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Abstract. By constructing Hopf costructures on closure spaces via homotopy, we give the concepts of closure
Hopf cospace (CH-cospace) and closure Hopf cogroup (CH-cogroup). We then prove that retract and deformation
retract of a CH-cospace are also a CH-cospace. We construct a Hopf costructure on a set with the help of the
quotient closure operator. We also show that a closure space with the same homotopy type as a CH-cogroup is itself
a CH-cogroup. We prove the existence of a covariant functor between the homotopy category of the pointed closure
spaces (CHC) and the category of groups and homomorphisms.
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1. Introduction

[4] Closure space is defined by a closure operator υ : P(X)→ P(X) satisfies
(c1) υ(∅) = ∅,
(c2) A ⊆ υ (A) for all A ∈ P(X),
(c3) υ(A ∪ B) = υ (A) ∪ υ (B) for all A, B ∈ P(X).

Then, (X, υ) is called a closure space. If υ additionally satisfies the axiom (c4) υ(υ(A)) = υ(A), then υ is called a
topological closure operator. In this case (X, υ) is called a topological space.

A lot of topological notions, like continuity, separation axioms, compactness, are studied in closure spaces [3,8,10].
In [12], homotopy concept is defined in closure spaces. In this study, co-Hopf structures are defined in closure spaces.

If (X, υ) is a closure space, the closure operator υ satisfies the condition (c5) A ⊆ B ⇒ υ(A) ⊆ υ(B). If for all
A ∈ P(X), υ(A) = A, then A is called a closed set. If υ(X − A) = X − A, then A is called an open set.
A closure operator υ is called discrete if υ(A) = A, for all A ∈ P(X), and called trivial if υ(A) = X, for all A ∈ P(X),
A , ∅.

If there are two or more closure spaces, we use the notation υX for the closure operator on X.
If Y ⊆ X, and (X, υX) is a closure space, then Y is a closure space with the closure operator υY (A) = υX(A) ∩ Y, for all
A ⊆ Y.
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A map f : (X, υX) → (Y, υY ) is said to be continuous iff f (υX (A)) ⊆ υY ( f (A)) for all A ⊆ X, f is called closed iff
f (υX (A)) = υY ( f (A)) .

Example 1.1. Let X = N and υ : P(X)→ P(X) be defined as υ({n}) = {n, n + 1} and for all A ⊆ X,

υ(A) =
{
∅ , if A = ∅⋃
{υ({a}) | a ∈ A} , if A , ∅.

Let show υ is a closure operator on N. (c1) and (c2) are clear by definition of υ.

υ(A ∪ B) =
⋃
{υ({x}) | x ∈ A ∪ B}

=
(⋃
{υ({x}) | x ∈ A}

)
∪
(⋃

({υ({x}) | x ∈ B})
)

= υ(A) ∪ υ(B).

Therefore, υ is a closure operator on X. Let A = {1, 2, 3}. Then, υ(A) = {1, 2, 3, 4} , υ(υ(A)) = {1, 2, 3, 4, 5}.
Therefore, υ is not topological.

Let (X, υ) be a closure space and α : X → Y be a onto map. Then υα : P(Y) → P(Y) defined as υα(B) = αυα−1(B)
is a closure operator on Y , called as quotient closure operator induced by υ.

Example 1.2. Let X = {a, b, c, d} and define a closure operator υ on X such that

υ(∅) = ∅, υ({a}) = {a, c}, υ({b}) = {b}, υ({c}) = {c, d}, υ({d}) = {a, d}, υ({a, b}) = {a, b, c}

υ({a, c}) = υ({a, d}) = υ({c, d}) = υ({a, c, d}) = {a, c, d}, υ({b, c}) = {b, c, d}

υ({b, d}) = {a, b, d}, υ({a, b, c}) = υ({a, b, d}) = υ({b, c, d}) = υ(X) = X.

