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ABSTRACT

Objectives. Antioxidant effects of lithium chloride (LiCl) and methylprednisolone were investigated in an

experimental spinal cord injury. Methods. Spinal cord injury was performed by cerebral vascular clip with a

closing force of 40 g; the duration of epidural compression was 30 seconds after T9-11 total laminectomy in

the rat spine. The study was conducted in 4 groups. Group 1: sham (n=8), group 2: 0.9% saline (n=8), group

3: LiCl (n=8), group 4: methylprednisolone (n=8). Ketamine (60 mg/kg) and 2% xylazine (5 mg/kg) were used

intraperitoneally as anesthesia protocol for the groups. The rats were sacrificed 24 hours after the injury and

blood samples were taken. Total oxidant status (TOS), total antioxidant status (TAS), malondialdehyde (MDA)

and tumor necrosis factor-α (TNF-α) level were analyzed. Results. Median (q1-q3) levels of TAS, TOS, MDA

and TNF-α were statistically analyzed for the study groups. The TAS values of LiCl yielded statistically

significant differences compared with group 1, 2 and 4 (p<0.05). The MDA values of LiCl and

methylprednisolone groups were found to significantly differ between the sham and saline groups (p<0.05).

There were no statistical differences between the study groups for the TNF-α and TOS values (p>0.05).

Conclusions. LiCl seems to be an effective drug for experimental spinal cord injuries. 
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Introduction

      Lithium chloride (LiCl) is used for the treatment

of bipolar affective disorder [1, 2]. Treatment results

of patients with spinal cord injury are still poor despite

various treatment approach and efforts. The aim of the

entire treatment effort is to prevent secondary tissue 

damage [3-5]. There are reports suggesting that LiCl

protects the cultured neurons against glutamate-

induced excitotoxicity and apoptosis mediated by

N-methyl-D-aspartate (NMDA) receptors [6]. It has

also been reported that pretreatment with LiCl inhibits
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Ca+2 influx into the cultured cerebellar granule cells

by approximately 50% [6]. This study aims to evaluate

the antioxidant effect of LiCl on experimental spinal

cord injury. 

Methods

      The ethical committee of the Osmangazi

University School of Medicine, Eskisehir, Turkey,

approved the study. Male and female adult Spraque

Dawley rats (250–350 g) were randomly assigned to

four experimental groups (n=8 each): Group 1 (sham),

laminectomized but without spinal cord injury or

treatment; Group 2 (saline), spinal cord injury with

0.9% saline treatment; Group 3 (LiCl), spinal cord

injury with 50 mg/kg lithium chloride treatment; and,

Group 4 (methyl prednisolone), spinal cord injury with

30 mg/kg methylprednisolone treatment. Spinal cord

injury was performed following T9–T11 total

laminectomy using a cerebral vascular clip, (closing

force 40 g, epidural compression duration 30 seconds).

Saline, lithium chloride or methylprednisolone was

given intraperitoneally one hour after the trauma.

Ketamine (60 mg/kg) and 2% xylazine (5 mg/kg) were

administered intraperitoneally to induce anesthesia in

all groups. The rats were euthanized 24 hours after

spinal cord injury and blood samples were obtained

for biochemical analysis. Total oxidant status (TOS),

total antioxidant status (TAS), malondialdehyde

(MDA) levels and tumor necrosis factor-α (TNF-α)

levels were measured using commercially available

assays. The TOS value was expressed in µmol H2O2

Eq./l, the TAS value was expressed in mmol Trolox

Eq./l, and the TNF-α level value was expressed in

pg/ml.

      MDA levels were determined using the method of

Ohkawa et al. [7]. Briefly, 0.5 ml plasma was mixed

with 0.2 ml of 8.1% sodium dodecyl sulfate, 1.5 ml of

20% acetic acid (pH 3.5), and 1.5 ml of 0.8%

thiobarbituric acid, and heated at 95 °C for 60 minutes.

After cooling, 5 ml n-Butanol/Piridin (15:1 v/v) was

added and the samples were centrifuged at 4000 rpm

for 10 minutes. The supernatant was collected and the

absorbance at 532 nm was measured using a Shimadzu

UV-1201 spectrophotometer (Shimadzu Corp, Japan).

