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Abstract

In this paper we present fuzzy coupled fixed point results in the turf of complete b-metric spaces via nonlinear F-
contraction; in follow we derive some interesting results as byproducts. Further, we apply our results in solving fuzzy
Volterra integral equations and Caputo-Hadamard type of fractional differential equations.
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1. Introduction

The notion of F-contraction is defined and discussed by Wardowski[23]] in 2012. Ahmad, Piri and Nguyenal|Z2,
20, [19] are others who extended the theory further. Recently, Wardowski[25] introduced a nonlinear form of F-
contraction. Bakhtin[[7] defined the concept of b-metric spaces so as to study pattern matching problems; significant
works in this context are presented by Algahtani, Czerwik, Kutbi, and Qawaqneh. [4} 11} 17, 21].
The idea of coupled fixed points is initiated by Bhaskar and Lakshmikantham[8] in 2006; notable works in this
context are seen in [22]. Heilpern [[13] posted a generalization of Nadler’s fixed point theorem via fuzzy mappings.
Abu, Azam et al. and Lee et al.[1} 5, 18] are some others who presented certain substantial results in the turf of fuzzy
mappings. Recently, Zhu[28]] extended the concepts of coupled coincidence and common fixed points in this context.
Fuzzy integral and fractional differential equations are widely used in modelling many real life problems. Existence
theorems for Volterra type integral equations presented in [3 [12]] are some important works related to the theory
developed here. In 2012, Jarad et al.[[14] defined and discussed the notion of Caputo-Hadamard fractional derivatives.
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Recently, Boutiara[9] proved an existence result for a Caputo-Hadamard fractional boundary value problem using
Monch'’s fixed point theorem.

In section [3] we present fuzzy coupled fixed point theorems via nonlinear F-contraction; subsequently, we extract
some interesting results as corollaries. In section 4] we apply the theory to solve a system of fuzzy Volterra integral
equations; in section [5} we exhibit the existence of solution for a system of Caputo-Hadamard fractional differential
equations through the theory developed.

2. Preliminaries

Any function from a nonempty set X to [0, 1] is called a fuzzy set [27]. As usual, I* denotes the family of all fuzzy
sets in X. An a-level set of a fuzzy set u denoted by [u]* is defined as

Wl = {u:pu@w > a}iface0,1].

For a = 0, the level set is given by

[1° = {u : p(u) > 0}

Here for any subset A of X, A denotes its closure.

Definition 2.1. [[[7] Let (M, d) be a b-metric space and Cg(M) be the class of nonempty, closed and bounded subsets of
M. For any A,B € Cg(M), define
H(A, B) = max {sup d(u, B), sup d(u’, A)} ,
u€A u’eB

where
d(u, A) = inf d(u,u’).
€A

Lemma 2.2. [I/] Let A and B be nonempty closed and bounded subsets of a
b-metric space (M, d). If u € A, then d(u,B) < H(A, B).

Let X and Y be two non empty sets, then any mapping A from X into I is called a fuzzy mapping[13].
For any two fuzzy sets u and v of M. If there exists an « € [0, 1] so that [u]%, [v]* € Cg(M), then define

pd(ﬂ? V) = lnf d(ua I/l,)

uelu]® w e[v]®

and

Do(u, v) = H([u]®, [V]Y).
If [A]%, [B]® € Cg(M) for all @ € [0, 1], then define

P(A,B) = sup p.(A,B)
a€l0,1]

and

de(A,B) = sup D,(A,B).
a€l0,1]

For conventional reason, we use p(u, B) instead of p({u}, B) unless otherwise stated.
A fuzzy set y in a metric linear space M is said to be an approximate quantity if [¢]* is compact and convex in M
for each @ € [0, 1] and sup u(u) = 1. The collection of all such approximate quantities in M is denoted by W".

ueM
Let E" be the family of functions u : R” — [0, 1] that satisfy the following conditions:

1. uis normal, that is, there exists an u € R” such that u(u) = 1;

2. wis fuzzy convex, that is, for 0 < 8 < 1, u(Bu + (1 — B)u’) = min{u(u), u(u’)};
3. w is upper semicontinuous;

4. [ul° = {u € R™ : u(u) > 0} is compact.
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As we know that [u]® = {u € R" : u(u) > «a}, for all @ € (0, 1], it is obvious to see that the a-level set [u]® is a
nonempty compact convex subset of R" for all @ € [0, 1].
If weletD : E" X E" — [0, c0) as a mapping defined by

D(u,v) = sup H([u]", [v])

a€l0,1]
for all u, v € E”, then D is a metric on E".

Definition 2.3. [28] Let A : X — IX be a fuzzy mapping. An element (u,u’) € X2 is said to be a fuzzy coupled fixed
point of A if there exists a € (0, 1] so that u € [A(u,u’)]* and v’ € [A@W’, u)]*.