Let Y = {1, 2, 3} and α : X → Y be defined as α(a) = α(c) = 1, α(b) = 2, α(d) = 3. The quotient closure operator υα is
defined as

υα(∅) = ∅, υα({1}) = υα({3}) = υα({1, 3}) = {1, 3}, υα({2}) = {2}, υα({1, 2}) = υα({2, 3}) = υα(Y) = Y.

Let β : X → Y be defined as β(a) = β(b) = 1, β(c) = 2, β(d) = 3. The quotient closure operator υβ is defined as

υβ(∅) = ∅, υβ({1}) = {1, 2}, υβ({2}) = {2, 3}, υβ({3}) = {1, 3}, υβ({1, 2}) = υβ({1, 3}) = υβ({2, 3}) = υβ({Y}) = Y.

Now define γ : X → Y such that γ(a) = γ(b) = 1, γ(c) = 3. Then,

υγ({2}) = γυγ−1({2}) = γυ(∅) = γ (∅) = ∅.

Therefore, υγ is not a closure operator on Y , since γ is not an onto map.

Lemma 1.3. [12] Let (X, υ) be a closure space, α : X → Y be an onto map. Then, the closure operator υα induced by
υ is the finest closure operator on Y makes α continuous.

Definition 1.4. A set W ⊆ X is called a neighbourhood of A iffW ⊆ X − υ (X − A) . The set of all neighbourhood of A
is denoted byVA.

A closure operator on is defined in [12] by the help of neighbourhood as following:

Definition 1.5. [12] Let (X, υ) be a closure space, Y ⊂ X and B ⊂ P(X). If

i) A ∈ VY , for all A ∈ B,
ii) For all U ∈ VY there exists A ∈ B such that B ⊂ U,

then B is called a base of the neighbourhood systemVY .
Let SY ⊂ P(X) and VY is a neighbourhood system of Y . If all finite intersections of elements of SY is a base for VY ,
then SY is called a subbase forVY .
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Theorem 1.6. [4] Let
∏

i∈I Xα be the cartesian product of the closure spaces (Xi, υi)i∈I . For each x ∈
∏

i∈I Xi, let

Vx = {π
−1
j (V) : j ∈ I,V ⊂ X j a neighborhood of π j(x) ∈ X j},

where π j :
∏

i∈I Xi → (X j, υ j) is the projection map. Then, there exist a unique closure structure on
∏
α∈I Xα such that

Vx is a subbase for each x ∈
∏
α∈I Xα.

Definition 1.7. Let (X, x0, υX) and (Y, y0, υY ) be pointed closure spaces. The wedge sum of X and Y is

X ∨ Y = X × {y0} ∪ {x0} × Y ⊂ X × Y.

The wedge sum of pointed closure spaces (X, x0, υX) and (Y, y0, υY ) is a pointed closure space with the base point
(x0, y0) and the closure operator υX∨Y , defined as

υX∨Y (u) = υX×Y (u) ∩ (X ∨ Y),

for all u ∈ P(X × Y).
If f : (X, x0)→ Z ,g : (Y, y0)→ Z and h : Y → W, then ( f , g) : X ∨ Y → Z is a map defined as

( f , g)(x, y) =

 f (x) if y = y0

g(y) if x = x0

and f ∨ h : X ∨ Y → Z ∨W is a map defined as ( f ∨ h)(x, y) = ( f (x), h(y)).

2. Closure H-Cospaces

The concepts of Hopf space and Hopf cospace have been studied by many researchers on different spaces. In
[2, 5, 6, 9],the concept of hopf space is examined and in [7], the concept of Hopf cospace examined in digital spaces.
Adhikari and Rahaman [1] defined generalized topological monoid as a generalization of Hopf group. Park defined the
concept of subgroup in Hopf spaces [11]. In this part, we define closure Hopf cospace with the help of homotopy and
investigate some properties of closure Hopf cospaces.

