Konuralp Journal of Mathematics

Research Paper
Journal Homepage: www.dergipark.gov.tr/konuralpjournalmath

# Properties of Double Fuzzy b-Open Sets 

J. Princivishvamalar ${ }^{1}$, N. Rajesh ${ }^{2 *}$ and B. Brundha ${ }^{3}$<br>${ }^{1,2}$ Department of Mathematics, Rajah Serfoji Government College (affiliated to Bharathidasan University), Thanjavur-613005, Tamilnadu, India.<br>${ }^{3}$ Department of Mathematics, Government Arts College for Women, Orathanadu-614625, Tamilnadu, India.<br>*Corresponding author


#### Abstract

In this paper, we introduce and study the concept of $(r, s)$-fuzzy $b$-border, $(r, s)$-fuzzy $b$-exterior and $(r, s)$-fuzzy $b$-frontier. Some of its interesting properties and characterizations are examined.


Keywords: Double fuzzy topology, $(r, s)$-fuzzy b-open set, $(r, s)$-fuzzy b-closed set.
2010 Mathematics Subject Classification: 54A40, 45D05, 03E72.

## 1. Introduction

The concept of fuzzy sets was introduce by Zadeh [10]. Later on, Chang [2] introduced the concept of fuzzy topology, then the generalizations of the concept of fuzzy topology have been done by many authors. In [1], Atanassove introduced the idea of intuitionistic fuzzy sets, then Coker [3, 4], introduced the concept of intuitionistic fuzzy topological spaces. On the other hand, as a generalization of fuzzy topological spaces Samanta and Mondal [9], introduced the concept of intuitionistic gradation of openness. In 2005, the term intuitionistic is ended by Garcia and Rodabaugh [7]. They proved that the term intuitionistic is unsuitable in mathematics and applications and they replaced it by double. In this paper, we introduce and study the concept of $(r, s)$-fuzzy $b$-border, $(r, s)$-fuzzy $b$-exterior and $(r, s)$-fuzzy $b$-frontier. Some of its interesting properties and characterizations are examined.

## 2. Preliminaris

Throughout this paper, Let $X$ be a non-empty set, $I$ the unit interval $[0,1], I_{0}=(0,1]$ and $I_{1}=[0,1)$. The family of all fuzzy sets on $X$ is denoted by $I^{X}$. By $\overline{0}$ and $\overline{1}$, we denote the smallest and the greatest fuzzy sets on $X$. For a fuzzy set $\lambda \in I^{X}, \overline{1}-\lambda$ denotes its complement. Given a function $f: I^{X} \longrightarrow I^{Y}$ and its inverse $f^{-1}: I^{Y} \longrightarrow I^{X}$ are defined by $f(\lambda)(y)=\bigvee_{f(x)=y} \lambda(x)$ and $f^{-1}(\mu)(x)=\mu(f(x))$, for each $\lambda \in I^{X}, \mu \in I^{Y}$ and $x \in X$, respectively. All other notations are standard notations of fuzzy set theory.
Definition 2.1. [4, 9] A double fuzzy topology on $X$ is a pair of maps $\tau, \tau^{\star}: I^{X} \rightarrow I$, which satisfies the following properties:

1. $\tau(\lambda) \leq \underline{1}-\tau^{\star}(\lambda)$ for each $\lambda \in I^{X}$.
2. $\tau\left(\lambda_{1} \wedge \lambda_{2}\right) \geq \tau\left(\lambda_{1}\right) \wedge \tau\left(\lambda_{2}\right)$ and $\tau^{\star}\left(\lambda_{1} \wedge \lambda_{2}\right) \leq \tau^{\star}\left(\lambda_{1}\right) \vee \tau^{\star}\left(\lambda_{2}\right)$ for each $\lambda_{1}, \lambda_{2} \in I^{X}$.
3. $\tau\left(\bigvee_{i \in \Gamma} \lambda_{i}\right) \geq \bigwedge_{i \in \Gamma} \tau\left(\lambda_{i}\right)$ and $\tau^{\star}\left(\bigvee \lambda_{i \in \Gamma}\right) \leq \bigvee_{i \in \Gamma} \tau^{\star}\left(\lambda_{i}\right)$ for each $\lambda_{i} \in I^{X}, i \in \Gamma$.

The triplet $\left(X, \tau, \tau^{\star}\right)$ is called a double fuzzy topological space.
Definition 2.2. [4, 9] A fuzzy set $\lambda$ is called an ( $r, s$-fuzzy open if $\tau(\lambda) \geq r$ and $\tau^{\star}(\lambda) \leq s, \lambda$ is called an $(r, s)$-fuzzy closed if, and only if $1-\lambda$ is an $(r, s)$-fuzzy open set.
Definition 2.3. [4, 9] A function $f:\left(X, \tau_{1}, \tau_{1}^{\star}\right) \rightarrow\left(Y, \tau_{2}, \tau_{2}^{\star}\right)$ is said to be a double fuzzy continuous if, and only if $\tau_{1}\left(f^{-1}(v)\right) \geq \tau_{2}(v)$ and $\tau_{1}^{\star}\left(f^{-1}(v)\right) \leq \tau_{2}^{\star}(v)$ for each $v \in I^{Y}$.

Theorem 2.4. [8, 5] Let $\left(X, \tau, \tau^{\star}\right)$ be a double fuzzy topological space. Then double fuzzy closure operator and double fuzzy interior operator of $\lambda \in I^{X}$ are defined by $C_{\tau, \tau^{\star}}(\lambda, r, s)=\bigwedge\left\{\mu \in I^{X} \mid \lambda \leq \mu, \tau(\underline{1}-\mu) \geq r, \tau^{\star}(\underline{1}-\mu) \leq s\right\}, I_{\tau, \tau^{\star}}(\lambda, r, s)=\bigvee\left\{\mu \in I^{X} \mid \mu \leq \lambda, \tau(\mu) \geq\right.$ $\left.r, \tau^{\star}(\mu) \leq s\right\}$, where $r \in I_{0}$ and $s \in I_{1}$ such that $r+s \leq 1$.

Definition 2.5. [6] Let $\left(X, \tau, \tau^{\star}\right)$ be a double fuzzy topological space. For each $\lambda, \mu \in I^{X}, r \in I_{0}$ and $s \in I_{1}$,

1. $\lambda$ is called an $(r, s)$-fuzzy b-open set if $\lambda \leq I_{\tau, \tau^{\star}}\left(C_{\tau, \tau^{\star}}(\lambda, r, s), r, s\right) \vee C_{\tau, \tau^{\star}}\left(I_{\tau, \tau^{*}}(\lambda, r, s), r, s\right)$.
2. $\lambda$ is called an $(r, s)$-fuzzy b-closed set if $1-\lambda$ is an $(r, s)$-fuzzy b-open set.
3. An $(r, s)$-fuzzy b-closure of $\lambda$ is defined by $B C_{\tau, \tau^{\star}}(\lambda, r, s)=\Lambda\left\{\mu \in I^{X} \mid \lambda \leq \mu\right.$ and $\mu$ is $(r, s)$-fuzzy b-closed $\}$.
4. An $(r, s)$-fuzzy b-interior of $\lambda$ is defined by $B I_{\tau, \tau^{\star}}(\lambda, r, s)=\vee\left\{\mu \in I^{X} \mid \lambda \leq \mu\right.$ and $\mu$ is $(r, s)$-fuzzy b-closed $\}$.

## 3. $(r, s)$-fuzzy $b$-open sets

In this section, we study $(r, s)$-fuzzy $b$-border, $(r, s)$-fuzzy $b$-exterior and $(r, s)$-fuzzy $b$-frontier. Some of its interesting properties and characterizations are examined.

Proposition 3.1. For any double fuzzy topological space ( $X, \tau, \tau^{\star}$ ), $\lambda, B \in I^{X}, r \in I_{0}$ and $s \in I_{1}$, we have

1. $B I_{\tau, \tau^{\star}}(\lambda, r, s)$ is the largest $(r, s)$-fuzzy b-open set with $B I_{\tau, \tau^{*}}(\lambda, r, s) \leq \lambda$,
2. $\lambda=B I_{\tau, \tau^{*}}(\lambda, r, s)$ if $\lambda$ is an $(r, s)$-fuzzy b-open set,
3. $B I_{\tau, \tau^{\star}}\left(B I_{\tau, \tau^{\star}}(\lambda, r, s), r, s\right)=B I_{\tau}, \tau^{\star}(\lambda, r, s)$, if $\lambda$ is an $(r, s)$-fuzzy b-open set,
4. $1-B I_{\tau, \tau^{\star}}(\lambda, r, s)=B C_{\tau, \tau^{\star}}(1-\lambda, r, s)$,
5. $1-B C_{\tau, \tau^{*}}(\lambda, r, s)=B I_{\tau, \tau^{*}}(1-\lambda, r, s)$,

If $\lambda \leq \mu$, then $B I_{\tau, \tau^{*}}(\lambda, r, s) \leq B I_{\tau, \tau^{*}}(\mu, r, s)$,
. If $\lambda \leq \mu$, then $B C_{\tau, \tau^{\star}}(\lambda, r, s) \leq B C_{\tau, \tau^{\star}}(\mu, r, s)$,
8. $B I_{\tau, \tau^{\star}}(\lambda, r, s) \wedge B I_{\tau, \tau^{\star}}(\mu, r, s)=B I_{\tau, \tau^{\star}}(\lambda \wedge \mu, r, s)$,
9. $B I_{\tau, \tau^{\star}}(\lambda, r, s) \vee B I_{\tau, \tau^{\star}}(\mu, r, s)=B I_{\tau, \tau^{\star}}(\lambda \vee \mu, r, s)$.