The upcoming class of mappings ¥ is introduced in [23]] by Wardowski. A mapping F : R, — R belongs to the
set F if it satisfy the following conditions:

(F1) F is strictly increasing;

(F2) For every sequence {t,} of nonzero nonnegative numbers, if
lim F'(t,) = —oo, then lim ¢, = 0;
n—00 n—oo

: 1 sk -
(F3) there exists k € (0, m) so that 11—1>I(I)1+ t'F() =0
(F4) F is lower semi-continuous.
Let ¥ be the class of all mappings ¥ : R* — R, with lim itnf Y(x) > 0 for any ¢ > 0.
X—
Definition 2.4. [9] The left-sided fractional integral of order a > 0 of a function y : (p,q) — R is given by

t

ds
I%,5(0) = j(log | e®
provided the right integral converges.
Definition 2.5. [9] Let a =0, J = [p,q], n = [a] + 1. If y(x) € AC}[p, q], where 0 < p < g < o0 and
ACS(LR)y={h:J > R: 8" 'h(r) e AC(J,R))

The left-sided Caputo-type modification of left-Hadamard fractional derivatives of order a is given by

€D 1) =€ D, [(I) Z y(p)(og é)k]

Lemma 2.6. [9] Leta > 0, J = [p,ql and n = [a]+ 1. If y(t) € AC§(J,R), then Caputo fractional differential equation
CDZer(l‘) = 0 has a solution

and

wherec, €R, k=1,2,--- ,n— 1.
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3. Fuzzy coupled fixed point theorem

Let us fix some notations here. Let (M, d) be a complete b-metric space and A : M> — I" be a fuzzy mapping. For
any a € (0, 1] and (u, u’) € M2, we denote the image of (4, u’) under A as A, and the corresponding « level set by
[A]E’u ) Meanings of the labels are same, throughout the section, except as otherwise indicated.

Theorem 3.1. If for each (u,u’) € M2,  there exists Q) € 0,11 so that
0 # [AL, ,, € Ce(M) and if there exist mappings F € F and € ¥ with

u')

ey

Y (P, v,) + F (bQUu ', v,v)) - < F(M)

b
where
Pu,u’,v,v")

Q(u,u’,v,v")
R, u’,v,v")

d(u,v) +d’ V'),
H([A]‘(Ymu,), [A]‘(Yv,v/)) + H([A]?u/,u)’ [A]?‘,l,v));
maX{d(l/t, V) + d(u,9 V,)a d(ua [A]ZJ,M')) + d(ule [A]Elu"u))y

1
A [A,,) + A0/ [AT, ). (A [ALG, ) + AW [AT, )
1
5@ TAT, ) + 07, (AL, )

for all P(u,u’,v,v") > 0 and Q(u, u’,v,v') > 0, then A has a fuzzy coupled fixed point in M>.

To avoid ambiguity, it should be noted that the choice of « relies on (u, u’).

Proof. Let
P, = P (un_l, W1, Un, u;)
h = Q (u,,_l, w,_y,Un, ”;;)
R, = R(un_l,u;_l,un,u;,).

2 . . . .
Let (uo, uj) € M, then there exist g i) and Q) ug) such that () # [A]?uo,u{)) and 0 # [A]“u{)’uo) in Cg(M); accordingly

a ’ a 1
we can choose u; € [A] (0.t and u] € [A] ) 10) with

d(uo, u1) = d(uo, [A]&o,ua))

and
d(u. u}) = d(up, [AL, . )-

(ustto)

Repeating the process, one can construct a sequence {(uy, u,)} , so that

d(”n—la un) = d(un—l, [A]Elun—l,u;,_l))
and
d(u),_y. up) = dGu L [ATG, ).
where u,, € [A]?un-u,u;,l) and u), € [A]?u;,l,un_l)‘
If Py = 0 or Qu = 0 for some m € N, then u,, € [A], , andu;, € [A];, . which implies (un,u;,) is a fuzzy
coupled fixed point of A.

On the other side if we assume P, > 0 and Q, > O, for all n. Then from (]1']) we get

Y(Py) + F(bQy) < F (%)
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By lemma[2.2] we get Pny1 < Qn. Since F is strictly increasing, we have
F(Pns1) < F(Qu)
< F(bQn)
< F(2)-vew
< F(Ra) - ¢(Pn) 2

Here we claim that R, < Py, for all n. It is obvious that R, cannot be equal to Pn,; for any n. Therefore by the

definition of R, the only remaining possibility is

1 ’
Ry = Ed(un—la [A]?u,l,u;)) + d(un—l’ [A]zlu;,,un))’
for some n. If we let so, then
1 ’ ’
R, < E(d(un—l, un+1) + d(un—l’ Z’tn+1))

1
< E(Pn + Pni1),

which in turn implies

1
F(Rn) < F(E(Pn + 1Dn+1)) .
Applying the above inequality in (2), we get

F(Pn+1)

IA

1
F (E(Pn + l:)r1+1)) - w(Pn)

IA

1
F (E(Pn + Pn+1)) B

which implies P41 < Pn; whence from (3), it follows that Ry < Py as desired.
Consequently, from (2) it results that
F(Pn+1) < F(Pn) - l/’(Pn)

and hence {P,} must converge to some point P > 0. Also since
liminf y(Py) > 0
imin Y(Pn) > 0,

there exists ¢ € R, and N € N such that ¢(P,) > c for all n > N. Using equation () successively, we get

F(Pn) < F(Pn_1)—¢(Pn1)
< F(Pn-2)— ¢¥(Pn-2) — ¥(Pn-1)

n-1

F(P1) = ) ¢(Py)
k=1

IA

A

n-1
F(P1) = ) w(Py)

k=N
< F(P;))—-(n-N)c,n=N.