Homotopy on closure spaces defined in [12] as following: Continuous functions f , g : (X, υX) → (Y, υY ) are called
homotopic, denoted by f ≃ g, if there exists a continuous map

F : (X × I, υΠ)→ (Y, υY )

such that F|X×{0} = f and F|X×{1} = g, where I = [0, 1] and (X, υX) and (Y, υY ) are closure spaces and υΠ is the closure
operator on X × I. Then, H is called homotopy between f and g.

The homotopy relation ” ≃ ” is an equivalence relation. We use [ f ] = { g | f ≃ g, g : (X, υX) → (Y, υY )} to denote
of homotopy class of f , and [(X, υX); (Y, υY )] = { [ f ] | f : (X, υX)→ (Y, υY )}] to denote the set of all homotopy classes
of the functions from (X, υX) to (Y, υY ).

If the continuous functions g, h : (X, υX)→ (Y, υY ) are homotopic with the homotopy G, then f ◦ g ≃ f ◦ h with the
homotopy F = f ◦G for any continuous function f : (Y, υY )→ (Z, υZ).

Let (X, υX) be a closure space and x0 ∈ X be a point. Then, (X, x0, υX) is called a pointed closure space and x0 is
called base point of (X, x0, υX).

Definition 2.1. Let (X, x0, υX) be a pointed closure space and k : X → X ∨ X be a continuous comultiplication,
ς : X → X be a constant function such that ς(x) = x0 for all x ∈ X. Then, (X, x0, υX) is called as a closure H-cospace
(CH-cospace) if

(ς, 1X) ◦ k ≃ 1X ≃ (1X , ς) ◦ k.

This means the following diagram is homotopy commutative:

X X ∨ X X

X
1X

(1X ,ς) (ς,1X )

1X
k

Also ς is called homotopy identity of (X, x0, υX).
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In the case of more than one CH-cospace, we use the notations kX and ςX for the continuous comultiplication and
homotopy identity of the CH-cospace (X, x0, υX) to avoid confusion.

Theorem 2.2. Let (X, x0, υX) and (Y, y0, υY ) be CH-cospaces. Then, X ∨ Y is a CH-cospace.

Proof. Let P : X ∨ Y → X ∨ Y be defined as P(x, y0) = (y0, x) and P(x0, y) = (y, x0) for all x ∈ X and y ∈ Y .
Define kX∨Y : X ∨ Y → (X ∨ Y) ∨ (X ∨ Y) such that

kX∨Y = (1X ∨ P ∨ 1Y ) ◦ (kX ∨ kY ).

Then, (
(ςX∨Y , 1X∨Y ) ◦ kX∨Y

)
= (ςX∨Y , 1X∨Y ) ◦ (1X ∨ P ∨ 1Y ) ◦ (kX ∨ kY )

≃
(
(ςX , 1X) ∨ (ςY , 1Y )

)
◦ (kX ∨ kY )

≃
(
(ςX , 1X) ◦ kX

)
∨
(
(ςY , 1Y ) ◦ kY

)
≃ 1X ∨ 1Y = 1X∨Y .

In a similar way (1X∨Y , ςX∨Y ) ◦ kX∨Y ≃ 1X∨Y . Therefore, X ∨ Y is a CH-cospace with the base point (x0, y0) and the
comultiplication kX∨Y . □

To examine the relationship between the retract or weak retract of a CH-cospace and the CH-cospace, let us first
give the definitions of retract and weak retrack.

Definition 2.3. Let (A, υA) be a subspace of a closure space (X, υX). Then,
* (A, υA) is called a retract of (X, υX) if there exists a map r : (X, υX)→ (A, υA) such that r(x) = x, for all x ∈ X.
* (A, υA) is called weak retract of (X, υX) if r ◦ i ≃ 1A, for the inclusion map i : (A, υA) ↪→ (X, υX).

Therefore, every retract of a closure space is a weak retract of it.

Theorem 2.4. Let (X, x0, υX) is a CH-cospace and (Z, z0, υZ) be a weak retract of X. Then, (Z, z0, υZ) is a CH-cospace.