Proof. (1) and (2) follow from the definitions and (3) follows from (2).
(4). $B C_{\tau, \tau^{*}}(1-\lambda, r, s)=\wedge\{\mu: \mu$ is $(r, s)$-fuzzy $b$-closed set, $\mu \geq 1-\lambda\}=1-\vee\{1-\mu: 1-\mu$ is $(r, s)$ fuzzy $b$-open set, $1-\mu \leq \lambda\}=$ $1-B I_{\tau, \tau^{\star}}(\lambda, r, s)$.
(5). It is similar to (4).
(6). It is clear that $B I_{\tau, \tau^{\star}}(\lambda, r, s)=\{\mu: \mu$ is $(r, s)$-fuzzy $b$-open and, $\mu \leq \lambda\}=\vee\{\mu: \mu \leq \gamma$ and $\mu$ is an $(r, s)$-fuzzy $b$-open $\}=B I_{\tau, \tau^{*}}(\mu, r, s)$.
(7). If $\lambda \leq \mu$, it is similar to (6).
(8). Follows from (6).
(9). It is similar to (8).

Definition 3.2. For any double fuzzy topological space $\left(X, \tau, \tau^{\star}\right), \lambda \in I^{X}, r \in I_{0}$ and $s \in I_{1}$, we have the $(r, s)$-fuzzy b-border of $\lambda$, denoted by $B F_{\tau, \tau^{*}}(\lambda, r, s)$, defined as $B B_{\tau, \tau^{\star}}(\lambda, r, s)=\lambda-B I_{\tau, \tau^{*}}(\lambda, r, s)$.
Proposition 3.3. For any double fuzzy topological space $\left(X, \tau, \tau^{\star}\right), \lambda \in I^{X}, r \in I_{0}$ and $s \in I_{1}$, we have

1. $B B_{\tau, \tau^{\star}}(\lambda, r, s) \leq B B_{\tau, \tau^{\star}}(\lambda, r, s)$,
2. If $\lambda$ is an $(r, s)$-fuzzy b-open, then $B B_{\tau, \tau^{\star}}(\lambda, r, s)=\overline{0}$,
3. $B B_{\tau, \tau^{\star}}(\lambda, r, s) \leq B C_{\tau, \tau^{\star}}(1-\lambda, r, s)$,
4. $B I_{\tau, \tau^{\star}}\left(B B_{\tau, \tau^{\star}}(\lambda, r, s), r, s\right) \leq \lambda$,
5. $B B \tau, \tau^{\star}(\lambda \vee \mu, r, s) \leq B B_{\tau, \tau^{\star}}(\lambda, r, s) \vee B B_{\tau, \tau^{\star}}(\mu, r, s)$,
6. $B B_{\tau, \tau^{\star}}(\lambda \wedge \mu, r, s) \geq B B_{\tau, \tau^{\star}}(\lambda, r, s) \wedge B B_{\tau, \tau^{\star}}(\mu, r, s)$.

Proof. (1). For any $\lambda \in I^{X}$, since $B I_{\tau, \tau^{\star}}(\lambda, r, s) \leq B I_{\tau, \tau^{\star}}(\lambda, r, s)$, then $\lambda-B I_{\tau, \tau^{\star}}(\lambda, r, s) \leq \lambda-B I_{\tau, \tau^{\star}}(\lambda, r, s)$. Therefore $B B_{\tau, \tau^{\star}}(\lambda, r, s) \leq$ $B B_{\tau, \tau^{\star}}(\lambda, r, s)$.
(2). For any an $(r, s)$-fuzzy $b$-open set $\lambda \in I^{X}$, we have $\lambda=B I_{\tau, \tau^{*}}(\lambda, r, s)$. Thus $B B_{\tau, \tau^{*}}(\lambda, r, s)=\overline{0}$.
(3). $B B_{\tau, \tau^{\star}}(\lambda, r, s)=\lambda-B I_{\tau, \tau^{\star}}(\lambda, r, s)=\lambda-\left(1-B C_{\tau, \tau^{\star}}(1-\lambda, r, s)\right) \leq 1-1+B B_{\tau, \tau^{\star}}(1-\lambda, r, s)=B B_{\tau, \tau^{\star}}(1-\lambda, r, s)$.
(4). $B I_{\tau, \tau^{\star}}\left(B B_{\tau, \tau^{\star}}(\lambda, r, s), r, s\right)=B I_{\tau, \tau^{\star}}\left(\lambda-B I_{\tau, \tau^{\star}}(\lambda, r, s), r, s\right) \leq \lambda-B I_{\tau, \tau^{\star}}(\lambda, r, s) \leq \lambda$ by (1) of Proposition 2.2.

Then $B I_{\tau, \tau^{*}}\left(B B_{\tau, \tau^{*}}(\lambda, r, s), r, s\right) \leq \lambda$.
(5). $B B_{\tau, \tau^{\star}}(\lambda \vee \mu, r, s)=(\lambda \vee \mu)-B I_{\tau, \tau^{*}}(\lambda \vee \mu, r, s)=(\lambda \vee \mu)-\left(B I_{\tau, \tau^{\star}}(\lambda, r, s)\right) \vee\left(B I_{\tau, \tau^{\star}}(\mu, r, s)\right) \leq\left(\lambda-B I_{\tau, \tau^{*}}(\lambda, r, s)\right) \vee\left(\mu-B I_{\tau, \tau^{*}}(\mu, r, s)\right)$ $=B B_{\tau, \tau^{\star}}(\lambda, r, s) \vee B B_{\tau, \tau^{\star}}(\mu, r, s)$. Therefore, $B B_{\tau, \tau^{\star}}(\lambda \vee \mu, r, s) \leq B E_{\tau, \tau^{\star}}(\lambda, r, s) \vee B E_{\tau, \tau^{\star}}(\mu, r, s)$.
(6) It is similar to (5).

Definition 3.4. For any double fuzzy topological space $\left(X, \tau, \tau^{\star}\right), \mu \in I^{X}, r \in I_{0}$ and $s \in I_{1}$, we have the ( $r, s$ )-fuzzy b-frontier of $\lambda$, denoted by $B F_{\tau, \tau^{\star}}(\lambda, r, s)$ is defined as $B F_{\tau, \tau^{\star}}(\lambda, r, s)=B C_{\tau, \tau^{\star}}(\lambda, r, s)-B I_{\tau, \tau^{\star}}(\lambda, r, s)$.
Proposition 3.5. For any double fuzzy topological space $\left(X, \tau, \tau^{\star}\right), \mu \in I^{X}, r \in I_{0}$ and $s \in I_{1}$, we have

1. $B F_{\tau, \tau^{\star}}(\lambda, r, s) \leq F_{\tau, \tau^{\star}}(\lambda, r, s)$,
2. $B B_{\tau, \tau^{\star}}(\lambda, r, s) \leq B F_{\tau, \tau^{\star}}(\lambda, r, s)$,
3. $B F_{\tau, \tau^{*}}(1-\lambda, r, s)=B I_{\tau, \tau^{\star}}(\lambda, r, s)$,
4. $B F_{\tau, \tau^{\star}}\left(B I_{\tau, \tau^{\star}}(\lambda, r, s), r, s\right) \leq B F_{\tau, \tau^{\star}}(\lambda, r, s)$,
5. $B F_{\tau, \tau^{\star}}\left(B C_{\tau, \tau^{*}}(\lambda, r, s), r, s\right) \leq B F_{\tau, \tau^{\star}}(\lambda, r, s)$,
6. $\lambda-B F_{\tau, \tau^{\star}}(\lambda, r, s) \leq B I_{\tau, \tau^{\star}}(\lambda, r, s)$,
7. $\left.B F_{\tau, \tau^{\star}}(\lambda \vee \mu, r, s) \leq\left(B F_{\tau, \tau^{\star}}(\lambda, r, s)\right) \vee\left(B F_{\tau, \tau^{\star}} \mu, r, s\right)\right)$,
8. 

$B F_{\tau, \tau^{\star}}(\lambda \wedge \mu, r, s) \geq\left(B F_{\tau, \tau^{\star}}(\lambda, r, s)\right) \wedge\left(B F_{\tau, \tau^{\star}}(\mu, r, s)\right)$.