By letting n — oo, we have F(P,) — —oo and hence from (F?2), it follows that

lim P, — 0.

n—oo

3

“

®)
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By (F3), there exists k € (0, ﬁogb) such that

lim P F(Py) — 0.

n—oo
Also by equation (), we have
Po‘F(Pn) < Pi'F(P1)—Po‘(n— MW,
= P.fF(P1) — nPy* + NWP,%,

for all n > N, which implies
nP, X < P.FF(Py) — PpfF(Py) + NWP,K.

If we let n — oo in the above inequality, we get

lim nP,* = 0.

n—oo

Therefore there exists Ng € N such that nP,* < 1 for all n > Ng which implies P, < il for all n > Ng. Consequently,
nk

d(un, ) + d(uy, uy,)

IA

l:)n+1+l:)n+2 +"'+Pm
PR
i=1
o 1
< _
.Zj_;

i=1

IA

(o)

for allm > n > Ng. But since ) - is convergent, it results that
i=11i%

lim (d(uy, wy) + d(u,,, u),)) = 0.

Hence {u,} and {u,} must be Cauchy and have to converge, as M is complete, let us assume that u, — u and u), — u’.

In follow we claim that
d(u, [ALG,, ) + A0, [AT, ) = 0.

Let us assume that
d(u. [AL%, ) + A, [ALS, ) > 0

on the contrary. As
d(uns1, [ALG, ) < BIAL, 0 (AL 0)

and

A, 1. [AI2, ) <BOALL, L [ALS ).

(u;l’un),
we have

Q(uyn, u;,, u,u') > d(uny1, [A]?u,u’)) + d(u;H_]a [A]Zl,u))}'
This implies that

lim Q(uy, uy,, u,u’) > d(u, [A]? )+ d@/, [A]Zl,u))

n—00 (.10

and therefore there exists ng € N,
Q(up, u,, u,u") > 0 for all n > ny.

AsP,>0andQ, >0V n,
Py, ty, u,u’) >0V n.

Also since

lim R, uy, u,0') = dlu, [A]G, ) + d@’, [ALG, ),

n—oo
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using (F4) it results that

lim F (bQ(uy, uy,u,u’)) 2 F(o(d(u, [A]], ) + d@’, [AlG, )
and
’ ’ d(u, [A]7 ) + A’ [A]T, )
lim F(R(una ubn, u,u )) _ F( (u,u’) - (u',u) ]

From contractive condition (I), we get
F(R(un, thy 1)) 2 (P, iy, u, 1)) + F(Quty, tyy, u, 1))

for all n > ngp. Finally using (F'1) we get that
lim infy,— o0 Y(P(tt, )y, 1, u'))

ﬂ 1) ’ s Uy ! . .
R, ty, u, ') )) — liminf F(bQ(uy,, u,, u, u’))

n—oo

b

n—oo

< limian(
< 0,

which is a contradiction. Therefore
d(u. [AL, ) +dw . [ATZ, ) =0,

which implies that (u, ") is a required fuzzy coupled fixed point of A. O

Example 3.2. Let M = [0,1] and d : M> — [0, o) be the mapping defined as d(u,u’) = |u — u’|?, then (M, d) is a

complete b-metric space with coefficient 2. Let 1,y = [sin (”Z”/ ) , ”E”/ ] Define a mapping A : ¥> — 1" by

W2 +1 .
== tel
Al )0 = { T el

0 otherwise.
Let (u,u’) € M2, then the a-level sets of the fuzzy set A(u,u’) are given by

. 2.2 1
TN P LA L
(') 0 otherwise.

Therefore, for any (u,u’) € M2, if we take o,y = uzﬂgﬁ, then a .y € (0, 1] and the a-level set [A]E’u Wy = L, is
closed and bounded. Also
l|2,

bl

Pu,u’,v,v') = |lu—vP+u' —v
Q(”e M,, v, V’) = 2H(Lyu, Lwv);

2
R(”h u’vv’ vl) = max {lu - V|2 + |u, - v,|2’ |u - qul|2 + |M’ - IMM’| s

2 2 1 2 2
v =1Ll +|V,_Ivv’ ,E(lu_lvv’l +|u/_lvv’| )a

% (lv - qu’|2 + |V, - qu’|2)} .

x+1
10 °

In this plot, if we let

F(x) =Inxand y(x) =

then

b

for all P(u,u’,v,v') > 0 and Q(u,u’,v,v') > 0. Hence by Theorem[3.1} A has a fuzzy coupled fixed point. Indeed the
elements of the form (u, u) € M2 are coupled fixed points of A.

