.
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In follow, we present some natural extensions of Theorem 3.1.

Theorem 3.8. Let

R′(u, u′, v, v′) = β1(d(u, v) + d(u′, v′)) + β2(d(u, [�]α(u,u′)) + d(u
′, [�]α(u′,u)))

+β3(d(v, [�]α(v,v′)) + d(v
′, [�]α(v′,v)))

+β4(d(u, [�]α(v,v′)) + d(u
′, [�]α(v′,v)))

+β5(d(v, [�]α(u,u′)) + d(v
′, [�]α(u′,u))),

where β1+β2+β3+β4+β5 < 1. In Theorem 3.1 replace as R(u, u′, v, v′) by R′(u, u′, v, v′), then� has a fuzzy coupled
fixed point in M2.

Proof. By proceeding as in Theorem 3.1, we get

F(Pn+1) ≤ F(Rn) − ψ(Pn)

≤ F ((β1 + β2 + β4)Pn + β3Pn+1) − ψ(Pn) (8)

≤ F ((β1 + β2 + β4)Pn + β3Pn+1) .

Since F is strictly increasing, we get

Pn+1 ≤ (β1 + β2 + β4)Pn + β3Pn+1.

which implies

Pn+1 <
(β1 + β2 + β4)

1 − β3
Pn < Pn.

Applying the above inequality in (8), we get

F(Pn+1) ≤ F((β1 + β2 + β3 + β4)Pn) − ψ(Pn)

≤ F(Pn) − ψ(Pn)

< F(Pn).

From here one can easily derive the remaining proof by retracing the steps followed in Theorem 3.1. □

Example 3.9. Let M = [0, 1] and d : M2 → [0,∞) be the mapping defined by d(u, u′) = |u − u′|2, then (M, d) is a
complete b-metric space with coefficient 2. Let Iuu′ =

[
u+u′

4 , u+u′
2

]
. Define a mapping � : M2 → IM by

�(u, u′)(t) =

u+u′+1
3 if t ∈ Iuu′

0 otherwise.

Let (u, u′) ∈ M2. Then the α-level sets of the fuzzy set �(u, u′) are given by

[�]α(u,u′) =

Iuu′ if 0 ≤ α ≤ u+u′+1
3

∅ otherwise.

Consequently, for any (u, u′) ∈ M2, if we take α(u,u′) =
u+u′+1

3 , then α(u,u′) ∈ (0, 1] and the α-level set [�]α(u,u′) = Iuu′ is
closed and bounded. Also

P(u, u′, v, v′) = |u − v|2 + |u′ − v′|2;

Q(u, u′, v, v′) = 2H (Iuu′ , Ivv′) ;

R′(u, u′, v, v′) = 0.2
(
|u − v|2 + |u′ − v′|2

)
+ 0.2

(
|u − Iuu′ |

2 +
∣∣∣u′ − Iuu′

∣∣∣2)
+0.2

(
|v − Ivv′ |

2 +
∣∣∣v′ − Ivv′

∣∣∣2) + 0.1
(
|u − Ivv′ |

2 +
∣∣∣u′ − Ivv′

∣∣∣2)
+0.1

(
|v − Iuu′ |

2 +
∣∣∣v′ − Iuu′

∣∣∣2) ,
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In this plot, if we let

F(x) = ln x and ψ(x) =
x + 1
10

,

then

ψ(P(u, u′, v, v′)) + F
(
bQ(u, u′, v, v′)

)
≤ F

(
R′(u, u′, v, v′)

b

)
,

for all P(u, u′, v, v′) > 0 and Q(u, u′, v, v′) > 0. Hence by Theorem 3.8, � has a fuzzy coupled fixed point. Indeed the
elements of the form (u, u) ∈ M2 are coupled fixed points of �.

Note. Results analogous to the corollaries of Theorem 3.1 can be derived for Theorem 3.8 also. However, we
present the statement of one specific result that establishes the unique existence of a coupled fixed point for a function
f : M2 → M in follow.