Proof. (1). We have $I_{\tau, \tau^{\star}}(\lambda, r, s) \leq B I_{\tau, \tau^{\star}}(\lambda, r, s)$. It follows that $C_{\tau, \tau^{\star}}(\lambda, r, s)-I_{\tau, \tau^{\star}}(\lambda, r, s) \leq B C_{\tau, \tau^{\star}}(\lambda, r, s)-B I_{\tau, \tau^{\star}}(\lambda, r, s)$. Hence $B F_{\tau, \tau^{\star}}(\lambda, r, s) \leq F_{\tau, \tau^{\star}}(\lambda, r, s)$.
(2). $B I_{\tau, \tau^{\star}}(\lambda, r, s)=\lambda-B I_{\tau, \tau^{\star}}(\lambda, r, s) \leq B C_{\tau, \tau^{\star}}(\lambda, r, s)-B I_{\tau, \tau^{\star}}(\lambda, r, s)$; since $\lambda \leq B C_{\tau, \tau^{\star}}(\lambda, r, s)=B F_{\tau, \tau^{\star}}(\lambda, r, s)$. Therefore, $B I_{\tau, \tau^{\star}}(\lambda, r, s) \leq$ $B I_{\tau, \tau^{\star}}(\lambda, r, s)$.
(3). $B F_{\tau, \tau^{\star}}(\lambda, r, s)=B C_{\tau, \tau^{*}}(\lambda, r, s)-B I_{\tau, \tau^{*}}(\lambda, r, s)=B C_{\tau, \tau^{\star}}(\lambda, r, s)-\left(1-B C_{\tau, \tau^{*}}(1-\lambda, r, s)\right)=B C_{\tau, \tau^{*}}(\lambda, r, s)-1+B C_{\tau, \tau^{*}}(1-\lambda, r, s)=$ $B I_{\tau, \tau^{\star}}(1-\lambda, r, s)+B C_{\tau, \tau^{*}}(1-\lambda, r, s)=B F_{\tau, \tau^{*}}(1-\lambda, r, s)$.
(4). $B F_{\tau, \tau^{\star}}\left(B I_{\tau, \tau^{\star}}(\lambda, r, s), r, s\right)=B C_{\tau, \tau^{\star}}\left(B C_{\tau, \tau^{\star}}(\lambda, r, s), r, s\right)-B I_{\tau, \tau^{\star}}\left(B I_{\tau, \tau^{\star}}(\lambda, r, s), r, s\right) \leq B C_{\tau, \tau^{\star}}(\lambda, r, s)-B I_{\tau, \tau^{\star}}(\lambda, r, s)=B F_{\tau, \tau^{\star}}(\lambda, r, s)$.
(5). $B F_{\tau, \tau^{\star}}\left(B C_{\tau, \tau^{\star}}(\lambda, r, s), r, s\right)=B C_{\tau, \tau^{\star}}\left(B C_{\tau, \tau^{*}}(\lambda, r, s), r, s\right)-B I_{\tau, \tau^{*}}\left(B C_{\tau, \tau^{*}}(\lambda, r, s), r, s\right)=B C_{\tau, \tau^{*}}(\lambda, r, s)-B I_{\tau, \tau^{*}}\left(B C_{\tau, \tau^{*}}(\lambda, r, s), r, s\right)$ $\geq B C_{\tau, \tau^{\star}}(\lambda, r, s)-B I_{\tau, \tau^{\star}}(\lambda, r, s)=B F_{\tau, \tau^{\star}}(\lambda, r, s)$.
(6). Now $\lambda-B F_{\tau, \tau^{\star}}(\lambda, r, s)=\lambda-\left(B C_{\tau, \tau^{\star}}(\lambda, r, s)-B I_{\tau, \tau^{\star}}(\lambda, r, s)\right) \leq B C_{\tau, \tau^{\star}}(\lambda, r, s)-B C_{\tau, \tau^{\star}}(\lambda, r, s)+B I_{\tau, \tau^{\star}}(\lambda, r, s)=B I_{\tau, \tau^{\star}}(\lambda, r, s)$.
(7). $B F_{\tau, \tau^{\star}}(\lambda \vee \mu, r, s)=B C_{\tau, \tau^{\star}}(A \vee \mu, r, s)-B I_{\tau, \tau^{\star}}(\lambda \vee \mu, r, s)=B C_{\tau, \tau^{\star}}(\lambda \vee \mu, r, s)-\left(B I_{\tau, \tau^{*}}(\lambda, r, s) \vee B I_{\tau, \tau^{\star}}(\mu, r, s)\right)=\left(B C_{\tau, \tau^{*}}(\lambda, r, s) \vee\right.$ $\left.B C_{\tau, \tau^{\star}}(\mu, r, s)\right)-\left(B I_{\tau, \tau^{\star}}(\lambda, r, s) \vee B I_{\tau, \tau^{\star}}(\mu, r, s)\right) \leq\left(B C_{\tau, \tau^{\star}}(\lambda, r, s)-B I_{\tau, \tau^{\star}}(\lambda, r, s)\right) \vee\left(B C_{\tau, \tau^{\star}}(\lambda, r, s)-B I_{\tau, \tau^{\star}}(\mu, r, s)\right)$
$=B I_{\tau, \tau^{*}}(\lambda, r, s) \vee B I_{\tau, \tau^{*}}(\mu, r, s)$.
(8). It is similar to (7).

Definition 3.6. For any double fuzzy topological space $\left(X, \tau, \tau^{\star}\right), \lambda \in I^{X}, r \in I_{0}$ and $s \in I_{1}$, the ( $\left.r, s\right)$-fuzzy b-exterior of $\lambda$, denoted by $B E_{\tau, \tau^{\star}}(\lambda, r, s)$ is defined as $B E_{\tau, \tau^{\star}}(\lambda, r, s)=B I_{\tau, \tau^{\star}}(1-\lambda, r, s)$.
Proposition 3.7. For any double fuzzy topological space $\left(X, \tau, \tau^{\star}\right), \lambda \in I^{X}, r \in I_{0}$ and $s \in I_{1}$, we have

1. $E_{\tau, \tau^{\star}}(\lambda, r, s) \leq B E_{\tau, \tau^{\star}}(\lambda, r, s)$,
2. $B E_{\tau, \tau^{\star}}(\lambda, r, s)=1-B C_{\tau, \tau^{\star}}(\lambda, r, s)$,
3. $B E_{\tau, \tau^{\star}}\left(B E_{\tau, \tau^{\star}}(\lambda, r, s), r, s\right)=B I_{\tau, \tau^{\star}}\left(B C_{\tau, \tau^{\star}}(\lambda, r, s), r, s\right)$,
4. If $\lambda \leq \mu$, then $B E_{\tau, \tau^{\star}}(\lambda, r, s) \geq B E_{\tau, \tau^{\star}}(\mu, r, s)$,
5. $B E_{\tau, \tau^{\star}}(1, r, s)=0$,
6. $B E_{\tau, \tau^{\star}}(0, r, s)=1$,
7. $B I_{\tau, \tau^{\star}}(\lambda, r, s) \leq B E_{\tau, \tau^{\star}}\left(B E_{\tau, \tau^{\star}}(\lambda, r, s), r, s\right)$,
8. $B E_{\tau, \tau^{\star}}(\lambda \vee \mu, r, s) \leq B E_{\tau, \tau^{\star}}(\lambda, r, s) \wedge B E_{\tau, \tau^{\star}}(\mu, r, s)$,
9. $B E_{\tau, \tau^{\star}}(\lambda \wedge \mu, r, s) \geq B E_{\tau, \tau^{\star}}(\lambda, r, s) \vee B E_{\tau, \tau^{\star}}(\mu, r, s)$.

