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Abstract: The residual LSF vector quantization yields bit rate reduction in the vocoders. In this work, a residual LSF vector quantization 

obtained from Auto Regressive Moving Average (ARMA) prediction is proposed for designing codebooks at very low bit rates. This 

residual quantization method is applied to multi stage vector quantization method and codebooks are designed. For each codebook, the 

effectiveness and quality are investigated by calculating the spectral distortion and outliers. The proposed quantization method reduced 

the distortion without any additional complexity. 
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1. Introduction 

Speech coding refers to process of reducing the bit rate of digital 

speech representations for transmission or storage, while 

maintaining a speech quality that is acceptable for the application. 

Most of the speech coders reported in the literature are based on 

linear prediction (LP) analysis [1]. For the LP based vocoders, the 

bit rate reduction is strongly tied to efficient quantization of the 

LPC filter coefficients {aj}. The Line Spectral Frequencies (LSF) 

–an equivalent representation of {aj}, more suitable for 

quantization and interpolation– can alternatively be used. In this 

sense, the Multi-Stage Vector Quantization (MSVQ) of LSF 

parameters presented in [2] has an efficient quantization 

performance at 22-24 bits per 20ms frames. Furthermore, the 

multi stage structure has more flexibility than a single stage VQ 

in terms of search complexity, codebook storage and channel 

error protection. Very low rate speech communication systems 

require efficient fixed-rate and low delay coding methods which 

operate at lower bit rates.  

Generalized vocal tract model consists of the oral tract and nasal 

tract. On the other hand, the linear predictive coding, which has 

been widely used in the speech analysis and synthesis, uses all 

pole type digital filters. Speech signals are assumed to be 

produced by filtering glottal excitation with these filters. This all 

pole type filter model approximates the true physical 

configuration of the human vocal tract, but with the nasal tract 

left out. The most crucial and well known shortcoming in this 

assumption that during any voiced pronunciation the velum is 

always closed and the sound wave proceeds only through the oral 

tract. So the influence of the nasal tract is ignored in this 

assumption. There is no big problem when non-nasal sounds are 

processed but in case of nasal sounds the mismatch of the LP 

model becomes severe. The zeros during nasal sounds supress the 

peaks in mid-frequency by flattening the spectrum there but this 

effect cannot easily fit by all pole modelling. In order to include 

the effect of both oral and nasal tracts, it is necessary to modify 

all pole modelling into a pole zero modelling [3]. In order to 

obtain more efficient speech coding algorithms especially for 

transmission over noisy channels, differential quantization or 

predictive quantization of spectrum parameters are used. There 

are some pole zero modelling approaches in the literature [5-11] 

but they usually use nonlinear equations or approximations. 

While all pole modelling is simple, pole-zero modelling requires 

complex nonlinear calculations. Although a pole-zero algorithm 

based on adaptive Kalman Filtering presented in [11] linearize 

the nonlinear components by dividing the frequency range of 

each formant into four bands, this nonlinear approximation 

method also requires too many calculations causing a complexity 

in the pole zero modelling.  

In this work, we propose an ARMA prediction model for 

predictive quantization of spectrum parameters. This ARMA 

prediction method combines the good features of AR and MA 

prediction methods while eliminating some drawbacks. 

In section 2, basic formulas of MSVQ are given and then in 

section 2.2, residual vector quantization method using ARMA 

prediction is described. In section 3, designed codebook results 

using proposed method are presented. 

2. Residual LSF Quantization 

In this section, a brief description of the MSVQ method presented 

in [2] is outlined. The definitions presented in this section are 

introductory information for the residual MSVQ.  

The training technique we used in designing the codebooks is the 

joint design technique [2]. Representative results of the residual 

LSF scheme with the joint design technique are presented in 

section 3. 

2.1. Notation and Definition 

The MSVQ codebooks are designed using the Generalized Lloyd 

Algorithm (GLA) to minimize average Weighted Mean Square 

Error (WMSE) based on a sufficiently rich training sequence.  

The training sequence is first partitioned into decision regions or 

cells for a given set of centroids (or codevectors). Then, for the 

given partitioning, the codebooks are re-optimized to minimize 

the distortion over the particular decision regions. In the MSVQ 

system [2], the parameter vector x consisting of p LSF parameters 

is approximated as a quantized parameter vector �̂� using the 

minimum distortion rule (all vectors are assumed as column 

vectors), 
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where superscripts denote codevector indices from each stage, 

subscripts denote the stage numbers and K is the number of 

stages. cj is the codebook vector for the jth stage and created by 

stacking the codevectors, 

 

_______________________________________________________________________________________________________________________________________________________________ 

1 Department of Electronics and Communication, Engineering Faculty, 

Cankaya University, Campus, 06790, Etimesgut Ankara TURKEY 

* Corresponding Author: Email: selmaozaydin@yahoo.com 

Note: This paper has been presented at the 3rd International Conference 

on Advanced Technology & Sciences (ICAT'16) held in Konya (Turkey), 

September 01-03, 2016. 

mailto:selmaozaydin@yahoo.com


 

80  |  IJAMEC, 2016, 4(Special Issue), 79–81 This journal is © Advanced Technology & Science 2013 

  )2(....
1

)1()1()0(
T

pL

TL

j

T

j

T

jj
j

jyyyc



  

where 𝑦𝑗
(𝑘)

 (p  1) is the kth codevector for the jth stage and Lj is 

the size of codebook for that stage. The column vector c is 

constructed by stacking all codebook vectors from all stages and 

referred to as the ‘codebook’ where, 

 

)3(

]...[

..............