Corollary 3.10. Let f : M2 → M be a mapping. If there exist functions F ∈ F and ψ ∈ Ψ so that

ψ
(
P(u, u′, v, v′)

)
+ F

(
bQ(u, u′, v, v′)

)
≤ F

(
R′(u, u′, v, v′)

b

)
where

P(u, u′, v, v′) = d(u, v) + d(u′, v′);

Q(u, u′, v, v′) = d(f(u, u′), f(v, v′)) + d(f(u′, u), f(v′, v));

R′(u, u′, v, v′) = β1d(u, v) + d(u′, v′) + β2d(u, f(u, u′)) + d(u′, f(u′, u))

+β3d(v, f(v, v′)) + d(v′, f(v′, v))

+β4(d(u, f(v, v′)) + d(u′, f(v′, v)))

+β5(d(v, f(u, u′)) + d(v′, f(u′, u)))

for all P(u, u′, v, v′) > 0 and Q(u, u′, v, v′) > 0, then f has a unique coupled fixed point in M2.

Example 3.11. Let M = [0, 1] and d : M2 → [0,∞) be the mapping defined as d(u, u′) = |u − u′|2. Then clearly (M, d)
is a complete b-metric space with coefficient 2. Define a mapping f : M2 → IM by f(u, u′) = 1

2 tan u
2 . Also, we have

P(u, u′, v, v′) = |u − v|2 + |u′ − v′|2;

Q(u, u′, v, v′) =
1
2

∣∣∣∣∣tan
u
2
− tan

v
2

∣∣∣∣∣2 + 1
2

∣∣∣∣∣tan
u′

2
− tan

v′

2

∣∣∣∣∣2 ;

R′(u, u′, v, v′) = β1
(
|u − v|2 + |u′ − v′|2

)
+β2

(∣∣∣∣∣u − 1
2

tan
u
2

∣∣∣∣∣2 + ∣∣∣∣∣u′ − 1
2

tan
u′

2

∣∣∣∣∣2)
+β3

(∣∣∣∣∣v − 1
2

tan
v
2

∣∣∣∣∣2 + ∣∣∣∣∣v′ − 1
2

tan
v′

2

∣∣∣∣∣2)
+β4

(∣∣∣∣∣u − 1
2

tan
v
2

∣∣∣∣∣2 + ∣∣∣∣∣u′ − 1
2

tan
v′

2

∣∣∣∣∣2)
+β5

(∣∣∣∣∣v − 1
2

tan
u
2

∣∣∣∣∣2 + ∣∣∣∣∣v′ − 1
2

tan
u′

2

∣∣∣∣∣2) .
If we let F(x) = ln x + x; ψ(x) = x2+1

10 ; β1 = 0.3; β2 = β3 = β4 = β5 = 0.1 then we have

ψ(P(u, u′, v, v′)) + F
(
bQ(u, u′, v, v′)

)
≤ F

(
R′(u, u′, v, v′)

b

)
for all P(u, u′, v, v′) > 0 and Q(u, u′, v, v′) > 0. Thus by corollary 3.10, the mapping f has a unique coupled fixed

point and it is easy to note that (0, 0) is the required one.
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4. Application on fuzzy Volterra integral equations

Let M = C([0, 1], En) be the class of all continuous fuzzy mappings from [0, 1] to En and let d : M2 → [0,∞) be the
mapping defined as

d(ϑ, ξ) = sup
t∈[0,1]

D(ϑt, ξt),

where ϑt and ξt are the images t under ϑ and ξ respectively, then M is complete.
Let τ, ϑ, ξ : [0, 1]→ En, Υ : [0, 1] × En × En → En be continuous fuzzy functions. Let

N = {(t, s) : 0 ≤ s ≤ t ≤ 1},

and κ : N → R be continuous such that sup
t∈[0,1]

tr
0
|κ(t, s)|ds ≤ 1.