Proof. Let r be the retraction. Let kZ = (r∨r)◦kX ◦ i and (ςZ , 1Z) : Z∨Z → Z be defined as the following composition:

Z ∨ Z X ∨ X X Zi∨i (ςX ,1X ) r

Then,

(ςZ , 1Z) ◦ kZ = r ◦ (ςX , 1X) ◦ (i ∨ i) ◦ (r ∨ r) ◦ kX ◦ i

= r ◦ (ςX , 1X) ◦ (i ◦ r) ∨ (i ◦ r) ◦ kX ◦ i

≃ r ◦ (ςX , 1X) ◦ 1X∨X ◦ kX ◦ i

= r ◦ (ςX , 1X) ◦ kX ◦ i

≃ r ◦ 1X ◦ i

= r ◦ i ≃ 1Z .

Now let (1Z , ςZ) : Z ∨ Z → Z be the following composition:

Z ∨ Z X ∨ X X Z.i∨i (1X ,ςX ) r

Then,

(1Z , ςZ) ◦ kZ = r ◦ (1X , ςX) ◦ (i ∨ i) ◦ (r ∨ r) ◦ kX ◦ i

= r ◦ (1X , ςX) ◦ (i ◦ r) ∨ (i ◦ r) ◦ kX ◦ i

≃ r ◦ (1X , ςX) ◦ 1X∨X ◦ kX ◦ i

= r ◦ (1X , ςX) ◦ kX ◦ i

≃ r ◦ 1X ◦ i

= r ◦ i ≃ 1Z .

Consequently, (Z, z0, υZ) is a CH-cospace. □
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Definition 2.5. Let (Z, z0, υZ) be a retract of the closure space (X, x0, υX). If there exists a homotopy such that i◦r ≃ 1X

for the inclusion map i and the retraction r, then (Z, z0, υZ) is called deformation retract of (X, x0, υX).

If (Z, z0, υZ) is a deformation retract of (X, x0, υX), then it is retract of (X, x0, υX). So we have the following corollary:

Corollary 2.6. A retract (deformation retract) of a CH-cospace is itself a CH-cospace.

Definition 2.7. Let (X, x0, υX) be a CH-cospace. If there exists a map λ : X ∨ X → X ∨ X defined as λ(a, b) = (b, a)
such that λ ◦ k ≃ k, that is the following diagram homotopy commutative:

X ∨ X X ∨ X

X

λ

k k

then, the comultiplication k is called homotopy abelian and (X, x0, υX) is called abelian CH-cospace.

Theorem 2.8. Let (X, x0, υX) be an abelian CH-cospace and (Y, y0, υY ) be a weak retract of it. Then, (Y, y0, υY ) is also
an abelian CH-cospace.

Proof. Since (X, x0, υX) is an abelian CH-cospace, λ ◦ kX ≃ kX for a map λ : X ∨ X → X ∨ X, λ(a, b) = (b, a). Then,
(Y, y0, υY ) is a CH-cospace with the comultiplication kY = (i ∨ i) ◦ kX ◦ r, by Theorem 2.4. Let λY be the following
composition:

Y ∨ Y X ∨ X X ∨ X Y ∨ Y.i ∨ i λ r ∨ r

Then,

λY ◦ kY = (r ∨ r) ◦ λ ◦ (i ∨ i) ◦ (r ∨ r) ◦ kX ◦ i

= (r ∨ r) ◦ λ ◦ (i ◦ r) ∨ (i ◦ r) ◦ kX ◦ i

≃ (r ∨ r) ◦ λ ◦ 1X∨X ◦ kX ◦ i

= (r ∨ r) ◦ λ ◦ kX ◦ i

= kY .