Proof. (1). Since $\left.B C_{\tau, \tau^{\star}}(\lambda, r, s) \leq B C_{\tau, \tau^{\star}}(\lambda, r, s), 1-B C_{\tau, \tau^{\star}}(\lambda, r, s) \geq 1-B C_{\tau, \tau^{\star}}(\lambda, r, s)\right)$. Then $B I_{\tau, \tau^{\star}}(1-\lambda, r, s) \geq B C_{\tau, \tau^{\star}}(1-\lambda, r, s)$. Therefore, by definition, $B E_{\tau, \tau^{\star}}(\lambda, r, s) \geq B C_{\tau, \tau^{\star}}(\lambda, r, s)$.
(2). It follows from the definitions.
(3). $B E_{\tau, \tau^{\star}}\left(B E_{\tau, \tau^{\star}}(\lambda, r, s), r, s\right)=B E_{\tau, \tau^{\star}}\left(B I_{\tau, \tau^{\star}}(1-\lambda, r, s), r, s\right)=B E_{\tau, \tau^{\star}}\left(1-B C_{\tau, \tau^{*}}(\lambda, r, s), r, s\right)=B I_{\tau, \tau^{\star}}\left(1-\left(1-B I_{\tau, \tau^{*}}(\lambda, r, s), r, s\right)\right)=$ $B I_{\tau, \tau^{\star}}\left(1-1+B C_{\tau, \tau^{\star}}(\lambda, r, s), r, s\right)=B I_{\tau, \tau^{\star}}\left(B C_{\tau, \tau^{\star}}(\lambda, r, s), r, s\right)$.
(4). Let $\lambda \leq \mu$. By using Proposition $2.2(1), B C_{\tau, \tau^{\star}}(\lambda, r, s) \leq B C_{\tau, \tau^{\star}}(\mu, r, s)$. Therefore $1-B C_{\tau, \tau^{\star}}(\lambda, r, s) \geq 1-B C_{\tau, \tau^{\star}}(\mu, r, s)$. But $B I_{\tau, \tau^{\star}}(1-\lambda, r, s) \geq B I_{\tau, \tau^{\star}}(1-\mu, r, s)$. Hence, $B E_{\tau, \tau^{\star}}(\lambda, r, s) \geq B E_{\tau, \tau^{\star}}(\mu, r, s)$.
(5). $\operatorname{By}$ (2) $B E_{\tau, \tau^{\star}}(1, r, s)=\overline{1}-B C_{\tau, \tau^{\star}}(\overline{1}, r, s)=\overline{1}-\overline{1}=\overline{0}$.
(6). It is similar to (5).
(7). $\left.B E_{\tau, \tau^{\star}}\left(B E_{\tau, \tau^{\star}, r, s}, r, s\right)=B E_{\tau, \tau^{\star}}\left(B I_{\tau, \tau^{\star}}(1-\lambda, r, s), r, s\right)=B E_{\tau, \tau^{\star}}\left(1-B C_{\tau, \tau^{\star}}, r, s\right), r, s\right)=B I_{\tau, \tau^{\star}}\left(B C_{\tau, \tau^{\star}}(\lambda, r, s), r, s\right) \geq B C_{\tau, \tau^{\star}}(\lambda, r, s)$. Hence $B I_{\tau, \tau^{\star}}(\lambda, r, s) \leq B E_{\tau, \tau^{\star}}\left(B E_{\tau, \tau^{\star}}(\lambda, r, s), r, s\right)$.
(8). $\left.\left.B E_{\tau, \tau^{\star}}(\lambda \vee \mu, r, s)=B I_{\tau, \tau^{\star}}(1-(\lambda-\vee \mu), r, s)=B I_{\tau, \tau^{\star}}(1-\lambda) \wedge(1-\mu), r, s\right) \leq B I_{\tau, \tau^{\star}}((1-\lambda), r, s) \wedge B I_{\tau, \tau^{\star}}((1-\mu), r, s)\right)=B E_{\tau, \tau^{\star}}(\lambda, r, s)$ $\wedge B E_{\tau, \tau^{\star}}(\mu, r, s)$.
(9). $B E_{\tau, \tau^{*}}(\lambda \wedge \mu, r, s)=B I_{\tau, \tau^{\star}}(\overline{1}-(\lambda \wedge \mu), r, s)=B I_{\tau, \tau^{\star}}((\overline{1}-\lambda \vee \overline{1}-\mu), r, s) \geq B I_{\tau, \tau^{*}}(\overline{1}-\lambda, r, s) \vee B I_{\tau, \tau^{*}}(\overline{1}-\mu, r, s)=B E_{\tau, \tau^{*}}(\lambda, r, s) \vee$ $B E_{\tau, \tau^{\star}}(\mu, r, s)$.

## 4. Some functions via $(r, s)$-fuzzy $b$-open sets

In this section, some characterizations of double fuzzy $b$-continuous, double fuzzy $b$-open, double fuzzy $b$-closed and double fuzzy $b$-irresolute functions are studied.

Definition 4.1. A function $f:\left(X, \tau_{1}, \tau_{1}^{\star}\right) \rightarrow\left(Y, \tau_{2}, \tau_{2}^{\star}\right)$ is called

1. double fuzzy $b$-open if for every $(r, s)$-fuzzy b-open set $\lambda \in I^{X}, r \in I_{0}$ and $s \in I_{1}, f(\lambda)$ is an $(r, s)$-fuzzy $b$-open in $I^{Y}$.
2. double fuzzy b-closed if for every $(r, s)$-fuzzy $b$-closed set $\lambda \in I^{X}, r \in I_{0}$ and $s \in I_{1}, f(\lambda)$ is an $(r, s)$-fuzzy b-closed in $I^{Y}$.
3. double fuzzy b-continuous if for every $\lambda \in I^{Y}$ with $\tau_{2}(\lambda) \geq r, \tau_{2}^{\star}(\lambda) \leq s, r \in I_{0}$ and $s \in I_{1}, f^{-1}(\lambda)$ is an $(r, s)$-fuzzy b-open in $I^{X}$.
4. double fuzzy b-irresolute if $f^{-1}(\lambda)$ is an $(r, s)$-fuzzy b-closed set for every $(r, s)$-fuzzy b-closed set $\lambda \in I^{Y}, r \in I_{0}, s \in I_{1}$.

Theorem 4.2. For a bijective function $f:\left(X, \tau_{1}, \tau_{1}^{\star}\right) \rightarrow\left(Y, \tau_{2}, \tau_{2}^{\star}\right)$, the following are equvalent:

1. $f$ is double fuzzy b-irresolute function.
2. For every fuzzy set $\lambda \in I^{X}, f\left(B C_{\tau, \tau^{\star}}(\lambda, r, s)\right) \leq B C_{\tau, \tau^{\star}}(f(\lambda), r, s)$,
3. For every fuzzy set $\mu \in I^{Y}, B C_{\tau, \tau^{\star}}\left(f^{-1}(\mu), r, s\right) \leq f^{-1}\left(B C_{\tau, \tau^{\star}}(\mu, r, s)\right.$.

Proof. (1) $\Rightarrow$ (2): Suppose $\lambda \in I^{X}$ and $B C_{\tau, \tau^{*}}(f(\lambda), r, s) \in I^{Y}$ is an $(r, s)$-fuzzy $b$-closed, then by (1), $f^{-1}\left(B C_{\tau_{2}, \tau_{2}^{*}}(f(\lambda), r, s) \in I^{X}\right.$ is an $(r, s)$ fuzzy $b$-closed set, $r \in I_{0}$ and $s \in I_{1}$. Therefore, $B C_{\tau_{1}, \tau_{1}^{*}}\left(f^{-1}\left(B C_{\tau_{2}, \tau_{2}^{*}}(f(\lambda), r, s), r, s\right)=f^{-1}\left(B C_{\tau_{2}, \tau_{2}^{*}}(f(\lambda), r, s)\right)\right.$. Since $\lambda \leq f^{-1}(f(\lambda))$ and $B C_{\tau_{1}, \tau_{1}^{*}}(\lambda, r, s) \leq B C_{\tau_{1}, \tau_{1}^{\star}}\left(f^{-1}(f(\lambda), r, s)\right)$. Also, $f(\lambda) \leq B C_{\tau_{2}, \tau_{2}^{*}}(f(\lambda), r, s)$. Then $B C_{\tau_{1}, \tau_{1}^{*}}(\lambda, r, s) \leq B C_{\tau_{1}, \tau_{1}^{\tau}}\left(f^{-1}\left(B C_{\tau_{2}, \tau_{2}^{*}}(f(\lambda), r, s), r, s\right)\right)=$ $f^{-1}\left(B C_{\tau_{2}, \tau_{2}^{*}}(f(\lambda), r, s)\right)$.
(2) $\Rightarrow$ (3): Suppose $\mu \in I^{Y}$, by (2) $f\left(B C_{\tau_{1}, \tau_{1}^{*}}\left(f^{-1}(\mu), r, s\right) \leq B C_{\tau_{2}, \tau_{2}^{*}}\left(f\left(f^{-1}(\mu)\right), r, s\right) \leq B C_{\tau_{2}, \tau_{2}^{*}}(\mu, r, s)\right.$. That is, $f\left(B C_{\tau_{1}, \tau_{1}^{\star}}\left(f^{-1}(\mu), r, s\right)\right) \leq$
$B C_{\tau_{2}, \tau_{2}^{\star}}(\mu, r, s)$. Therefore, $f^{-1}\left(f\left(B C_{\tau_{1}, \tau_{1}^{\star}}\left(f^{-1}(\mu), r, s\right)\right)\right) \leq f^{-1}\left(B C_{\tau_{2}, \tau_{2}^{*}}(\mu, r, s)\right)$. Hence, $B C_{\tau_{1}, \tau_{1}^{\tau}}\left(f^{-1}(\mu), r, s\right) \leq f^{-1}\left(B C_{\tau_{2}, \tau_{2}^{*}}(\mu, r, s)\right)$. (3) $\Rightarrow$ (1): Suppose $\mu \in I^{Y}$ is an $(r, s)$-fuzzy $b$-closed set. Then $B C_{\tau_{2}, \tau_{2}^{*}}(\mu, r, s)=\mu$. By (3) $B C_{\tau_{1}, \tau_{1}^{\tau}}\left(f^{-1}(\mu), r, s\right) \leq f^{-1}\left(B C_{\tau_{2}, \tau_{2}^{*}}(\mu, r, s)\right)=$ $f^{-1}(\mu)$. But $f^{-1}(\mu) \leq B C_{\tau_{1}, \tau_{1}^{*}}\left(f^{-1}(\mu), r, s\right)$. Therefore, $f^{-1}(\mu)=B C_{\tau_{1}, \tau_{1}^{\star}}(\mu, r, s)$. That is, $f^{-1}(\mu) \in I^{X}$ is $(r, s)$-fuzzy $b$-closed. Thus, $f$ is a double fuzzy $b$-irresolute function.