Consider the following system of fuzzy Volterra integral equations

ϑt = τt +

tw

0

κ(t, s)Υ(s, ϑs, ξs)ds

ξt = τt +

tw

0

κ(t, s)Υ(s, ξs, ϑs)ds, t ∈ [0, 1] (9)

Theorem 4.1. Let S : En × En → En be a function defined by

S(µ, ν) = τt +

tw

0

κ(t, s)Υ(s, µ, ν)ds.

If there exists θ > 0 so that

D(Υ(t, µ1, ν1),Υ(t, µ2, ν2)) ≤
e−θ

2
R(µ1, ν1, µ2, ν2)

where

R(µ1, ν1, µ2, ν2) = max {D(µ1, µ2) + D(ν1, ν2), D(µ1,S(µ1, ν1)) + D(ν1,S(ν1, µ1)),

D(µ2,S(µ2, ν2)) + D(ν2,S(ν2, µ2))} (10)

for all µ1, ν1, µ2 and ν2 in En, then the system of fuzzy Volterra integral equations (9) has a solution.

Proof. Let Γ : M2 → IM be the fuzzy mapping defined by

Γ(ϑ, ξ)(ι) =

ρ(ϑ, ξ) if ι(t) = S(ϑt, ξt)
0 otherwise,

where ρ : M2 → (0, 1], then

[Υ]α(ϑ,ξ) = {ι ∈ M : Γ(ϑ, ξ)(ι) ≥ ρ(ϑ, ξ)}

= {S(ϑt, ξt)},
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for all ϑ, ξ ∈ M and therefore
H([Υ]α(ϑ1,ξ1), [Υ]α(ϑ2,ξ2))

≤ sup
t∈[0,1]

D(S(ϑ1t , ξ1t ),S(ϑ2t , ξ2t ))

≤ sup
t∈[0,1]

D

 tw

0

κ(t, s)Υ(s, ϑ1s , ξ1s)ds,
tw

0

κ(t, s)Υ(s, ϑ2s , ξ2s)ds


≤ sup

t∈[0,1]

tw

0

D(κ(t, s)Υ(s, ϑ1s , ξ1s), κ(t, s)Υ(s, ϑ2s , ξ2s))ds

≤ sup
t∈[0,1]

tw

0

|κ(t, s)|D(Υ(s, ϑ1s , ξ1s),Υ(s, ϑ2s , ξ2s))ds

≤ sup
t∈[0,1]

D(Υ(t, ϑ1t , ξ1t ),Υ(t, ϑ2t , ξ2t ))
tw

0

|κ(t, s)|ds

≤ sup
t∈[0,1]

e−θ

2
R(ϑ1t , ξ1t , ϑ2t , ξ2t )

≤
e−θ

2
R(ϑ1, ξ1, ϑ2, ξ2).

Analogously, one can prove that

H([Υ]α(ξ1,ϑ1), [Υ]α(ξ2,ϑ2)) ≤
e−θ

2
R(ϑ1, ξ1, ϑ2, ξ2).

Adding the above two inequalities, we get

H([Υ]α(ϑ1,ξ1), [Υ]α(ϑ2,ξ2)) + H([Υ]α(ξ1,ϑ1), [Υ]α(ξ2,ϑ2)) ≤ e−θR(ϑ1, ξ1, ϑ2, ξ2).

Suppose we let F(x) = ln x and ψ(x) = θ, then by Theorem 3.1, the fuzzy
mapping Γ has a fuzzy coupled fixed point; consequently, the system of fuzzy Volterra integral equations (9) has
a fuzzy solution as desired. □

Example 4.2. Let

ϑt = τt +

tw

0

ts2 t2ϑt + tξt

3
ds

ξt = τt +

tw

0

ts2 t2ξt + tϑt

3
ds,

be the system of fuzzy Volterra integral equations,with kernel κ(t, s) = ts2, then we have

sup
t∈[0,1]

tw

0

|κ(t, s)|ds = sup
t∈[0,1]

tw

0

|ts2|ds

= sup
t∈[0,1]

t4

3

≤
1
3

Let Υ : [0, 1] × E1 × E1 → E1 and S : E1 × E1 → E1 be the functions defined as

Υ(t, µ, ν) =
t2µ + tν

3
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and

S(µ, ν) = τt +

t∫
0

ts2 s2µ + sν
3

ds.

