Bursa Uludag University Journal of The Faculty of Engineering, Vol. 27, No. 2, 2022 RESEARCH

DOI: 10.17482/uumfd.1090766

PID TUNING WITH UP-TO-DATE METAHEURISTIC
ALGORITHMS

Fahri VATANSEVER
Emre HACIISKENDEROGLU

Received: 21.03.2022; revised: 19.04.2022; accepted: 23.05.2022

Abstract: Control of systems is very important in applications. For this purpose appropriate controllers
need to be designed. PIDs are the most popular controllers and there are traditional methods for their
design. In recent years, metaheuristic algorithms also have been used to tuning the PID coefficients. In
this study, an interactive graphical user interface program was designed, which makes the design of PID
type controllers with six up-to-date metaheuristic algorithms according to different performance criteria.
The controller coefficients can be tuned easily, quickly and effectively with this software tool that
performs single or comparative designs, provides numerical and graphical solutions, and enables detailed
analysis and synthesis.
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Giincel Metasezgisel Algoritmalarla PID Ayarlama

Oz: Uygulamalarda sistemlerin kontrolii son derece onemlidir. Bu amagla uygun denetleyicilerin
tasarlanmasi gerekmektedir. En popiiler denetleyicilerin baginda PID'ler gelmektedir ve bunlarin tasarimi
icin geleneksel yontemler mevcuttur. Son yillarda PID katsayilarinin ayarlanmasi igin metasezgisel
algoritmalardan da faydalanilmaktadir. Gergeklestirilen ¢aligmada PID tiirli denetleyicilerin tasarimini,
farkli performans kriterlerine goére alti giincel metasezgisel algoritma ile yapan etkilesimli grafiksel
kullanicr arayiiz progranu tasarlanmistir. Tekli veya karsilagtirmali tasarimlar gerceklestiren, sayisal ve
grafiksel ¢oziimler sunan, ayrintilt analiz ve sentezlere olanak saglayan bu yazilim aractyla denetleyici
katsayilarinin ayarlanmasi kolay, hizli ve etkin sekilde yapilabilmektedir.

Anahtar Kelimeler: Kontrol sistemleri, PID, metasezgisel algoritmalar, bilgisayar destekli miihendislik.

1. INTRODUCTION

One of the fundamental structures of the systems is the controllers. These structures ensure
that the related systems operate in the desired properties. For this purpose, controllers with very
different structures and properties have been developed, and the analysis and design of these
circuits is very important. Traditional PID (proportional-integral-derivative) is the popular
controller that frequently used in the industrial area. These controllers, which aim to reduce the
error by performing multiplication, integral and derivative functions, and thus keeping the
system response at the desired value, are mostly used as P, PI, PD and PID combinations.

The coefficients of PID controllers can be obtained both analytically and experimentally.
The most known and used methods are Ziegler-Nichols (Ziegler and Nichols, 1942), Cohen-
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Coon, Chien Hrones Reswick, Wang-Juang-Chan (Golnaraghi and Kuo, 2009; Nise, 2015; Xue
et al., 2007). By using time or frequency responses, appropriate controller coefficients can be
determined according to different criteria in these methods.

In parallel with the developments in technology, computer aided designs also have gained
wide application areas. There are many studies in the literature on the use of evolutionary,
heuristic and metaheuristic algorithms in controller design (Abushawish et al., 2020; Oladipo et
al., 2020; Rodriguez-Molina et al., 2020).

In this study, a software tool was designed to tuning PID coefficients with up-to-date
metaheuristic algorithms. This tool calculates (tunes) the P, PI, PD or PID controller
coefficients determined for user-defined feedback system with the desired up-to-date
metaheuristic algorithm (Aquila optimizer (Abualigah et al., 2021b), Archimedes optimization
(Hashim et al., 2021), Arithmetic optimization (Abualigah et al., 2021a), Bald eagle search
optimization (Alsattar et al., 2020), Seagull optimization (Dhiman and Kumar, 2019), Sparrow
search algorithm (Xue and Shen, 2020)) according to the selected performance criteria (IAE,
ISE, ITAE, ITSE). With this software tool, which generates many numerical and graphical
results for single and comparative designs, controller tunings can be made easily, quickly and
effectively.

This paper is organized as follows: In Section 2, PID controllers and used metaheuristic
algorithms are summarized. In Section 3, designed software tool with applications are given.
Finally, Section 4 contains conclusions.