Proposition 4.3. A function $f:\left(X, \tau_{1}, \tau_{1}^{\star}\right) \rightarrow\left(Y, \tau_{2}, \tau_{2}^{\star}\right)$ is a double fuzzy b-closed if, and only if for each $\lambda \in I^{X}, B C_{\tau, \tau^{\star}}(f(\lambda), r, s) \leq$ $f\left(B C_{\tau, \tau^{*}}(\lambda, r, s)\right)$.

Proof. Suppose that $f$ is a double fuzzy $b$-closed function and $\lambda$ is any fuzzy set in $X$. Then $f\left(B C_{\tau, \tau^{*}}(\lambda, r, s)\right)$ is an $(r, s)$-fuzzy $b$-closed in $I^{Y}$. Therefore, $B C_{\tau, \tau^{\star}}\left(f\left(B C_{\tau, \tau^{\star}}(\lambda, r, s), r, s\right)=f\left(B C_{\tau, \tau^{\star}}(\lambda, r, s)\right)\right.$. Since $\left.\lambda \leq B C_{\tau, \tau^{\star}}(\lambda, r, s)\right) f(\lambda) \leq f\left(B C_{\tau, \tau^{*}}(\lambda, r, s)\right)$. Then $B C_{\tau, \tau^{\star}}(f(\lambda), r, s) \leq$ $B C_{\tau, \tau^{\star}}\left(f\left(B C_{\tau, \tau^{\star}}(\lambda, r, s)\right), r, s\right)=f\left(B C_{\tau, \tau^{\star}}(\lambda, r, s)\right)$. Hence for every fuzzy set $\lambda \in I^{X}, B C_{\tau, \tau^{\star}}(f(\lambda), r, s) \leq f\left(B C_{\tau, \tau^{\star}}(\lambda, r, s)\right.$. Conversely, suppose that for every fuzzy set $\lambda \in I^{X}, B C_{\tau, \tau^{\star}}(f(\lambda), r, s) \leq f\left(B C_{\tau, \tau^{\star}}(\lambda, r, s)\right)$. Since $\lambda$ is an $(r, s)$-fuzzy $b$-closed set, $B C_{\tau, \tau^{\star}}(\lambda, r, s)=\lambda$. Therefore, $f\left(B C_{\tau, \tau^{\star}}(\lambda, r, s)\right)=f(\lambda) \leq B C_{\tau, \tau^{\star}}(\lambda, r, s)$. Hence, $f(\lambda)=f\left(B C_{\tau, \tau^{\star}}(\lambda, r, s)\right)=B C_{\tau, \tau^{\star}}(f(\lambda), r, s)$, which implies that $f(\lambda) \in I^{Y}$ is an $(r, s)$-fuzzy $b$-closed set, that is, $f$ is double fuzzy $b$-closed function.

Proposition 4.4. If $f:\left(X, \tau_{1}, \tau_{1}^{\star}\right) \rightarrow\left(Y, \tau_{2}, \tau_{2}^{\star}\right)$ is a double fuzzy b-irresolute funtion, then $B C_{\tau, \tau^{\star}}\left(f^{-1}(\lambda), r, s\right)$ is zero for every $(r, s)$-fuzzy $b$-open set $A \in I^{Y}$.

Proof. Let $\lambda$ be an $(r, s)$-fuzzy $b$-open set in $I^{Y}$. Then $f^{-1}(\lambda) \in I^{X}$ is $(r, s)$-fuzzy $b$-open. Therefore, $B C_{\tau, \tau^{*}}\left(f^{-1}(\lambda), r, s\right)=f^{-1}(\lambda)$. By definition, $B C_{\tau, \tau^{\star}}\left(f^{-1}(\lambda), r, s\right)=f^{-1}(\lambda)-B C_{\tau, \tau^{\star}}\left(f^{-1}(\lambda), r, s\right)$. Hence, $B E_{\tau, \tau^{\star}}\left(f^{-1}(\lambda), r, s\right)=f^{-1}(\lambda)-f^{-1}(\lambda)=\overline{0}$.

Definition 4.5. A double fuzzy topological space $\left(X, \tau, \tau^{\star}\right)$ is said to be a double fuzzy $b-T_{\frac{1}{2}}$ space if each $(r, s)$-fuzzy b-closed set is $(r, s)$-fuzzy closed set in $X$.

Proposition 4.6. For any double fuzzy topological spaces $\left(X, \tau_{1}, \tau_{1}^{\star}\right)$ and $\left(Y, \tau_{2}, \tau_{2}^{\star}\right)$ if the map $f:\left(X, \tau, \tau^{\star}\right) \rightarrow\left(Y, \tau_{2}, \tau_{2}^{\star}\right)$ is a bijective, the following statements are equivalent:

1. $f$ and $f^{-1}$ are double fuzzy b-irresolute.
2. $f$ is double fuzzy b-continuous and double fuzzy b-open.
3. $f$ is double fuzzy b-continuous and double fuzzy b-closed.
4. $\left.f\left(B C_{\tau, \tau^{*}}(\lambda, r, s)\right)=B C_{\tau, \tau^{*}}(f(\lambda), r, s)\right)$ for every $\lambda \in I^{X}$ :

Proof. (1) $\Rightarrow$ (2): Suppose $\mu$ is an $(r, s)$-fuzzy $b$-open set in $X$. Since $f^{-1}$ is double fuzzy $b$-irresolute, $\left(f^{-1}\right)^{-1}(\mu) \in I^{Y}$ is $(r, s)$-fuzzy $b$-open set, so $f$ is double fuzzy $b$-open. Now, let $\gamma \in I^{Y}$ be an $(r, s)$-fuzzy $b$-open set, then it is an $(r, s)$-fuzzy $b$-open. But by hypothesis, $f^{-1}$ are double fuzzy $b$-irresolute, then $f^{-1}(\gamma) \in I^{X}$ is an $(r, s)$-fuzzy $b$-open, that is $f$ is double fuzzy $b$-continuous.
(2) $\Rightarrow$ (3): Let $\lambda \in I^{X}$ is an $(r, s)$-fuzzy $b$-closed set, then $1-\lambda \in I^{X}$ is an $(r, s)$-fuzzy $b$-open set. By $(2), 1-f(\lambda)=f(1-\lambda)$ is an $(r, s)$-fuzzy $b$-open set in $I^{Y}$, which implies that $f(\lambda)$ is an $(r, s)$-fuzzy $b$-closed set. Hence $f$ is a double fuzzy $b$-closed function.
(3) $\Rightarrow$ (4): Let $\lambda \in I^{X}$, we have $\lambda \leq f^{-1}(f(\lambda))$ and $\left.f(\lambda) \leq B C_{\tau_{2}, \tau_{2}^{*}}(f(\lambda), r, s)\right)$. Then $\lambda \leq f^{-1}\left(B C_{\tau_{2}, \tau_{2}^{*}}(f(\lambda), r, s)\right.$. Now, $B C_{\tau_{2}, \tau_{2}^{*}}(f(\lambda), r, s) \in$ $I^{Y}$ is an $(r, s)$-fuzzy $b$-closed set. But $\left(Y, \tau_{2}, \tau_{2}^{\star}\right)$ is a double fuzzy $b-T_{\frac{1}{2}}$ space, and $B C_{\tau_{2}, \tau_{2}}(f(\lambda), r, s)$ is an $(r, s)$-fuzzy closed set, then $B C_{\tau_{2}, \tau_{2}^{*}}(f(\lambda), r, s) \in I^{Y}$ is an $(r, s)$-fuzzy $b$-closed set. Since $f$ is double fuzzy $b$-continuous, $f^{-1}\left(B C_{\tau_{2}, \tau_{2}^{*}}(f(\lambda), r, s)\right)$ is an $(r, s)$-fuzzy $b$-closed set, which implies $B C_{\tau, \tau^{*}}\left(f^{-1}\left(B C_{\tau, \tau^{\star}}(f(\lambda), r, s), r, s\right)=f^{-1}\left(B C_{\tau, \tau^{\star}}(f(\lambda), r, s)\right)\right.$. But $B C_{\tau, \tau^{*}}(f(\lambda), r, s) \leq B C_{\tau, \tau^{\star}}\left(f^{-1}\left(B C_{\tau, \tau^{*}}(f(\lambda), r, s)\right), r, s\right)$ and $B C_{\tau, \tau^{\star}}(f(\lambda), r, s) \leq f^{-1}\left(B C_{\tau, \tau^{\star}}(f(\lambda), r, s)\right)$. Then $f\left(B C_{\tau, \tau^{\star}}(\lambda, r, s)\right) \leq B C_{\tau, \tau^{\star}}(f(\lambda), r, s)$. Also, $B C_{\tau, \tau^{\star}}(f(\lambda), r, s) \leq f\left(B C_{\tau, \tau^{\star}}(\lambda, r, s)\right)$. Hence $f\left(B C_{\tau, \tau^{\star}}(\lambda, r, s)\right)=B C_{\tau, \tau^{\star}}(f(\lambda), r, s)$.
(4) $\Rightarrow$ (1): $\lambda \in I^{X}$, by hypothesis of (4), $f\left(B C_{\tau, \tau^{\star}}(\lambda, r, s)=B C_{\tau, \tau^{\star}}(f(\lambda), r, s)\right.$. Therefore, $f\left(B C_{\tau, \tau^{\star}}(\lambda, r, s) \leq B C_{\tau, \tau^{\star}}(f(\lambda), r, s)\right.$. Then, $f$ is a double fuzzy $b$-irresolute function. Now, suppose $B \in I^{Y}$ is $(r, s)$-fuzzy $b$-closed. Then $\left.B C_{\tau, \tau^{\star}}(\mu, r, s)=B\right) f\left(B C_{\tau, \tau^{*}}(\mu, r, s)\right)=f(\mu)$. But by (4), $B C_{\tau, \tau^{\star}}(f(\mu), r, s)=f\left(B C_{\tau, \tau^{*}}(\mu, r, s)\right)$. Therefore, $B C_{\tau, \tau^{\star}}(f(\mu), r, s)=f(\mu)$. Then $f(\mu) \in I^{Y}$ is an $(r, s)$-fuzzy $b$-closed set. Therefore, $f^{-1}$ is double fuzzy $b$-irresolute.