For any two given fuzzy sets µ1 and ν1, let us denote that the α-level sets of the fuzzy sets µ1, ν1 and
t∫

0
µ1ds by

[µ1]α = [µα1l, µ
α
1u];

[ν1]α = [να1l, ν
α
1u];

[
t
∫
0
µ1ds

]α
= [

t
∫
0
µα1lds,

t
∫
0
µα1uds];

In follow, let us compute the terms, that are needed to validate whether the
constructed S and Υ satisfy the sufficient condition in Theorem 4.1:
D(Υ(t, µ1, ν1),Υ(t, µ2, ν2))

= sup
α∈[0,1]

H
(
[Υ(t, µ1, ν1)]α, [Υ(t, µ2, ν2)]α

)
= sup

α∈[0,1]
H

 t2µα1l + tνα1l

3
,

t2µα1u + tνα1u

3

 ,  t2µα2l + tνα2l

3
,

t2µα2u + tνα2u

3


=

1
3

sup
α∈[0,1]

max
{
|t2µα1l + tνα1l − t2µα2l − tνα2l|, |t

2µα1u + tνα1u − t2µα2u − tνα2u|
}

=
1
3

sup
α∈[0,1]

max
{
|t2(µα1l − µ

α
2l) + t(να1l − ν

α
2l)|, |t

2(µα1u − µ
α
2u) + t(να1u − ν

α
2u)|

}
;

D(µ1, µ2) = sup
α∈[0,1]

H([µ1]α, [µ2]α)

= sup
α∈[0,1]

H([µα1l, µ
α
1u], [µα2l, µ

α
2u])

= sup
α∈[0,1]

max{|µα1l − µ
α
2l|, |µ

α
1u − µ

α
2u|};

D(ν1, ν2) = sup
α∈[0,1]

max{|να1l − ν
α
2l|, |ν

α
1u − ν

α
2u|};

D(µ1,S(µ1, ν1)) = sup
α∈[0,1]

H([µ1]α, [S(µ1, ν1)]α)

= sup
α∈[0,1]

max

|µα1l − τ
α
tl −

t∫
0

 ts4µα1l + ts3να1l

3

 ds|,

|µα1l − τ
α
tu −

t∫
0

 ts4µα1u + ts3να1u

3

 ds|





S. Basil, S. Antony, Results in Nonlinear Anal. 5 (2022), 279–298. 294

D(ν1,S(ν1, µ1)) = sup
α∈[0,1]

max

|να1l − τ
α
tl −

t∫
0

 ts4να1l + ts3µα1l

3

 ds|,

|να1l − τ
α
tu −

t∫
0

 ts4να1u + ts3µα1u

3

 ds|



D(µ2,S(µ2, ν2)) = sup
α∈[0,1]

max

|µα2l − τ
α
tl −

t∫
0

 ts4µα2l + ts3να2l

3

 ds|,

|µα2l − τ
α
tu −

t∫
0

 ts4µα2u + ts3να2u

3

 ds|



D(ν2,S(ν2, µ2)) = sup
α∈[0,1]

max

|να2l − τ
α
tl −

t∫
0

 ts4να2l + ts3µα2l

3

 ds|,

|να2l − τ
α
tu −

t∫
0

 ts4να2u + ts3µα2u

3

 ds|


Sequentially, if we let θ = 1

3 , then it is easy to verify that the condition (10) holds; and therefore by Theorem 4.1, we
conclude that the system of fuzzy initial value problem has a solution.

5. Application on fractional differential equations

Let φ : [1, L] × R × R→ R be a continuous function, L > 1, I = (0, 1] and I0 = (0, 1). Let

CDξp(t) = φ(t, p(t), q(t)); (11)
CDξq(t) = φ(t, q(t), p(t)) (12)

be the system fractional order differential equations with integral boundary
conditions

p(1) − q(1) = 0; (13)

α(p(L) − q(L)) = β(Iω(p(η) + q(η))), (14)

where CDξ is the Caputo-Hadamard fractional derivative, t ∈ [1, L], ξ ∈ I0 and ω ∈ I, 1 < η < L and α, β ∈ R.