The MDA level was calculated using 1,1,3,3-tetra-

ethoxy-propane as a standard and was expressed in

nmol/ml. 

Statistical Analysis 
      All statistical analyses were performed using IBM

SPSS for Windows version 20.0 (SPSS, Chicago, IL,

USA). Variables were expressed as median (25th

percentiles-75th percentiles). Comparisons of

continuous variables between the groups were

performed using the Kruskal Wallis one-way analysis

of variance and Dunn's Post Hoc test and using a

Bonferroni t test with a corrected p value of 0.05/4. A

two-sided p<0.05/4 was considered statistically

significant. 

Results

      We compared the effects of lithium chloride and

methylprednisolone in an experimental spinal cord

injury model. Multiple measures of oxidative or

inflammatory status, including TOS, TAS, and the

levels of MDA and TNF-α were studied. Median TOS

values were not significantly different between the

treatment groups (Table 1) (p=0.463). Median TAS

values, however, were significantly reduced in the

lithium-treated rats (Table 2) (p<0.001). Both LiCl and

methylprednisolone treatments lowered the median

levels of MDA, a marker of lipid peroxidation, relative

to the control and sham groups (Table 3) (p<0.001).

There were no statistically significant differences

between the TNF-α levels of the treatment groups

(Table 4) (p=0.574). 
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Table 1. TOS values (�mol H2O2 Eq./l) for the groups 
Groups TOS Median (q1-q3) p 
Sham (n=8) 11.43 8.32-19.07  
Control (n=8) 21.72 5.6-35.44 0.463 
Lithium (n=8) 8.23 5.26-13.32  
Methylprednisolone (n=8) 8.57 6.40-18.15  
TOS= total oxidant status 

�



Discussion

      Methylprednisolone is used to treat a variety of

neurological disorders involving white matter injury,

including multiple sclerosis, acute disseminated

encephalomyelitis, and spinal cord injury [8-11]. LiCl

is used to treat to bipolar affective disorder, and

schizophrenia [1, 2, 12].

      Boku et al. [13] reported that LiCl and

glucocorticoids affected adenosine diphosphate (ADP)

proliferation, which is regulated by glycogen synthase

kinase 3 beta (GSK-3β) and β-catenin/T-cell factor

(TCF) pathways. Young [14] reported that chronic

administration of LiCl increased the levels of

neurotropic factors in the brain. LiCl stimulates not

only regeneration but also neurogenesis both in-vitro

and in-vivo. LiCl causes new neurons to be produced

in both injured and uninjured hippocampus. The

mechanism appears to involve Wnt/β-catenin

signaling pathway. LiCl is also described as a potent

neuroprotective agent [14]. Dill et al. [15] reported 

that the administration of GSK-3β inhibitors may

facilitate the development of an effective treatment to

white matter injuries including spinal cord trauma

given the wide use of lithium in humans and that the

inactivation of GSK-3β promotes axonal growth and

recovery in central nervous system. 

      Lee et al. [9] demonstrated in-vivo (spinal cord

injury in rat), and in-vitro that methylprednisolone

reversed AMPA-(alpha-amino-3-hydroxy-5-

methylisoxazole-4 propionate) induced decreases in

the expression of antiapoptotic Bcl-xL, caspase-3

activation, and DNA fragmentation in oligodendrocyte

by the glucocorticoid receptor, and not by neurons.

These protective effects were inhibited by the

glucocorticoid receptor antagonists: mifepristone

(RU486) and small interfering RNA (siRNA). Bailly

Maitre et al. [16] reported that the same antiapoptotic

effects were seen in human and rat hepatocyte cultures

by dexamethasone. Methylprednisolone (30 mg/kg,

iv) used in an in-vivo rat study. The spinal cords were
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Table 2. TAS values (mmol Trolox-Equ./l) for the groups 
Groups TAS Median (q1-q3) p 
Sham (n=8) 1.25 1.16-1.33  
Control (n=8) 1.39 1.20-1.58 <0.001a, b, c 
Lithium (n=8) 1.06 0.99-1.11  
Methylprednisolone (n=8) 1.23 1.13-1.37  

TAS=total antioxidant status, aThere is significant difference between Lithium and Methylprednisolone groups, bThere is 
significant difference between Lithium and Sham groups, cThere is significant difference between Lithium and Control 
groups 
 