## 5. Interrelations

In this section, we present the relationship among the concepts introduced in Sections 3 and 4.
Proposition 5.1. If $A$ is an $(r, s)$-fuzzy b-closed set in a double fuzzy topological space $\left(X, \tau, \tau^{\star}\right)$, then

1. $B E_{\tau, \tau^{*}}(\lambda, r, s)=B E_{\tau, \tau^{\star}}(\lambda, r, s)$.
2. $B E_{\tau, \tau^{\star}}(\lambda, r, s)=1-A$.

Proof. (1). Let $A \in I^{X}$ be an $(r, s)$-fuzzy $b$-closed, we have $B C_{\tau, \tau^{*}}(\lambda, r, s)=A$. But by definiton $B B_{\tau, \tau^{*}}(\lambda, r, s)=A-B I_{\tau, \tau^{\star}}(\lambda, r, s)=$ $B C_{\tau, \tau^{\star}}(\lambda, r, s)-B I_{\tau, \tau^{\star}}(\lambda, r, s)=B F_{\tau, \tau^{\star}}(\lambda, r, s)$. Therefore $B B_{\tau, \tau^{\star}}(\lambda, r, s)=B F_{\tau, \tau^{\star}}(\lambda, r, s)$.
(2). Let $A$ be an $(r, s)$-fuzzy $b$-closed set, we get $B C_{\tau, \tau^{\star}}(\lambda, r, s)=A$. Then $B I_{\tau, \tau^{*}}(1-\lambda, r, s)=1-A$. Therefore by definition, $B E_{\tau, \tau^{\star}}(\lambda, r, s)=$ $1-A$.

Proposition 5.2. For a function $f:\left(X, \tau_{1}, \tau_{2}^{\star}\right) \rightarrow\left(Y, \tau_{2}, \tau_{2}^{\star}\right)$, the following hold:

1. If $f$ is any function, then $B E_{\tau, \tau^{\star}}\left(f^{-1}(\lambda), r, s\right) \leq B C_{\tau, \tau^{\star}}\left(1-f^{-1}(\lambda), r, s\right)$ for each fuzzy set $A \in I^{Y}$.
2. If $f$ is a double fuzzy b-continuous function, then for every $(r, s)$-fuzzy b-closed set $A \in I^{Y}$, we have $B E_{\tau, \tau^{\star}}\left(f^{-1}(\lambda), r, s\right)=$ $B E_{\tau, \tau^{\star}}\left(f^{-1}(\lambda), r, s\right)$.

Proof. (1). Let $A \in I^{Y}$. Then by definition $B E_{\tau_{1}, \tau_{1}^{\star}}\left(f^{-1}(\lambda), r, s\right)=B I_{\tau_{1}, \tau_{1}^{*}}\left(1-f^{-1}(\lambda), r, s\right) \leq 1-f^{-1}(\lambda)$. Also, $B E_{\tau_{1}, \tau_{1}^{*}}\left(f^{-1}(\lambda), r, s\right) \leq$ $1-B I_{\tau_{1}, \tau_{1}^{\star}}\left(f^{-1}(\lambda), r, s\right)=B C_{\tau_{1}, \tau_{1}^{\star}}\left(1-f^{-1}(\lambda), r, s\right)$. Therefore, $B E_{\tau_{1}, \tau_{1}^{\star}}\left(f^{-1}(\lambda), r, s\right) \leq B C_{\tau_{1}, \tau_{1}^{\star}}\left(1-f^{-1}(\lambda), r, s\right)$.
(2). Let $A$ be an $(r, s)$-fuzzy $b$-closed set in $Y$. Then, $f^{-1}(\lambda)$ is an $(r, s)$-fuzzy $b$-closed set in $X$. Therefore, $B C_{\tau_{1}, \tau_{1}^{\star}}\left(f^{-1}(\lambda), r, s\right)=$ $f^{-1}(\lambda)$. Hence, $B F_{\tau_{1}, \tau_{1}^{\star}}\left(f^{-1}(\lambda), r, s\right)=B C_{\tau_{1}, \tau_{1}^{\star}}\left(f^{-1}(\lambda), r, s\right)-B I_{\tau_{1}, \tau_{1}^{\star}}\left(f^{-1}(\lambda), r, s\right)=f^{-1}(\lambda)-B I_{\tau_{1}, \tau_{1}^{\star}}\left(f^{-1}(\lambda), r, s\right)=B E_{\tau_{1}, \tau_{1}^{\star}}\left(f^{-1}(\lambda), r, s\right)$. Therefore, $B F_{\tau_{1}, \tau_{1}^{*}}\left(f^{-1}(\lambda), r, s\right)=B E_{\tau, \tau_{1}^{*}}\left(f^{-1}(\lambda), r, s\right)$.

Definition 5.3. A double fuzzy topological space $\left(X, \tau, \tau^{\star}\right)$ is said to be a double fuzzy $b-T_{\frac{1}{2}}$ space if each $(r, s)$-fuzzy b-closed set is $(r, s)$-fuzzy closed set in $X$.

Proposition 5.4. If $\left(X, \tau, \tau^{\star}\right)$ is a double fuzzy $b-T_{\frac{1}{2}}$ space and $A$ is an $(r, s)$-fuzzy b-closed set in $X$, then the following statements hold:

1. $B_{\tau, \tau^{\star}}(\lambda, r, s)=B F_{\tau, \tau^{\star}}(\lambda, r, s)$,
2. $B E_{\tau, \tau^{\star}}(\lambda, r, s)=\overline{1}-\lambda$.

Proof. (1). Let $\lambda \in I^{X}$ be an $(r, s)$-fuzzy $b$-closed set. Then $\lambda$ is an $(r, s)$-fuzzy closed set in $X$, which implies $B_{\tau, \tau^{\star}}(\lambda, r, s)=\lambda$. But by definition, $B_{\tau, \tau^{\star}}(\lambda, r, s)=\lambda-B I_{\tau, \tau^{\star}}(\lambda, r, s)=B C_{\tau, \tau^{\star}}(\lambda, r, s)-B I_{\tau, \tau^{\star}}(\lambda, r, s)=B F_{\tau, \tau^{\star}}(\lambda, r, s)$.
(2). By definition, $B E_{\tau, \tau^{\star}}(\lambda, r, s)=B I_{\tau, \tau^{\star}}(\lambda, r, s)=\overline{1}-\lambda$.

Proposition 5.5. If $\left(X, \tau, \tau^{\star}\right)$ is a double fuzzy $b-T_{\frac{1}{2}}$ space and $f:\left(X, \tau_{1}, \tau_{1}^{\star}\right) \rightarrow\left(Y, \tau_{2}, \tau_{2}^{\star}\right)$ is a fuzzy b-irresolute function. Then for an $(r, s)$-fuzzy $b$-closed set $\lambda$ in $Y$, then the following statements hold:

1. $B_{\tau_{1}, \tau_{1}^{*}}\left(f^{-1}(\lambda), r, s\right)=B F_{\tau_{1}, \tau_{1}^{*}}\left(f^{-1}(\lambda), r, s\right)$,
2. $B E_{\tau_{1}, \tau_{1}^{1}}\left(f^{-1}(\lambda), r, s\right)=\overline{1}-f^{-1}(\lambda)$.