Therefore, (Y, y0, υY ) is an abelian CH-cospace. □

Definition 2.9. Let (X, x0, υX) and (Y, y0, υY ) be CH-cospaces. A function

g : (X, x0, υX)→ (Y, y0, υY )

is called co-H-homomorphism if (g ∨ g) ◦ kX ≃ kY ◦ g, that is the following diagram homotopy commutative:

X X ∨ X Y ∨ Y

Y

kX

g

g∨ g

kY

Theorem 2.10. Composition of two co-H-homomorphisms is a co-H-homomorphism.

Proof. Let f : (X, x0, υX)→ (Y, y0, υY ) and g : (Y, y0, υY )→ (Z, z0, υZ) be co-H-homomorphisms. Then,

kY ◦ f ≃ ( f ∨ f ) ◦ kX and kZ ◦ g ≃ (g ∨ g) ◦ kY .

We obtain (g ◦ f ) ∨ (g ◦ f ) ◦ kX = (g ∨ g) ◦ ( f ∨ f ) ◦ kX ≃ (g ∨ g) ◦ kY ◦ f ≃ kZ ◦ (g ◦ f ). □

Theorem 2.11. Let (X, x0, υX) be a CH-cospace and (Y, y0, υY ) be a deformation retract of (X, x0, υX). Then the
inclusion map and the retraction are co-H-homomorphisms.

Proof. Let i : (Y, y0, υY ) ↪→ (X, x0, υX) be the inclusion and r : (X, x0, υX) −→ (Y, y0, υY ) be the retraction. Define
kY = (r ∨ r) ◦ kX ◦ i. Then

kY ◦ i = (r ∨ r) ◦ kX ◦ (i ◦ r))
≃ (r ∨ r) ◦ kX ◦ 1X

= (r ∨ r) ◦ kX .
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This proves that the inclusion map i is a co-H-homomorphism. Since

(i ∨ i) ◦ kZ = (i ∨ i) ◦ (r ∨ r) ◦ kX ◦ i

= (i ◦ r) ∨ (i ◦ r) ◦ kX ◦ i

≃ 1X∨X ◦ kX ◦ i

= kX ◦ i,

the retraction r is a co-H-homomorphism. □

The following theorem shows that a Hopf co-structure can be constructed on a set with the quotient closure operator
induced by a closure operator of a CH-cospace.

Theorem 2.12. Let (X, x0, υ) be a CH-cospace, (Z, z0) be a pointed space and α be a surjective mapping from (X, x0, υ)
to (Z, z0). Then (Z, z0) is a CH-cospace.

Proof. We know (Z, z0) is a closure space with the quotient closure operator υα = α ◦ υ ◦ α−1. Now let define a
comultiplication on Z with the help of comultiplication of X.
Let kY be the following composition:

Z X X ∨ X Z ∨ Zα−1 kX α∨α

and (1Y , ςY ), (ςY , 1Y ) : Y ∨ Y → Y be defined as the following compositions, respectively:

Z ∨ Z X ∨ X X Z,α−1∨α−1 (1X ,ςX ) α

Z ∨ Z X ∨ X X Zα−1∨α−1 (ςX ,1X ) α

Then,

(1Y , ςY ) ◦ kY = α ◦ (1X , ςX) ◦ (α−1 ∨ α−1) ◦ (α ∨ α) ◦ kX ◦ α
−1

= α ◦ (1X , ςX) ◦ (α−1 ◦ α) ∨ (α−1 ◦ α) ◦ kX ◦ α
−1

≃ α ◦ (1X , ςX) ◦ 1X∨X ◦ kX ◦ α
−1

= α ◦ (1X , ςX) ◦ kX ◦ α
−1

≃ α ◦ 1X ◦ α
−1 = α ◦ α−1 ≃ 1Y ,

(ςY , 1Y ) ◦ kY = α ◦ (ςX , 1X) ◦ (α−1 ∨ α−1) ◦ (α ∨ α) ◦ kX ◦ α
−1

= α ◦ (ςX , 1X) ◦ (α−1 ◦ α) ∨ (α−1 ◦ α) ◦ kX ◦ α
−1

≃ α ◦ (ςX , 1X) ◦ 1X∨X ◦ kX ◦ α
−1

= α ◦ (ςX , 1X) ◦ kX ◦ α
−1

≃ α ◦ 1X ◦ α
−1 = α ◦ α−1 ≃ 1Y

Consequently (Y, y0, υY ) is a CH-cospace. □

Theorem 2.13. Let (X, x0, υX) be a CH-cospace and (Y, y0, υY ) has the same homotopy type with (X, x0, υX). Then,
(Y, y0, υY ) is a CH-cospace.