Y u',v,v)) + F (0QMu, ', v,V)) - < F(M)
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Corollary 3.3. Let M be a complete b-metric linear space and A : M> — W' be a mapping. Suppose there exist
functions F € F and ¢ € ¥ with

(6)

O+ PO < F[2)

b
where
Plu,u’,v,v")

Q(u, u’,v,v")

R@u,u’,v,v")

du,v) +dw’,v);
deo(A(u, ), A, V")) + deo (AW, u), AV, v));
max {d(u, V) +d@u’ V), p(u, A(u, u)) + p(u’, A, u)),

1

PO, A V) + D0V, AW V). 5 (B AW, V) + ', AV ),
1

5 @O A1) + D0 AW 1)),

for all P(u,u’,v,v') > 0 and Q(u,u’,v,v') > 0, then there exists (uo,uf)) € M? such that {up} C A(uo,u{)) and
{ug} € Aug, uo).

Proof. From the definition of d., metric, we get
HOAL, AL < da(AGw ), AW, Y)
HIAIZ, 0 A%, ) < deol AW u), AKY, 1))

Yuu,v,v e

Further we know that [A](lu ) S [ALZ, . forall @ € (0, 1] and (u, u’) € M. Therefore

(uu’)’
d(u, [AL2, ) < d(u, [All,,).

which results that p(u, A(u, 1)) < d(u, [A]
Analogously, it can be seen that
p(ulv A(u/7 M)) d(ulv [A]((th”u));
p(v, A(v,v)) < dv, [A]],);
p(v,’ A(V’, V)) S d(vla [A]l(ll)/’v))

a
(u,u’))'

IA

A

Consequently,
U (P(u,u',v,V)) + F (bQu, u’',v,v")) < (P, u’,v,v")) + F (bQ(u, u’,v,v"))
< F R, u’ ,v,v")
B b
SF@%&&Q)
b
Thus by Theorem , there exists  (uo, ué) € M? such that u € [A] (luo W) and
o
u, € [A](lu, ‘o)’ which implies ug C A(uo, uyy) and u, < Aluy, uo). O
0

Let A : M — 1" be a fuzzy mapping. If we define A : M> — Cg(M) as

A(u, u,) = {V, el: A(u,u’)(vl) = maMx A(u,u’)(v)}’
ve

then we can conclude that (ug,u;) is a coupled fixed point of A if and only if A(uo,u(f))(uo) > A(Mo,u(r))(v) and
A%,uo)(u(’)) > A%,m))(v) forall v e M.
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Corollary 3.4. Let 0 # A(u,u’) € Cg(M). If there exist mappings F € ¥ and € ¥ so that

Ru, ', v, v’))

U (Plu, v’ ,v,v")) + F (bQ(u, u’',v,v")) < F( »

where

Plu,u’,v,v") du,v) +dw’,v);
Q(u, u’,v,v") H(A®u, u'), A(v,v")) + HAW , u), AV, v));
R, u’,v,v') = max{d@,v)+dw’,v),pu, Aw,u') +p0, AW, u)),

_ _ 1 _ _
p(v, Av,v)) + p(v', A(V',v)), §(p(u, AW, V)) +p@’, AWV, v))),

1 A ’ /A ’
5(p(v, Au,u’)) +p(v', A, u)))},
forall P(u,u’,v,v') > 0 and Q(u, u’,v,v") > 0O, then there exists a point (uy, u(’)) € M2 such that
A(uo,u{))(MO) = A(uo,ub)(v’ V/)

and

A i) (Ug) = A gy (v, V')
for all (v,v') € M.
Proof. By Theorem there exits a coupled fixed point (uo,u;,) € M2. Hence A(uo,u(’))(u()) > A(uo%)(v, V') and
A%,uo)(u(’)) > Ay up)(v) for all v € M as desired. O
Corollary 3.5. Let G : M> — Cg(M) be a mapping. Suppose there exist functions F € F and € ¥ with

Ru,u’',v, v’))

5 (N

v (P, u’,v,V")) + F(0Q(u,u’,v,v")) < F(

where

Pu,u’,v,v") d(u,v) + d(u’,v');
Qu,u’,v,v") H(G(u, 1), G(v,v")) + H(G(', u), G(', v));
R, u’,v,v') = max{du,v)+du’,v),d(u, G(u,u)) + d@’, G, uw)),

d(v,G(v,v")) + d(v, G(V, v)), %(d(u, G, v)) + d@’, GV, v))),

1

5 (A, G(u, u')) +d(v', Gu’, u)))},
for all P(u,u’,v,v') > 0 and Q(u, u’,v,v") > 0, then G has a coupled fixed point in M2,
Proof. Suppose we let A : M> — T¥ as

a(u,u’) ift e Gu,u’)

0 otherwise,

Au,u')(1) = {
where « is a mapping from M? to (0, 1], then A satisfies all the needs of Theorem as
[ALZ, ) = 12 A ) > o)) = G, u),

for all u,u’ € M. Hence by Theorem , we get (uo, u;,) € M2 with ug € [A]E’u ol and u;, € [A] ) which implies
]