2. MATERIALS AND METHODS
2.1. PID Controllers

The basic block diagram of a feedback system is given in Fig. 1. PIDs are one of the most
used classical/traditional controllers in applications. The general structure and equations of the
PID controller are given in Table 1, and its effects on the closed-loop system response are given
in Table 2. In addition, the fundamental performance criteria used in the design of control
systems are summarized in Table 3 (CTMS, 2022; Matlab, 2021; Vatansever and Sen, 2013).

Input Qutput
7 () m— _W G.(s) E} G(s) -T>(t)
Controller Controlled system
H(s) =
Feedback
Figure 1:

Block diagram of the classical feedback system

2.2. Used Metaheuristic Algorithms

The up-to-date metaheuristic algorithms used in the study are summarized in Table 4
(Abualigah et al., 2021a; Abualigah et al., 2021b; Alsattar et al., 2020; Dhiman and Kumar,
2019; Hashim et al., 2021; Xue and Shen, 2020).
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Table 1. The fundamental equations of PID controller

Kpe(t)

|

&

e(O)—t> K;fe(‘r)dr
0

d
N Knae(f)

Continuous-time

a(t) = Kpe(t) + K; J. e(t)dr + KD%e(t)
0

t
@ = K, <e(t) + %f e(r)dr + Td%e(t))

Kp: Proportional coefficient , K;: Integral coef. , K,: Derivative coef.
T;: Integral time , T,;: Derivative time

et (1)

Discrete-time

d[n] =K, <e[n] +%Z e[i] +%(e[n] —e[n— 1]))

T,: Sampling time

Transfer

function

K, Kps? + Kps + K,
Gc(s)=KP+?I+KDS=%

1
GC(S) = Kp (1 + E + TdS)
i

Table 2. The general effect of PID parameters on a closed-loop system response

Amplitude

T 6

¢ [# Risetime |
LY

System response

Kp K; Kp

Overshoot Increase Increase Decrease
Rise time Decrease Decrease Small effect
Settling time Small effect Increase Decrease
Steady-state

Y Decrease Decrease No effect
error

Time ()

0 Peaktime

Settling time

Table 3. Performance criteria (indices/indexes)

Performance criteria Equation MATLAB code
time=0:a:b; [y t]l=step(system,time);
o T = .
Integral of for i=1: lerllgth (t) .
absolute erTor IAE = | |e(t)|dt error (i)=1-y(i);
0 end
IAE=sum (abs (error));
time=0:a:b; [y t]l=step(system,time);
° for i=1l:length (t)
Integral of
g ISE = f e?(t)dt error (i)=1-y(i);
square error : end
error=error*error'; ISE=sum(error);
time=0:a:b; [y t]l=step(system,time);
Integral of for i=1:length(t)

time-absolute error

ITAE =ft|e(t)|dt

0

error (i)=abs (1-y(i))*t (i) ;
end
ITAE=sum(error) ;

Integral of
time-square error

=)

ITSE = f te?(t)dt

0

time=0:a:b; [y t]l=step(system,time);
for i=1:length(t)
error (i)=((1l-y(1))"2)*t(1);
end
ITSE=sum(error) ;
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Table 4. The used metaheuristic algorithms