]...[

]...[

...

1

)1()1()0(

)1(

1

)1(

1

)0(

1

)1(

0

)1(

0

)0(

0

1

0

1

0



















































Lp

TTL

K

T

K

T

K

TTLTT

TTLTT

K
Kyyy

yyy

yyy

c

c

c

c
  

      

The selection matrix for the jth stage 𝐵𝑗
(𝑘)

 is a sparse Toeplitz 

matrix (p  Ljp) constructed such that 𝑦𝑗
(𝑘)

= 𝐵𝑗
(𝑘)

𝑐𝑗. The 

selection matrix B  is used for selection of the codevectors from 

codebook table with using the codebook indices where, 
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A WMSE distortion criterion is used for training the codebooks 

and for the selection of the quantized vector in a codebook [2]. If 

W is a diagonal matrix which depends on the parameter vector x, 

the distortion for the whole training sequence is defined as, 
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where the superscript n identifies the nth vector from the training 

sequence and the subscript r represents the iteration number 

during the training of a codebook. For details of designing a 

codebook in MSVQ, the reader is referred to [2]. 

2.2. Residual LSF vector Quantization with ARMA 
prediction 

In the R_MSVQ method, the residual LSF parameters of current 

frame are predicted from the quantized LSF parameters of the 

previous frames using interframe correlation feature of spectrum 

parameters [5-8] and then residual LSF vectors are coded with a 

MSVQ codebook. Firstly, the LSF parameter vector is obtained 

by transforming the 10th order LPC parameter vector. Next, the 

average LSF vector of the training set 𝑥𝐷𝐶 is subtracted from the 

LSF vector x(i) belonging to the ith frame. By defining mean 

removed LSF vectors (𝑧(𝑖) = 𝑥(𝑖) − 𝑥𝐷𝐶) and its quantized 

version �̂�(𝑖) = �̂�(𝑖) − 𝑥𝐷𝐶),  the residual LSF vector e(i) is 

calculated using,  
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where i=1,2,…and r(0) = 0. The quantized residual vector �̂�(𝑖) is 

found by quantizing e(i) with a VQ codebook. Depending on how 

𝑟(𝑖) is computed, various prediction schemes can be proposed. If 

𝑟(𝑖) = 𝛼(�̂�(𝑖−1) + 𝑟(𝑖−1)), a first order Auto Regressive (AR(1)) 

predictor is obtained [5]. When (𝑟(𝑖) = 𝛼�̂�(𝑖−1)) we have a first 

order Moving Average (MA(1)) predictor [5]. The research in the 

literature have focused on these two schemes [6-8] which show 

that codebooks designed with using AR predictors produce lower 

distortion than codebooks with MA predictors, however the use 

of an alternative ARMA model in residual LSF prediction, which 

is untouched in the literature, can be more advantageous. The 

ARMA(1,1) predictor is, 
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Here, we optimize two parameters instead of one in AR(1) and 

MA(1) predictors. It has been observed that residual LSF 

codebooks designed by an ARMA(1,1) predictor have lower 

distortion than AR(1) and MA(1) predictor codebooks. The 

lowest distortion using an AR(1) model is obtained by using 

α=0.5 . In an ARMA(1,1) predictor the lowest distortion is 

obtained when α1=0.3 and α2=0.6. To see the advantage of the 

ARMA(1,1) predictor, consider the reconstructed quantized LSF 

vector �̂�(𝑖) in the decoder, 

 

which is compared to the reconstructed quantized LSF vector of 

the AR(1) predictor, 
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It is well-known that [5] AR prediction schemes are susceptible 

to channel errors due to infinite memory as seen in (9). For 

example, for α=0.5 in AR(1), the weighting of previous 

quantized residuals decay like {0.5, 0.25, 0.125, 0.0625, 0.0312, 

…}. However, in ARMA(1,1) with α1=0.3 and α2=0.6 the 

weighting is {0.3, 0.18,  0.108, 0.0648, 0.0388, …}. As can be 

seen, the decay in ARMA(1,1) is faster which means that the 

susceptibility to channel errors compared to AR(1) is decreased. 

Hence by using an ARMA predictor not only do we reduce the 

distortion but also we decrease the effect of channel errors when 

compared to AR predictors. 