Table 3. MDA values (nmol/ml) for the groups 

Groups MDA Median (q1-q3) p 
Sham (n=8) 1.50 1.40-1.65  
Control (n=8) 1.85 1.65-1.90 <0.001a, b 
Lithium (n=8) 1.00 0.85-1.16  
Methylprednisolone (n=8) 1.20 1.10-1.45  
MDA= malondialdehyde, aThere is significant difference between Lithium and Sham groups, bThere is significant difference 
between Lithium and Control groups 
 

Table 4. TNF-� values (pg/ml) for the groups 

Groups TNF-� Median (q1-q3) p 
Sham (n=8) 45.88 36.65-69.06  
Control (n=8) 54.19 26.79-75.41 0.574 
Lithium (n=8) 30.81 25.99-62.79  
Methylprednisolone (n=8) 40.27 28.61-54.32  
(TNF-�)=tumor necrosis factor-�  

�



examined 24 hours after the spinal cord injury for

molecular sign of apoptosis. Methylprednisolone was

found selectively to attenuate oligodendrocyte cell

death and demyelination [9]. 

      Xu et al. [11] demonstrated that

methylprednisolone selectively inhibits

oligodendrocyte death via glucocorticoid receptor and

upregulates the expression of B-cell lymphoma-extra

large (Bcl-xL). They also found that signal transducer

and activators of transcription 5 (STAT5) plays a key

role in mediating the protection of oligodendrocytes

by the methylprednisolone/glucocorticoid receptor

signaling pathway. However, the subsequent

molecular cascades underlying the upregulation of

Bcl-xL remained unknown. It has been reported that

methylprednisolone upregulates the expression of Bcl-

xL via direct binding of the glucocorticoid receptor

/STAT5 complex on the putative STAT5 binding site

[11]. Antiapoptotic Bcl-xL is seated on the outer

membrane of mitochondria, which include intrinsic

apoptotic pathway, thus provide maintenance of

membrane integrity [17]. Nesic-Taylor et al. [18]

suggested that antiapoptotic Bcl-xL has an important

role on adult neural cells, which promote neuronal

survival. Cittelly et al. [19] reported that

phosphorylation of Bcl-xL is a proapoptotic event in

the neurons and also after spinal cord injury. 

      Mohn et al. [20] reported that NMDA receptors

represent a subclass of glutamate receptors that play a

critical role in neural development and physiology.

NMDA receptor blockers cause behavioral alteration

(schizophrenia) due to increased dopamine level such

as phencyclidine intoxication mimicking

schizophrenia. Phencyclidine is a noncompetitive

antagonist of NMDA receptors. Nieollon et al. [21, 22]

reported that glutamate and dopamine exhibit

reciprocal actions at subcortical cell, therefore

dopamine receptor blockade may act to balance

glutamatergic insufficiency [20, 23, 24]. 

      Nonaka et al. [6] reported that LiCl protects to the

cultured neurons against glutamate-induced

excitotoxicity and apoptosis mediated by NMDA

receptors. Javitt [25] reported that NMDA receptor

antagonists cause glutamatergic dysfunction, which

causes schizophrenic symptoms. On the other hand,

hyper-glutamatergic neurotoxicity can cause cognitive

deficit in schizophrenia [26]. These reports support our

findings, which showed that LiCl and

methylprednisolone results in NMDA receptor

blockade. 

      Our results suggest that LiCl causes glutamate

dysfunction via NMDA receptor blockade, which

protects neuronal apoptosis. The MDA and TAS levels

found in this paper support this hypothesis. Our result

showed that lithium chloride had an antioxidant effect

on the experimental rat spinal cord injury. The TAS

level of the LiCl group was significantly higher than

the other groups. MDA levels of the LiCl and

methylprednisolone groups were statistically lower

than the other groups. These results suggest that LiCl

has a potent antioxidant activity as strong as

methylprednisolone. Our results support the effecting

mechanism of LiCl on glutamate-induced

excitotoxicity and apoptosis mediated by NMDA

receptors. Li inhibits Ca+2 influx into neural cells. 

Conclusions

      In conclusion, LiCl seems to be an effective drug

as strong as methylprednisolone on experimental

spinal cord injury. 
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