Lemma 5.1. Let τ, κ : [1, L] → R be continuous functions, then a pair (p(t), q(t)) is a solution of the system of
fractional integral equations

p(t) = Iξτ(t) +
β

∆

(
Iξ+ω(τ(η) + κ(η))

)
−
α

∆

(
Iξ(τ(L) + κ(L))

)
; (15)

q(t) = Iξκ(t) +
β

∆

(
Iξ+ωτ(η) + κ(η)

)
−
α

∆

(
Iξ(τ(L) + κ(L))

)
, (16)

where ξ ∈ I0 and ω ∈ I, 1 < η < L, α, β ∈ R and

∆ = 2
(
α + β

(log η)ω

Γ(ω + 1)

)
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if and only if (p(t), q(t)) is a solution of the fractional integral boundary value problem

CDξp(t) = τ(t); (17)
CDξq(t) = κ(t), (18)

with the boundary conditions (13) and (14).

Proof. Using lemma 2.6, we can reduce the considered system of fractional
differential equations as the following system of integral equations

p(t) = Iξτ(t) + c1;

q(t) = Iξκ(t) + c2.

In order to proof the inference of the lemma, we have to compute c1 and c2; from (13), it is evident that

c1 = c2.

Also from (14), we get

α(Iξτ(L) + c1 + Iξκ(L) + c2) = β

(
Iξ+ω(τ(η) + κ(η)) +

(log η)ω

Γ(ω + 1)
(c1 + c2)

)
and therefore

c1 = −
α

∆
(Iξ(τ(L) + κ(L))) +

β

∆
(Iξ(τ(η) + κ(η))),

as desired. □

Theorem 5.2. Let

ζ =
(log L)ξ

Γ(ξ + 1)
+

2|β|(log η)ξ+ω

|∆|Γ(ξ + ω + 1)
+

2|α|(log L)ξ

|∆|Γ(ξ + 1)
,

where

∆ = 2
(
α + β

(log η)ω

Γ(α + 1)

)
.

If the system of fractional differential equations (11) and (12) satisfy the condition

|φ(t, p(t), q(t)) − φ(t, r(t), s(t))| ≤
ϵe−γ

ζ
(|p(t) − r(t)| + |q(t) − s(t)|)

for all t ∈ [1, L], γ > 0 and ϵ < 1, then the system has a solution.

Proof. First let us set some notations for our convenience.
tIξ
φ(p,q) = Iξφ(t, p(t), q(t));

t|φ|
(p,q)
(r,s) = |φ(t, p(t), q(t)) − φ(t, r(t), s(t))|.

From lemma 5.1, the solution of the system of fractional differential equations (11) and (12) added with the boundary
conditions (13) and (14) is equal to the solution of the system of fractional integral equations given by

p(t) = tIξ
φ(p,q) +

β

∆

(
ηIξ+ω
φ(p,q)+φ(q,p)

)
−
α

∆

(
LIξ
φ(p,q)+φ(q,p)

)
; (19)

q(t) = tIξ
φ(q,p) +

β

∆

(
ηIξ+ω
φ(p,q)+φ(q,p)

)
−
α

∆

(
LIξ
φ(p,q)+φ(q,p)

)
. (20)

Let B = C([1, L],R) be a complete metric space with the metric

d(p(t), q(t)) = sup
t∈[1,L]

|p(t) − q(t)|.
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Let B : B2 → B be a function defined by

B(p(t), q(t)) = tIξ
φ(p,q) +

β

∆

(
ηIξ+ω
φ(p,q)+φ(q,p)

)
−
α

∆

(
LIξ
φ(p,q)+φ(q,p)

)
.