(uo, ug) is a coupled fixed point of G. O

(04
(ug,uo
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Corollary 3.6. Let £ : M> — M be a mapping. If there exist functions F € F and € ¥ so that

Ru,u’,v, v’))

v (P, u’,v,V)) + F(0Q(u,u’,v,v')) < F( »

where

Pu,u’,v,v") d(u,v) + d(u’,v);
Qu,u’,v,v") d(f(u, v, £(v,v")) + d(£(’, u), £, v));
R, u’,v,v') = max {d(u, V) +d@’,v), d(u, £f(u, ) + d@’, £, uw)),

dv, f(v,v)) + d(V, £/, v)), %(d(u, fv,v)) +d, £/, v))),
%(d(v, £, 1)) + A0, £, w)))),

Y Pu,u’,v,v') > 0 and Qu,u’,v,v') > 0. Then £ has a unique coupled fixed point in M.

Proof. If we let G(u,u’) = {f(u,u’)}, then by corollary f has to possess a
coupled fixed point. Suppose (u,u’) and (v,v") € M? are two distinct coupled fixed points of f, then by contrac-
tive condition ([7), we have

U (P’ v, V) + F (0Qu,u',v,v)) < F(M)

b
Therefore
F(du,v) +d@’,v)) = ¢ (d@u,v)+dw’,v))+ F(du,v) +d@w’,v")),
which is not possible and hence f has to possess a unique coupled fixed point. O

Example 3.7. LetM = [0, 1] and d : M> — [0, 00) be the mapping defined by d(u, u’) = |u — w'|*. Then clearly (M, d) is
a complete b-metric space with coefficient 2. Define a mapping £ : M> — M by f(u,u’) = %. Also, we have

P’ v,v) = fu— v+ =
. . 2 . . 2
Qi v sinu sin’v sinu’ sin®v/
u,u’,v,v') = - - ;
o 4 4 4 4
co2 <22
sinu sin” u
R@u,u',v,v') = max {lu —vP =V |- = f— ,
. 2 . 2 . 2 . 2
sin® v wly sin? v | 1 sin? v , sin?V/
V- v — = |u— u —
4 2 4 4 ’
. . 2
1 ' sinul> |, sin®u’
—|v— - .
2 4 4
In this scenario, if we let
-1 232+ 1
F(x) = — and y(x) = ,
Vx 10

then we have

R ’ ,7 9 !
Y(Pu.u' v, V) + F (0Quu',v,) < F ((”“T”)) :
forall P(u,u’,v,v') > 0 and Qu,u’,v,v") > 0. Thus by corollary[3.6], the mapping £ has a unique coupled fixed point

and it is easy to note that (0,0) is the required one.
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In follow, we present some natural extensions of Theorem [3.1]
Theorem 3.8. Let

R (' v.v') = Bi(dy) +d@’,v) +Ba(d(u, [ALZ, ) +da, [ALZ, )
B5(d(v, [ALL, ) + A0, [ATZ, )
+B4(d(u, [ALE, ) + A [ATL, )
HB5(d(v, [ALL, ) + A0, [AIS, ).
where B1 + B2+ B3 +Ba+Bs < 1. In Theorem[3. 1| replace as R(u,u’,v,v") by R (u,u’,v,V"), then A has a fuzzy coupled
fixed point in M.
Proof. By proceeding as in Theorem[3.1] we get

F(Pn+1) F(Rn) - EZ’(Pn)
< F((B1 + B2+ P4)Pn + B3Pns1) — Y(Pyn) (8
F((B1 + B2 + B4)Pn + B3Pni1).

Since F is strictly increasing, we get

A A

IA

Pni1 < (B1 + B2 + B4)Pn + B3Pns1.

which implies
+ 6> +
Poi1 < MPH < Pp,.

1 -3
Applying the above inequality in (), we get

F(Pn+1) = F((ﬂl +,82 +,83 +,34)Pn) - %l’(Pn)

A

< F(Pn) —¢(Pn)
< F(Py).
From here one can easily derive the remaining proof by retracing the steps followed in Theorem [3.1] O

Example 3.9. Let M = [0,1] and d : M> — [0, ) be the mapping defined by d(u,u’) = |u — u’|?, then (M, d) is a

utu'  utu’

complete b-metric space with coefficient 2. Let I,y = [ 7 5 ] . Define a mapping A : M> — T" by

4 .
% IfIEqu’

0 otherwise.

Au,u')(1) = {
Let (u,u’) € M2. Then the a-level sets of the fuzzy set A(u,u’) are given by

[A]?u,u’) =

: +u’+1
Ly f0<a< 5
0 otherwise.

Consequently, for any (u,u’) € M2, if we take Q) = %, then a(,y € (0, 1] and the a-level set [A]&Ll,) =Ly is
closed and bounded. Also

= v+ =P
2H (qu’, Ivv’) 5

0.2 (Ju = vi* + ' = v'[*) + 0.2 (Iu = L + |~ quflz)

Pu,u’,v,v")
Qu,u’,v,V")

R (u,u’,v,v")

4021y = TP+ [ = T ) 0.1 e = TP o = 1o )

+0.1 (Iv ~ L+ |V - I,mr|2),
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In this plot, if we let
x+1

F(x) =Inxand y(x) = 10

then
R/ b /7 9 !
P, u',v,v")) + F(0Q(u,u’,v,v")) < F(%),
for all P(u,u’,v,v') > 0 and Q(u, u’,v,v") > 0. Hence by Theorem A has a fuzzy coupled fixed point. Indeed the
elements of the form (u, u) € M2 are coupled fixed points of A.