Year | Inspiration Basic knowledge Pseudo-code
. The Aquila optimization algorithm steps (the | = Initialization
= process of catching the prey) are represented | = While (stopping criterion)
£ in four methods: o Calculate the fitness values
= ¢ The first method (expanded exploration): o Determine the best value
‘f‘:’ £ Selecting the search space by high soar » For each candidate solution
€ 5 with the vertical stoop. e Update the mean value of the current solution
"§_ 2021 é < The Isecond methgd (narrowed o Update the parameters
s 5 exploration): Contour flight with short « Update position (solution) with appropriate search
E £ glide attack. o strategies (expanded and narrowed exploration,
< 3 ¢ The third method (expanded exploitation): expanded and narrowed exploitation)
§ Low flight with slow descent attack. » end for
2 % The fourth method (narrowed end while
§ exploitation): Swooping by walk and grab | = Return the best solution
prey.
The Archimedes optimization algorithm mimics | = Initialization
g the principle of upward buoyancy applied to an | = Calculate the fitness values and determine best value
S object fully or partially immersed in fluid. This | = While (stopping criterion)
- = state is proportional to weight of the displaced o For each object
= @ fluid. In this algorithm the population's » Update parameters (density, volume, transfer and
s 3 individuals are the objects of different weights, density decreasing factors)
.§ E volumes,  accelerations and  positions » Update acceleration and normalize acceleration,
g 2021 § immersed in fluid. In algorithm's steps, the update position / Exploration phase |
8 3 density and volume of every object are » Update acceleration and normalize acceleration,
3 = updated. In addition, if the object collides with update direction flag, update position / Exploitation
-E 5 the neighbouring object, its acceleration is also phase /
;-3 5 updated. The new position of the object is o end for
3 determined by the updated density, volume o Calculate the fitness values for each object and
s and acceleration. determine the best value
2 end while
- = Return the best solution
oo The Arithmetic optimization algorithm steps are | = Initialization
SE represented in three phases like many other | = While (stopping criterion)
583 methods: o Calculate the fitness values and find the best solution
= ] % Initialization phase: Creating the set of o Update Math Optimizer Accelerated and Math
2= candidate solutions. Optimizer Probability
S T2 « Exploration phase: Randomly exploring o For each solution
T é&é the search space in several regions and » For each position
E s approaching finding a better solution v Generate random values
‘g’. 2021 g ® based on Division and Multiplication. v'Apply relevant operators (/ or *) according to
o g 5 . «+ Exploitation phase: Exploring the search condition and update solution with related rules /
‘g 582 area deeply on several dense regions Exploration phase /
< c ;7;1% and approaching finding a better solution v'Apply relevant operators (- or +) according to
= e Z g based on Subtraction and Addition. condition and update solution with related rules /
o 8 Exploitation phase /
=8
£ ‘g > end for
° S o end for
257F end while
FoE = Return the best solution
= = In the bald eagle search optimization algorithm, | = Initialization
< g 2 hunting takes place in three stages: = Calculate the fitness values of initial point
=2 2w < The first stage (selecting space): | = While (stopping criterion)
N é ®© Selecting the space with the most prey (in o Foreach point / Select stage /
£ =38 terms of amount of food). > |dentify and select the best area for food
s = § % The second stage (searching in space): o end for
-§ 2020 o Prey search movements (different o Foreach point / Search stage /
S £3 directions within a spiral space for » Evaluate the new position for hunting
- 2w = acceleration) within the selected space. o end for
> gi‘g % The third stage (swooping): Swinging o For each point / Swooping stage /
- = ‘g ks from the best position identified to their » Use the new position to swoop towards the prey
s 235 target prey. o end for
|_“E’ E § end while

= Return the best solution
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> The seagull optimization algorithm steps are | = Initialization
S represented in two stages: = While (stopping criterion)
S § . % The migration (exploration) stage: The o Calculate the fitness values of each search agent
T © :g’ group of seagulls moves satisfying three o Generate random parameters / Migration behaviour /
E (E; S conditions  (avoiding the collisions, o Generate the spiral behaviour during migration /
‘g’. 2019 | _ p movement towards best neighbour's Attacking behaviour |
= 25 direction, remain close to the best search o Calculate the distance
= o
=) 53 agent). o Compute related planes
] € = « The attacking (exploitation) stage: Attack o Update position of search agent
g the prey with spiral movements in the air. end while
- = Return the best solution
- The bionic principles (foraging strategy ant the | = Initialization
-(% anti-predation behaviours) of Sparrow Search | = While (stopping criterion)
3 Algorithm are as follows: o Rank the fitness values, find the current best and worst
> % The foraging strategy: There are two individual
E S behaviour strategies (the discoverer's and o Generate alarm value
-‘g‘ g the joiner's). As the leader of the o For each producer
E=) © population, the discoverer discovers the » Update the sparrow's location
= 2 foraging area and specific direction for all. o end for
§ 2020 g . The joiner usually follows the discoverer. o For each sparrow
3 “gr E9 In addition, to increase their predation » Update the sparrow's location
H 5 % rate, some joiners will follow the o end for
s B & discoverer for food. o For each sparrow who perceive the danger
& 25 ++ Anti-predation behaviour: The population » Update the sparrow's location
%‘ % conducts anti-predation behaviours in o end for
S3 E case of danger. o Get the current new location and update it, if necessary
L5 end while
- e = Retumn the best solution

3. DESIGNED TOOL and APPLICATIONS

In this study, a software tool was designed using MATLAB App Designer (Matlab, 2021).
The main screen of this tool is given in Fig. 2. On this screen, when type of controller is
determined by checking the related checkbox, the block diagram of the system is displayed and
the required values (transfer function coefficients of controlled system and feedback) are
entered. PID coefficients are tuned/calculated by selecting the metaheuristic algorithm and
performance criteria. When the "Metaheuristic algorithm™ type is selected, the "Parameters"
window appears and the algorithm parameters are entered or changed. Finally, the performance
criterion is selected. As a result of the analysis, time domain response (step response) - together
with their parameters (maximum overshoot; peak, rise and settling times; steady state response
and error) - is displayed on the screen. The basic flowchart of this process is given in Fig. 3.