Proof. (1). Suppose $\lambda \in I^{Y}$ is an $(r, s)$-fuzzy $b$-closed set. Then $f^{-1}(\lambda)$ is an $(r, s)$-fuzzy $b$-closed set in $X$. Since by hypothesis, $\left(X, \tau, \tau^{\star}\right)$ is double fuzzy $b-T_{\frac{1}{2}}$ space, $f^{-1}(\lambda)$ is an $(r, s)$-fuzzy closed set in $X$. Then $B_{\tau_{1}, \tau_{1}^{\star}}\left(f^{-1}(\lambda), r, s\right)=f^{-1}(\lambda)$. Also $B_{\tau_{1}, \tau_{1}^{*}}\left(f^{-1}(\lambda), r, s\right)=f^{-1}(\lambda)-$ $B_{\tau_{1}, \tau_{1}^{\star}}\left(f^{-1}(\lambda), r, s\right)=B_{\tau_{1}, \tau_{1}^{\star}}\left(f^{-1}(\lambda), r, s\right)-B_{\tau_{1}, \tau_{1}^{\star}}\left(f^{-1}(\lambda), r, s\right)=B_{\tau_{1}, \tau_{1}^{\star}}\left(f^{-1}(\lambda), r, s\right)$. Hence $B_{\tau_{1}, \tau_{1}^{\star}}\left(f^{-1}(\lambda), r, s\right)=B_{\tau_{1}, \tau_{1}^{\star}}\left(f^{-1}(\lambda), r, s\right)$. (2). By definition $B_{\tau_{1}, \tau_{1}^{\star}}\left(f^{-1}(\lambda), r, s\right)=B_{\tau_{1}, \tau_{1}^{\star}}\left(1-f^{-1}(\lambda), r, s\right)=1-f^{-1}(\lambda)$.

Proposition 5.6. If $\left(X, \tau, \tau^{\star}\right)$ is a double fuzzy $b-T_{\frac{1}{2}}$ space and $f:\left(X, \tau_{1}, \tau_{1}^{\star}\right) \rightarrow\left(Y, \tau_{2}, \tau_{2}^{\star}\right)$ is a fuzzy $b$-closed function. The for an $(r, s)$-fuzzy $b$-closed set $\lambda$ in $X$, then the following statements hold:

1. $B \tau_{\tau_{2}, \tau_{2}^{*}}(f(\lambda), r, s)=B F_{\tau_{2}, \tau_{2}^{*}}(f(\lambda), r, s)$,
2. $B E_{\tau_{2}, \tau_{2}^{*}}(f(\lambda), r, s)=\overline{1}-f(\lambda)$.

Proposition 5.7. If $\left(X, \tau_{1}, \tau_{1}^{\star}\right)$ is a double fuzzy $b-T_{\frac{1}{2}}$ space and $f:\left(X, \tau_{1}, \tau_{1}^{\star}\right) \rightarrow\left(Y, \tau_{2}, \tau_{2}^{\star}\right)$ and $g:\left(Y, \tau_{2}, \tau_{2}^{\star}\right) \rightarrow\left(Z, \tau_{3}, \tau_{3}^{\star}\right)$ are fuzzy $b$-irresolute function. Then for an $(r, s)$-fuzzy b-closed set $\lambda \in I^{Z}$, then the following statements hold:

1. $B_{\tau_{1}, \tau_{1}^{\star}}\left((g \circ f)^{-1}(\lambda), r, s\right)=B F_{\tau_{1}, \tau_{1}^{\star}}\left((g \circ f)^{-1}(\lambda), r, s\right)$,
2. $B E_{\tau_{1}, \tau_{1}^{*}}\left((g \circ f)^{-1}(\lambda), r, s\right)=\overline{1}-(g \circ f)^{-1}(\lambda)$.

Proof. (1). Let $\lambda$ be a $(r, s)$-fuzzy $b$-closed set in $Z$. Then by hypothesis of $g$ is fuzzy $b$-irresolute, $g^{-1}(\lambda) \in I^{Y}$ is a $(r, s)$-fuzzy $b$-closed set. Also, $f$ is fuzzy $b$-irresolute, $f^{-1}\left(g^{-1} 1(\lambda)\right) \in I^{X}$ is an $(r, s)$-fuzzy $b$-closed set. Thus $(g \circ f)^{-1}(\lambda) \in I^{X}$ is a $(r, s)$-fuzzy $b$-closed. Since $\left(X, \tau_{1}, \tau_{1}^{\star}\right)$ is double fuzzy $b-T_{\frac{1}{2}}$ space, $(g \circ f)^{-1}(\lambda)$ is a $(r, s)$-fuzzy closed in $X$. So by definition, we have $B_{\tau_{1}, \tau_{1}^{*}}\left((g \circ f)^{-1}(\lambda), r, s\right)=$ $(g \circ f)^{-1}(\lambda)-G I_{\tau_{1}, \tau_{1}^{*}}\left((g \circ f)^{-1}(\lambda) ; r ; s\right)=B C_{\tau_{1}, \tau_{1}^{*}}\left((g \circ f)^{-1}(\lambda), r, s\right)-B I_{\tau_{1}, \tau_{1}^{*}}\left((g \circ f)^{-1}(\lambda) ; r ; s\right)=B F_{\tau_{1}, \tau_{1}^{*}}\left((g \circ f)^{-1}(\lambda), r, s\right)$.
(2). By definition, $G E_{\tau_{1}, \tau_{1}^{\tau}}\left((g \circ f)^{-1}(\lambda), r, s\right)=B I_{\tau_{1}, \tau_{1}^{*}}\left(\overline{1}-(g \circ f)^{-1}(\lambda), r, s\right)=\overline{1}-B C_{\tau_{1}, \tau_{1}^{\tau}}\left((g \circ f)^{-1}(\lambda), r, s\right)=\overline{1}-(g \circ f)^{-1}(\lambda)$, since $(g \circ f)^{-1}(\lambda)$ is a $(r, s)$-fuzzy closed set. Therefore, $B_{\tau_{1}, \tau_{1}^{\tau}}\left((g \circ f)^{-1}(\lambda), r, s\right)=\overline{1}-(g \circ f)^{-1}(\lambda)$.

Example 5.8. Let $X=\{a, b\}$ and $f:\left(X, \tau_{1}, \tau_{1}^{\star}\right) \rightarrow\left(Y, \tau_{2}, \tau_{2}^{\star}\right)$ be the identity function. Define the fuzzy subsets $\lambda_{1}, \lambda_{2}, \lambda_{3}, \mu_{1}$ and $\mu_{3}$ as follows:

$$
\begin{array}{ll}
\lambda_{1}(a)=0.67, & \lambda_{1}(b)=0.64: \quad \lambda_{2}(a)=0.67, \quad \lambda_{2}(b)=0.35 ; \lambda_{3}(a)=0.33, \quad \lambda_{3}(b)=0.34 ; \quad \mu_{1}(a)=0.75, \quad \mu_{1}(b)=0.67 ; \\
\mu_{2}(a)=0.67, & \mu_{2}(b)=0.49 .
\end{array}
$$

Let $\tau_{1}, \tau_{1}^{\star}: I^{X} \rightarrow I$ and $\tau_{2}, \tau_{2}^{\star}: I^{X} \rightarrow I$ defined as follows:
$\tau_{1}(\lambda)=\left\{\begin{array}{ll}1 & \text { if } \lambda=\overline{0} \text { or } \overline{1} \\ \frac{1}{4} & \text { if } \lambda=\lambda_{1} \\ \frac{1}{2} & \text { if } \lambda=\lambda_{2} \\ \frac{3}{4} & \text { if } \lambda=\lambda_{3} \\ 0 & \text { otherwise, }\end{array} \quad \tau_{1}^{\star}(\lambda)=\left\{\begin{array}{ll}0 & \text { if } \lambda=\overline{0} \text { or } \overline{1} \\ \frac{3}{4} & \text { if } \lambda=\lambda_{1} \\ \frac{1}{2} & \text { if } \lambda=\lambda_{2} \\ \frac{1}{4} & \text { if } \lambda=\lambda_{3} \\ 1 & \text { otherwise, }\end{array} \quad \tau_{2}(\lambda)=\left\{\begin{array}{ll}1 & \text { if } \lambda=\overline{0} \text { or } \overline{1} \\ \frac{1}{4} & \text { if } \lambda=\mu_{1} \\ \frac{1}{8} & \text { if } \lambda=\mu_{2} \\ 0 & \text { otherwise, }\end{array} \quad \tau_{2}^{\star}(\lambda)= \begin{cases}0 & \text { if } \lambda=\overline{0} \text { or } \overline{1} \\ \frac{1}{8} & \text { if } \lambda=\mu_{1} \\ \frac{1}{4} & \text { if } \lambda=\mu_{2} \\ 1 & \text { otherwise. }\end{cases}\right.\right.\right.$
Then the identity function $f:\left(X, \tau_{1}, \tau_{1}^{\star}\right) \rightarrow\left(X, \tau_{2}, \tau_{2}^{\star}\right)$ is double fuzzy b-irresolute but $\left(X, \tau_{1}, \tau_{1}^{\star}\right)$ is not a double fuzzy b- $T_{\frac{1}{2}}$ space.