In order to prove that the system of fractional integral equations (19) and (20) to possess a solution, it is enough to
prove the existence of a coupled fixed point for the function B. More specifically, it is sufficient to show that the
function B satisfies the hypothesis of Corollary 3.10 for some F ∈ F , ψ ∈ Ψ and βi, i = 1 to 5.

For, let F(x) = ln x, ψ(x) = γ, β1 = ϵ and βi = 0, i = 2 to 5 and let p(t), q(t), r(t) and s(t) be elements in B, then
|B(p(t), q(t)) −B(r(t), s(t))|

≤

∣∣∣∣∣tIξφ(p,q)−φ(r,s) +
β

∆

(
ηIξ+ω
φ(p,q)−φ(r,s)+φ(q,p)−φ(s,r)

)
−
α

∆

(
LIξ
φ(p,q)−φ(r,s)+φ(q,p)−φ(s,r)

)∣∣∣∣∣
≤

1
Γ(ξ)

tw

1

(
log

t
u

)ξ−1
u|φ|

(p,q)
(r,s)

du
u

+
|β|

|∆|Γ(ξ + ω)

ηw

1

(
log

η

u

)ξ+ω−1 (
u|φ|

(p,q)
(r,s) +

u|φ|
(q,p)
(s,r)

) du
u

+
|α|

|∆|Γ(ξ)

Lw

1

(
log

L
u

)ξ−1 (
u|φ|

(p,q)
(r,s) +

u|φ|
(q,p)
(s,r)

) du
u

≤
1
Γ(ξ)

t|φ|
(p,q)
(r,s)

tw

1

(
log

t
u

)ξ−1 du
u

+
|β|

|∆|Γ(ξ + ω)

(
u|φ|

(p,q)
(r,s) +

t|φ|
(q,p)
(s,r)

) ηw

1

(
log

η

u

)ξ+ω−1 du
u

+
|α|

|∆|Γ(ξ)

(
u|φ|(r,s)

(p,q) +
u|φ|(s,r)

(q,p)

) Lw

1

(
log

L
u

)ξ−1 du
u

≤
ϵe−γ

2ζ
(|p(t) − r(t)| + |q(t) − s(t)|)

(
(log t)ξ

Γ(ξ + 1)
+

2|β|(log η)ξ+ω

|∆|Γ(ξ + ω + 1)
+

2|α|(log L)ξ

|∆|Γ(ξ + 1)

)
.

Therefore

d(B(p(t), q(t)),B(r(t), s(t))) ≤
ϵe−γ

2
(d(p(t), r(t)) + d(q(t), s(t))).

In a similar way, we can show that

d(B(q(t), p(t)),B(s(t), r(t))) ≤
ϵe−γ

2
(d(p(t), r(t)) + d(q(t), s(t))).

Consequently, by adding the above two inequalities, we get

ϵe−γ(d(p(t), r(t)) + d(q(t), s(t))) ≥ d(B(p(t), q(t)),B(r(t), s(t)))

+d(B(q(t), p(t)),B(s(t), r(t))).

as desired. □

Example 5.3. Let

cD0.75 p(t) = t2 +
t3

32
(p(t) + q(t));

cD0.5q(t) = t2 +
t3

32
(q(t) + p(t));
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be the coupled system fractional order differential equations with integral
boundary conditions

p(1) = q(1) = 0;

6(p(2) − q(2)) = −8(I0.5(p(1.25) + q(1.25)));

Then we have
|ϕ(t, p(t), q(t)) − ϕ(t, r(t), s(t))|

= |t2 +
t3

32
(p(t) + q(t)) − (t2 +

t3

32
(q(t) + p(t)))|

≤ |
t3

32
|(|p(t) − r(t)| + |q(t) − s(t)|)

≤
1
4

(|p(t) − r(t)| + |q(t) − s(t)|).

Calculating ∆ and ζ, we get ∆ = 11.9895, ζ = 1.834484. Consequently, if we let ϵ = 0.647568, γ = 0.345, then we
have

ϵe−γ

2ζ
= 0.25 < 1

which asserts the existence of the solution for the system considered.
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