As a first application, PI controller design which will be performed for the system with
transfer function is given in Eq. (1) (Matlab, 2021). The steps of the design process using
Arithmetic Optimization according to ITAE performance criteria are given in Fig. 4. The
selection of controller type, the input of controlled system and feedback system transfer
function coefficients, and selection of performance criteria are shown in Fig.4a. Entering upper
and lower bounds/limits with the "Bounds" option in the "Settings" menu or the "Bounds"
toolbar icon is given in Fig. 4b. The entering or changing of algorithm parameters by using the
"Algorithm parameters™ option in the "Settings" menu or by selecting from the "Metaheuristic
algorithm™ drop-down box is given in the Fig. 4c. The result screen including the designed
controller coefficients, reference and system step response graphs and parameters is shown in
Fig. 4d.

1
$3+3s2+3s+1

G(s) = )
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8 . PID tuning with metaheuristics ..
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Figure 4:
The steps of the design process for first application

As a second application, PID controller design will be performed for the system with
transfer function given in Eq. (2) (CTMS, 2022). The design is realized by using Aquila
optimizer with ITSE criteria. The result screen is shown in Fig. 5a. Also a submenu (Fig. 5b) is
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opened by right-clicking on the step response graph. If "Comparative responses” is selected,
system responses with and without controller are shown in a separate window (Fig. 5c)
comparatively. Thus, the effect of the designed controller on the system can be clearly seen. If
"Custom tuning" is selected, the screen in which the relevant coefficient values can be changed
appears (Fig. 5d). In this window where individual or consecutive comparative responses can be
observed, the effects of the coefficients on the system response can be examined (Fig. 5e).
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Figure 5:
The screenshots for second application
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As a third application, comparative PID controller design will be performed for the system
with transfer function given in Eq. (3) (Golnaraghi and Kuo, 2009).

2718000000
s(s+400.26)(s+3008)

G(s) =

©)

The steps of the design process using selected metaheuristic algorithms to IAE performance
criteria are given in Fig. 6. When the "Comparative™ option is selected in the "Metaheuristic
algorithm" menu, the selection window is opened and the algorithms to be compared are
selected (Fig. 6b). After determining the algorithms to be used and adjusting the parameters if it
is desired, the window with the comparative results appears (Fig. 6¢). In this window, the
controller coefficients and the unit step response parameters of the systems with these
controllers are given in tables. Also comparative step responses are provided.
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@ .. Comparative PID design s | S

PID coefficients Time-domain response parameters

Kp Ki Kd Peak time (s) Rise time (s) Settling time (s) | Maximum overshoot (%) | Steady state response | Steady state eror

Aquila optimizer 02284 5733 | 12496e-04 Aquila optimizer 0.0077 0.0278 218415 1.0051 -0.0051

Arithmetic optit 7.98776-04 Arithmetic 0.0045 0.0067 41038 1.0116 00116
Bald eagle search 020 1.1400e-05 Bald eagle search optimization 0.0080 0.0336 296623 1.0028 -0.0029
Seagull 5748 | 54710204 Seagull 0.0048 0.0088 114129 1.0058 -0.0058

Sparrow search algorithm 03963 49541 3.95008-04 Sparrow search algorithm 0.0052 00023 00118 18.0823 10138 00135

)

(c)
Figure 6:
The screenshots for third application

4. CONCLUSIONS

In this study, an interactive software tool was carried out for tuning PID coefficients with
up-to-date metaheuristic algorithms. With this tool, the desired P, Pl, PD or PID controller
designs for the feedback system were defined by the user can be made with selected
metaheuristic algorithms and under specified performance criteria. Also with developed
software tool that provides numerical and graphical results, single and comparative designs can
be made quickly, easily and effectively. In addition, both the effects of algorithm parameters on
PID tuning and controllers on the system responses can be clearly observed.
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