Note. Results analogous to the corollaries of Theorem can be derived for Theorem also. However, we
present the statement of one specific result that establishes the unique existence of a coupled fixed point for a function
f : M> — Min follow.

Corollary 3.10. Let f : M> — M be a mapping. If there exist functions F € F and y € ¥ so that
ﬂ, kd ’7 9 !
Y (P, u’',v,v)) + F (0Qu, u',v,v")) < F((MMTVV))

where
Pu,u’,v,v')
Qu,u’,v,v")

R (u,u’,v,v")

d(u,v) + d@’,v");
d(f(u, u’), £(v,v")) + d(£’, u), £V, v));
B1d(u, v) + AW’ V') + Bod(u, £(u, u")) + d(’, £(u’, u))
+B3d(v, £(v,v")) + d(V', £/, v))
+B4(d(u, £(v,v")) + d(’, £V, v)))
+B5(d(v, £(u,u’)) + d(V', £(u’, u)))

for all P(u,u’,v,v') > 0 and Qu, ', v,v') > 0, then £ has a unique coupled fixed point in M2,

Example 3.11. Let M = [0, 1] and d : M> — [0, c0) be the mapping defined as d(u,u’) = |u — u’|>. Then clearly (M, d)
is a complete b-metric space with coefficient 2. Define a mapping £ : M> — I" by f(u,u’) = % tan 5. Also, we have

Pu,u',v,v') = lu—vP+ ' =V
2 ’ 712
u v y
Qu,u’,v,v') = —|tan- —tan—| + = |tan — —tan —| ;
( ) 2 2 2 2 2 2
R (u,u’',v,v') = pi (Iu v+ - v'lz)

+B2(u—ltanzz+ u’—ltanu—lz)
2 2 2 2

+ﬁ3(v—1tan—2+ v’—ltanv—’z)
2 2 2

+ﬁ4(u—ltan22+ u’—ltanv—lz)
2 2 2 2

+/35(v—1tanz2+ v’—ltanu—/z).
2 2 2 2

Ifwelet F(x) = Inx + x; y(x) = legl;ﬁl =0.3;82 = B3 = B4 = B5 = 0.1 then we have

b

Sfor all P(u,u’,v,v') > 0 and Q(u,u’,v,v') > 0. Thus by corollary the mapping £ has a unique coupled fixed
point and it is easy to note that (0, 0) is the required one.

WP, v,v) + F (0Qu, u',v,V)) < F (M)
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4. Application on fuzzy Volterra integral equations

Let M = C([0, 1], E") be the class of all continuous fuzzy mappings from [0, 1] to E” and let d : M> — [0, c0) be the

mapping defined as

d(9,¢) = sup D&, &),
te[0,1]

where 9, and &; are the images ¢ under ¥ and £ respectively, then M is complete.
Let7,¢,&:10,1] —» E", T : [0, 1] X E" X E" — E" be continuous fuzzy functions. Let

N ={(ts):0<s<tr< 1),

t
and x : N'— R be continuous such that sup f |k(t, $)|ds < 1.
t€[0,1]1 0
Consider the following system of fuzzy Volterra integral equations

t

9, = 1+ fk(z, Y(s, Dy, £)ds
0
t

& = T,+fk(t, Y(s, &, 05)ds, t € [0,1]
0

Theorem 4.1. Let S : E" X E" — E" be a function defined by

t

S(u,v) =1+ J k(t, s)YX (s, u, v)ds.
0

If there exists 6 > 0 so that .
DOE( a1, V1), X2, 72)) < S RGu1, v1 22,v2)
where
R(u1,vi,42,v2) = max{D(uy,u2) +D(vi,v2),D(u1, S(u1, v1)) + D(vi, S(vi, 11)),
D(u2, S(2, v2)) + D(v2, S(v2, t2))}

for all py, vy, po and vy in E", then the system of fuzzy Volterra integral equations (9) has a solution.