Example 5.9. Let $X=\{a, b\}$ and $f:\left(X, \tau_{1}, \tau_{1}^{\star}\right) \rightarrow\left(Y, \tau_{2}, \tau_{2}^{\star}\right)$ be the identity function. Define the fuzzy subsets $\lambda_{1}, \lambda_{2}, \lambda_{3}, \mu_{1}$ and $\mu_{3}$ are as in the example 5.9: Let $\tau_{1}, \tau_{1}^{\star}: I^{X} \rightarrow I$ and $\tau_{2}, \tau_{2}^{\star}: I^{X} \rightarrow I$ defined as follows:
$\tau_{1}(\lambda)=\left\{\begin{array}{ll}1 & \text { if } \lambda=\overline{0} \text { or } \overline{1} \\ \frac{1}{4} & \text { if } \lambda=\mu_{1} \\ \frac{1}{8} & \text { if } \lambda=\mu_{2} \\ 0 & \text { otherwise },\end{array} \quad \tau_{1}^{\star}(\lambda)=\left\{\begin{array}{ll}0 & \text { if } \lambda=\overline{0} \text { or } \overline{1} \\ \frac{1}{8} & \text { if } \lambda=\mu_{1} \\ \frac{1}{4} & \text { if } \lambda=\mu_{2} \\ 1 & \text { otherwise, }\end{array} \quad \tau_{2}(\lambda)=\left\{\begin{array}{ll}1 & \text { if } \lambda=\overline{0} \text { or } \overline{1} \\ \frac{1}{4} & \text { if } \lambda=\lambda_{1} \\ \frac{1}{2} & \text { if } \lambda=\lambda_{2} \\ \frac{3}{4} & \text { if } \lambda=\lambda_{3} \\ 0 & \text { otherwise, }\end{array} \quad \tau_{2}^{\star}(\lambda)= \begin{cases}0 & \text { if } \lambda=\overline{0} \text { or } \overline{1} \\ \frac{3}{4} & \text { if } \lambda=\lambda_{1} \\ \frac{1}{2} & \text { if } \lambda=\lambda_{2} \\ \frac{1}{4} & \text { if } \lambda=\lambda_{3} \\ 1 & \text { otherwise. }\end{cases}\right.\right.\right.$
Then the identity function $f:\left(X, \tau_{1}, \tau_{1}^{\star}\right) \rightarrow\left(Y, \tau_{2}, \tau_{2}^{\star}\right)$ is double fuzzy b-closed but $\left(X, \tau_{1}, \tau_{1}^{\star}\right)$ is not a double fuzzy b- $T_{\frac{1}{2}}$ space.
Example 5.10. Let $X=\{a, b\}$ and $f:\left(X, \tau_{1}, \tau_{1}^{\star}\right) \rightarrow\left(X, \tau_{2}, \tau_{2}^{\star}\right)$ be the identity function. The fuzzy subsets $\lambda_{1}, \lambda_{2}, \lambda_{3}, \mu_{1}$ and $\mu_{3}$ as defined are as in Example 5.9 and $\gamma_{1}$ and $\gamma_{2}$ as follows:

$$
\gamma_{1}(a)=0.75, \quad \gamma_{1}(b)=0.75: \quad \gamma_{2}(a)=0.67, \quad \gamma_{2}(b)=0.40 .
$$

Let $\tau_{1}, \tau_{1}^{\star}: I^{X} \rightarrow I, \tau_{2}, \tau_{2}^{\star}: I^{X} \rightarrow I$ and $\tau_{3}, \tau_{3}^{\star}: I^{X} \rightarrow I$ defined as follows:
$\tau_{1}(\lambda)=\left\{\begin{array}{ll}1 & \text { if } \lambda=\overline{0} \text { or } \overline{1} \\ \frac{1}{4} & \text { if } \lambda=\lambda_{1} \\ \frac{1}{2} & \text { if } \lambda=\lambda_{2} \\ \frac{3}{4} & \text { if } \lambda=\lambda_{3} \\ 0 & \text { otherwise },\end{array} \quad \tau_{1}^{\star}(\lambda)=\left\{\begin{array}{ll}0 & \text { if } \lambda=\overline{0} \text { or } \overline{1} \\ \frac{3}{4} & \text { if } \lambda=\lambda_{1} \\ \frac{1}{2} & \text { if } \lambda=\lambda_{2} \\ \frac{1}{4} & \text { if } \lambda=\lambda_{3} \\ 1 & \text { otherwise, }\end{array} \quad \tau_{2}(\lambda)=\left\{\begin{array}{ll}1 & \text { if } \lambda=\overline{0} \text { or } \overline{1} \\ \frac{1}{4} & \text { if } \lambda=\mu_{1} \\ \frac{1}{8} & \text { if } \lambda=\mu_{2} \\ 0 & \text { otherwise },\end{array} \quad \tau_{2}^{\star}(\lambda)= \begin{cases}0 & \text { if } \lambda=\overline{0} \text { or } \overline{1} \\ \frac{1}{8} & \text { if } \lambda=\mu_{1} \\ \frac{1}{4} & \text { if } \lambda=\mu_{2} \\ 1 & \text { otherwise },\end{cases}\right.\right.\right.$

$$
\tau_{3}(\lambda)=\left\{\begin{array}{lc}
1 & \text { if } \lambda=\overline{0} \text { or } \overline{1} \\
\frac{1}{4} & \text { if } \lambda=\gamma_{1} \\
\frac{1}{8} & \text { if } \lambda=\gamma_{2} \\
0 & \text { otherwise, }
\end{array} \quad \tau_{3}^{\star}(\lambda)=\left\{\begin{array}{lc}
0 & \text { if } \lambda=\overline{0} \text { or } \overline{1} \\
\frac{1}{8} & \text { if } \lambda=\gamma_{1} \\
\frac{1}{4} & \text { if } \lambda=\gamma_{2} \\
1 & \text { otherwise. }
\end{array}\right.\right.
$$

Then the identity functions $f:\left(X, \tau_{1}, \tau_{1}^{\star}\right) \rightarrow\left(X, \tau_{2}, \tau_{2}^{\star}\right)$ and $g:\left(X, \tau_{2}, \tau_{2}^{\star}\right) \rightarrow\left(X, \tau_{3}, \tau_{3}^{\star}\right)$ are double fuzzy b-irresolute but $\left(X, \tau_{1}, \tau_{1}^{\star}\right)$ is not a double fuzzy $b-T_{\frac{1}{2}}$ space.

## Article Information

Acknowledgements: The authors would like to express their sincere thanks to the editor and the anonymous reviewers for their helpful comments and suggestions.
Author's contributions: All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.
Conflict of Interest Disclosure: No potential conflict of interest was declared by the author.
Copyright Statement: Authors own the copyright of their work published in the journal and their work is published under the CC BY-NC 4.0 license.

Supporting/Supporting Organizations: No grants were received from any public, private or non-profit organizations for this research.
Ethical Approval and Participant Consent: It is declared that during the preparation process of this study, scientific and ethical principles were followed and all the studies benefited from are stated in the bibliography.
Plagiarism Statement: This article was scanned by the plagiarism program. No plagiarism detected.
Availability of data and materials: Not applicable.

## References

[1] K. Atanassov, New operators defined over the intuitionistic fuzzy sets, Fuzzy Sets and Sysetms, 61, No. 2 (1993), 137-142
[2] C. L. Chang, Fuzzy topological spaces, Journal of Mathematical Analysis and Applications, 24, No. 1 (1968), 182-190.
[3] D. Coker, An introduction to fuzzy subspaces in intuitionistic topological spaces, J. Fuzzy Math., 4 (1996), 749-764.
[4] D. Coker, An introduction to intuitionistic fuzzy topological spaces, Fuzzy Sets and Systems, 88, No. 1 (1997), 81-89.
[5] M. Demirci, D. Coker, An introduction to intuitionistic fuzzytopological spaces in Sostak's sense, Busefal 67 (1996), 67-76.
[6] Fatimah. M. Mohammed, M. S. M. Noorani and A. Ghareeb, Generalized $b$-closed sets and $b$-open sets in double fuzzy topological spaces, AIP Conference Proceedings, 1602, (2015), 909-917.
[7] J. Gutierrez Garcia and S. E. Rodabaugh, Order-theoretic, topological, categorical re-dundancies of interval-valued sets, grey sets, vague sets, interval-valued; intuitionistic sets, intuitionistic fuzzy sets and topologies, Fuzzy Sets and Systems, 156, No. 3 (2005),445-484.
[8] E. P. Lee and Y. B. Im., Mated fuzzy topological spaces, Journal of fuzzy logic and intelligent systems, 11 (2001), 161-165.
[9] S. K. Samanta and T. K. Mondal, On intuitionistic gradation of openness, Fuzzy Sets and Systems, 131, No. 3 (2002), 323-336.
[10] L. A. Zadeh, Fuzzy sets, Information and Control, 8, No. 3 (1965), 338-353.