 

 
 

Figure 1. Block diagram of proposed ARMA prediction 

 

Marca [7] suggested an AR predictive scheme in which 

prediction is performed only on every other frame which limits 

error propagation at most one adjacent frame. The same approach 

can be applied to ARMA(1,1) predictors. In practice, AR and 

ARMA predictive models correspond to higher order MA models 

as the weighting of previous quantized residuals decay to zero 

after a sufficiently large previous frame index, say p, which 

means that the same spectral distortion and outlier results can be 

obtained by optimizing p coefficients of a MA(p) predictor. 

However, undue codebook design complexity would be 

introduced as the search is now over a p dimensional space 

instead of two in ARMA(1,1). 

A weighted Euclidean distance measure is used for training the 

codebooks and during the search for the best codevector during 

quantization. The weighted Euclidean distance measure 𝑑(𝑒, �̂�) 

between the input residual LSF vector e and the quantized 

residual LSF vector �̂� is given by, 
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where p  (p=10 in our case) is the number of elements in the 

residual LSF vector and wj is the weight coefficients assigned to 

the jth residual LSF (ej).  

3. Performance Evaluation 
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In this study some applications of fuzzy logic method in medical  

LPC/LSF quantization performance can be assessed using 

subjective tests and/or objective distortion measures. The 

performance of the codebooks is measured by using spectral 

distortion method. Hence, 
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𝑑𝑆𝐷(𝐴(𝑧), �̂�(𝑧)) ≈ √
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𝑆𝐷 = √
1

𝑇
∑ 𝑑𝑆𝐷

2(𝑒𝑗2𝜋𝑛 𝑁⁄ )      𝑑𝐵2𝑇
𝑖=1               (13) 

  

where n0 and n1 correspond to 100 Hz and 3800 Hz respectively. 

A(z) is the optimal pth order linear predictor and �̂�(𝑧) is the 

predictor with quantized coefficients. N = 256 point FFT is used. 

The training database (65,685 vectors) is extracted from TIMIT 

databases, which consists of 630 speakers of 8 major dialects of 

American English, each reading 10 phonetically rich sentences. 

The extracted database is low-pass filtered and down sampled to 

8 kHz. M-L tree search procedure are used for training and 

testing [2] and M=8 is taken as the search depth of codevectors.  

To further test the efficiency of the R_MSVQ codebook, a novel 

very low bit rate speech coding-decoding algorithm is designed 

which is described in detail in [4]. MSVQ codebooks and new 

residual codebooks with the same bit rate are used respectively. 

For each designed codebooks, the effectiveness and the 

limitations of codebooks are investigated by calculating the SD 

and percentage of outliers. For comparison purposes spectral 

distortion and outlier results for the codebooks designed with 

MSVQ and R_MSVQ algorithms are given in Table 1. For lower 

bit rates, there is approximately 10% bit rate reduction in the 

R_MSVQ scheme for identical spectral distortion values.  

Listening tests and spectral distortion results for test speech data 

show that a three stage 22 bit/frame R_MSVQ codebook gives 

the same quality as the four stage 24 bit/frame MSVQ codebook 

in the new vocoder. We have tried to keep the bit rate of the 

residual LSF vector quantization as low as possible at an 

acceptable level as the major contribution to the bit rate of the 

vocoder comes from the LSF vector quantization. 

 
Table 1. LSF Codebook SD results of AR and ARMA prediction 

 

(a) SD & outliers in LSF joint codebook design, 

Bits/frame SD %[2-4dB] %[>4dB] 

[765] – 18 1.29 5.86 0.03 

[776] – 20 1.17 3.69 0.03 

[877] – 22 1.04 2.19 0.01 

[888] – 24 0.93 1.28 0.01 

 
(b) SD & outliers in residual LSF codebook design with ARMA 

prediction 

Bits/frame SD %[2-4dB] %[>4dB] 

[765] – 18 1.21 4.43 0.04 

[776] – 20 1.10 2.94 0.02 

[877] – 22 0.95 1.61 0.01 

[888] – 24 0.84 0.75 0.00 
    

4. Conclusion 

This article has presented an ARMA prediction modelling 

approach which has been shown to produce lower distortion 

results. The proposed prediction algorithm improves the 

performance for all investigated bit rates. Furthermore, the new 

method has the good features of both AR and MA model. The 

new residual quantization method reduce the bit rate using 

residual LSF vectors obtained from ARMA prediction with little 

calculations in the algorithm. With this method error propagation 

is limited to a few frames for noisy channels. 

It is expected that additional improvement will come with 

analysing of how adaptive coefficients can be found to model 

cepstral coefficients. Anti-formant tracking here remains 

challenging although it has been found better results with the 

modelling here. On the other hand, the effectiveness of this 

approach is its ability to model both poles and zeros with a simple 

algorithm without giving nonlinear complex calculations. Further 

research is planning to evaluate the effectiveness of this method 

according to different speech databases and to find an adaptive 

method to adjust alpha coefficients adaptively.  
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