Proof. LetT : M> — 1" be the fuzzy mapping defined by

(3,6 ifu(r) = S(91,6)

otherwise,

T, &)(0) = {g

where p : M? — (0, 1], then

LeM: T, 60 2 p(@,8)}
(S0, €0},

(166,

€))

(10)
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for all 9, £ € M and therefore

BTG, 6 [T, e))

S Sup D(e(ﬁlr’ glr)’ 6(192[7 '_5:2[))
te[0,1]
t t

< supD fk(t, s)T(s,ﬁls,.fls)ds,jK(t, $)Y(s, B, &2,)ds
te[0,1] 0 0
t
< sup [ DGkt )5, 91, £0,), k(1 X5, B, 60,))ds
te[0,1] 0
t
< sup [Ik(t, HIDOC(s, 1, 61,), V(s 2, 8,))ds
t€[0,1] 0
t
< sup DOY(#, 01,,€1), T (7, 92, £2)) f lk(t, $)lds
t€[0,1] 0
e—H
< sup TR(ﬂl,,fl,,ﬂZ,,fz,)
te[0,1]
0

e
S TR(ﬂl’é:l702’ 52)

Analogously, one can prove that

-0
a « €
H([T](fl D) [T](é-‘z’ﬂz)) < TR(ﬁbfl’ ﬂ2,§2)~

Adding the above two inequalities, we get

H([T]?ﬂlsfl)’ [T]l(lﬂz’éfz)) + H([T]él 1) [T]lé:z’ﬂz)) < e_eR(ﬂl’ fls ﬂZ’ ‘;:2)

Suppose we let F(x) = Inx and ¥(x) = 6, then by Theorem [(3.I the fuzzy
mapping I has a fuzzy coupled fixed point; consequently, the system of fuzzy Volterra integral equations (9) has
a fuzzy solution as desired. O

Example 4.2. Let

! 2
19 + 1,
Y = T,+Its2tT§tds
0

! 2
&+ 19
& T+ Oftsz—gt3 tds,

be the system of fuzzy Volterra integral equations,with kernel k(t, s) = ts>, then we have

t t
sup I|K([, slds = sup jltszlds
t€[0,1] 0 t€[0,1] 0
A
sup —
ref0,1] 3
1

3
Let Y : [0,1]XE! xE! - E' and S : E! x E! — E! be the functions defined as

Pu+ty

Tt pv) = —
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and
t

6(/1,V)=Tt+fl‘s

0

5 82+ sV

3 ds.

t
For any two given fuzzy sets py and vi, let us denote that the a-level sets of the fuzzy sets uy, vi and f uids by

0
(k1] = [u) u7,):
i]® = Dyl
t @ t t
[f mdS] = [[uids, [uf,ds];
0 0 0
In  follow, let us compute the terms, that are needed to validate whether the

constructed S and Y satisfy the sufficient condition in Theorem[d.1}
DCYC(, 1, v1), Y(t, 2, v2))

sup H([C(, w1, v, [T, p2,v2)1Y)

a€l0,1]
U + v u® + e Ul + v Pu + vl
- sup H u 1 lu lu 21 21 2u 2u
ael0,1] 3 3 3 3

1
= — sup max {ltzuj’l + 0, - tzugl - g, |t2/1‘1’u + 04, - tz,ugu - tvgul}
€l0,1]

1 2 2
= 7 Sup max {lt (ﬂ(lyl - 'UCZZI) + t(v(ltl - Vgl)l’ It ‘llu - lugu) + t(v(llu - Vgu)l} ;

a€l0,1]
D(ui, o) = sup H([p1]?, [p2]?)
a€l0,1]
= sup B ) (15 43,))
a€l0,1]
= Zl[%)pl | max{|uf; — pyl, [, — Ho,
(o4 s
D(vi,v2) = S‘[BPl]maX“V[fz_V[zlzL Vi, = vaulhs
aegll,

D(u1, S(uy,v1)) sup H([p11%, [S(u1, v)]Y)

@€l0,1]
t
ts4,u‘1’l + ts3v‘1"l
= sup max\|uj, — 1y — ——|ds]|,
e€f0.1] 3

0

t
ts4,u(f + 153
a a u lu
Wy =T = | |5 |4l

0
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2 tsvY + 13
1/ 11
D(vi, B(vi, 1)) = SH)pumaX IV‘fl—Tﬁ—f(f]dSI,
aell,
0
t
4. a 3,
N N 1y, Hisoul
=2 — | [ a
3
0
1
4 3,
D(uz, S(u2,v2)) = sup max{ |us, — 1% — M ds|
25 2, V2 - E[Op]] #2[ tl 3 ’
= 0
t
4 3.,
tsuS + sV
) = T = f (—2“ 2“]ds|}
3
0
t tsve + 153
21 21
D2, S0z 2) = sup max 4 = 7 - f [desl,
a€ll,
0
t
et « tS4V(22u + ts’j/'lgu
g -1 — | [—2—2
3
0

Sequentially, if we let 6 % then it is easy to verify that the condition holds; and therefore by Theorem we

conclude that the system of fuzzy initial value problem has a solution.

5. Application on fractional differential equations

Let ¢ : [1,L] x R X R — R be a continuous function, L > 1, I = (0, 1] and I = (0, 1). Let

D'p(t) = ¢t p(), q1)); (11)

“Diq() = ¢t q(1), p(1)) (12)

be the system fractional order differential equations with integral boundary
conditions

p()—qg1) = 0; (13)

a(p(L) - q(L)) = BU(p(n) +qm)), (14)

where € Df is the Caputo-Hadamard fractional derivative, t € [1,L],é e [pandw € I,1 <np < Land a,B € R.

Lemma 5.1. Let 7,k : [1,L] — R be continuous functions, then a pair (p(t),q(t)) is a solution of the system of
fractional integral equations

p) = I-fr<r>+%(ﬁ“’(r(n)mn)))—%(If(r<L>+K(L>)); (15)
qt) = Ifk<r>+§(lf+wr<n>+K<n))—%(If@(L)H(L))), (16)

whereé e lpandw e l, 1 <n< L, a,B €Rand

(logn)® )

SR
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if and only if (p(t), q(1)) is a solution of the fractional integral boundary value problem
CDfp(ny = () (17)
CDigry = «(), (18)
with the boundary conditions (13)) and (14).
Proof. Using lemma  [2.6] we can reduce the considered system of fractional
differential equations as the following system of integral equations
pn = It +cn;
gty = k() +cy.
In order to proof the inference of the lemma, we have to compute ¢ and c¢;; from (13)), it is evident that
c1 = ).
Also from (T4), we get
1 w
QT + e+ L)+ e = (I +x) + e (e 4 cy)
Nw+1)
and therefore
X e B
cr = =3 (L) + k(L) + T (@) + k()
as desired. O

Theorem 5.2. Let

_ (logL)* . 2lBldog T .. 2lel(og Ly
TTE+D)  ACE+w+ 1) JANE+ 1)

where

A:2@+ﬁm¥mw)

Ta+1)
If the system of fractional differential equations (I1) and (12)) satisfy the condition

-y
le(z, p(0), (1) = @(2, 7(1), s()] < %(Ip(t) — r()] + lg(1) = s

forallt e [1,L], y > 0and € < 1, then the system has a solution.

Proof. First let us set some notations for our convenience.

Eop = et p0.q0);
D = Jo(t, p(), q(t) - (e, H0), 5O

From lemma5.1] the solution of the system of fractional differential equations (TT)) and (I2) added with the boundary

conditions (I3)) and (T4) is equal to the solution of the system of fractional integral equations given by

t :8 +w
PO = '+ (0 )-%

Ly .
e(p.9) e(p.)+p(q.p) A( sa(p,q)w(q,p))’

e /Kf(nﬁw ) - & (L ).

q() @(q.p) ep.+ela.p)) A\ “ep.)+e(q.p)

Let B = C([1, L],R) be a complete metric space with the metric

d(p(0),q(1)) = sup |p(t) —q()|.
re(1,L]

(19)

(20)
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Let B : B> — B be a function defined by

_ 14 ﬁ n§+tw g L€
Bp(1).q0) = Isﬂ(p ot A( Ii(p D+e(q, p)) A ( Isc(p,q)w(q,p))'

In order to prove that the system of fractional integral equations (I9) and (20) to possess a solution, it is enough to
prove the existence of a coupled fixed point for the function B. More specifically, it is sufficient to show that the
function B satisfies the hypothesis of Corollary [3.10|for some F € ¥,y € ¥ and B;, i = 1 to 5.

For, let F(x) =Inx, y(x) =v,B1 = eand B; =0, i = 2 to 5 and let p(¢), (), r(¢) and s(¢) be elements in B, then
IB(p(0), (1) = B(r(1), ()|

= tli(p D-¢rs) + i( Iizrpwq) e(r5)+¢(q.p) (s, r)) (Lli(p D=p(r)+¢(g.P)=¢(s, r))
o
st e bt
o [ I O
<

t
IR f)f_l du
r@ el 1]( g

n
1Bl w pa) Lt (qp) cro-l du
HATE T ) §+w)( P + el ) (log )

1

| | (r,s) up, o (s,r) § ldu
|A|l"(§)( lp |(17 9) + |¢|(q,p))lj(log ) u

(lognf  2Bi(log ) lal(log L
FE+1) ATE+w+1)  JATE+1D) )

< 2—§(Ip(t) — @l +1g() - S(t)l)(

Therefore
-y
d(B(p(®), (1), B(r(?), s(1))) < %(d(p(t), r(0) + d(g(@), s(1))).

In a similar way, we can show that

-y
d(B(g(1), p(1), B(s(1), r(1))) < %(d(lﬂ(t),r(t))+d(CI(t),S(t))).

Consequently, by adding the above two inequalities, we get

ee” " (d(p(®), r(n) + d(q(1), s())) > dAB(p(1), (1)), B(r(1), (1))
+d(B(g(n), p()), B(s(1), (1))

as desired. O

Example 5.3. Let

3
3
2+ ;—2(61(1‘) + p(@®));

‘D™ q(1)
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be

the coupled system fractional order differential equations with integral

boundary conditions

p(1) =q(1) = 0;

6(p(2) - q(2)) = =81 (p(1.25) + g(1.25)));

Then we have

|¢(t7 p(t)a C](t)) - ¢(t7 I"(t), S(t))l

3 3
1P+ S50+ q(0) = (P + 550 + pO)

A
I35 1Up@) = r®] + 1q(®) = s

IA

IA

1
7(p(0) = r@l +1q(1) = D).

Calculating A and {, we get A = 11.9895, ¢ = 1.834484. Consequently, if we let € = 0.647568, v = 0.345, then we
have

-y
€ _025<1
27

which asserts the existence of the solution for the system considered.
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