Proof. Proof is similar to Theorem 2.4, take kY = (g ∨ g) ◦ kX ◦ f and (ςY , 1Y ) , (1Y , ςY ) as the composition of

Y ∨ Y X ∨ X X Y,
g∨ g (ςX , 1X ) f

Y ∨ Y X ∨ X X Y
g∨ g (1X , ςX ) f

respectively, where f : X → Y, g : Y → X are homotopy equivalences. □
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3. Closure H-Cogroup

This section defines the concept of CH-cogroup and examines some of its properties.

Definition 3.1. Let (X, x0, υX) be a CH-cospace. If the following diagram is homotopy commutative:

X X ∨ X

X ∨ X X ∨ X ∨ X

k

k 1X∨ k

k∨ 1X

then, k is called homotopy associative.

k is homotopy commutative ⇐⇒ (1X ∨ m) ◦ k ≃ (k ∨ 1X) ◦ k.

A continuous function δ : X → X is called homotopy inverse of k if each composite map

X X ∨ X X,k (1X ,δ)

X X ∨ X Xk (δ,1X )

is homotopic to homotopy identity ς : X −→ X. A CH-cogroup is a CH-cospace which has a homotopy associative
comultiplication and homotopy inverse.

Theorem 3.2. Weak retract of a CH-cogroup is a CH-cogroup.

Proof. Let (X, x0, υX) be a CH-cogroup and (Y, y0, υY ) be a weak retract of (X, x0, υX). Let kY = (r ∨ r) ◦ kX ◦ i be
continuous comultiplication of (Y, y0, υY ). Then, (Y, y0, υY ) is a CH-cospace by Theorem 2.13.

(1Y ∨ kY ) ◦ kY =
(
1Y ∨

(
(r ∨ r) ◦ kX ◦ i

))
◦
(
(r ∨ r) ◦ kX ◦ i

)
≃
(
(r ◦ i) ∨

(
(r ∨ r) ◦ kX ◦ i

))
◦
(
(r ∨ r) ◦ kX ◦ i

)
≃ (r ∨ r ∨ r) ◦ (1X ∨ kX) ◦ (i ∨ i) ◦ (r ∨ r) ◦ kX ◦ i

= (r ∨ r ∨ r) ◦ (1X ∨ kX) ◦
(
(i ◦ r) ∨ (i ◦ r)

)
◦ kX ◦ i

≃ (r ∨ r ∨ r) ◦ (1X ∨ kX) ◦ 1X∨X ◦ kX ◦ i

= (r ∨ r ∨ r) ◦ (1X ∨ kX) ◦ kX ◦ i

≃ (r ∨ r ∨ r) ◦ (kX ∨ 1X) ◦ kX ◦ i

= (r ∨ r ∨ r) ◦ (kX ∨ 1X) ◦ 1X∨X ◦ kX ◦ i

≃ (r ∨ r ∨ r) ◦ (kX ∨ 1X) ◦
(
(i ◦ r) ∨ (i ◦ r)

)
◦ kX ◦ i

≃
((

(r ∨ r) ◦ kX ◦ i
)
∨ (r ◦ i)

)
◦
(
(r ∨ r) ◦ kX ◦ i

)
=
((

(r ∨ r) ◦ kX ◦ i
)
∨ 1Y

)
◦
(
(r ∨ r) ◦ kX ◦ i

)
= (kY ∨ 1Y ) ◦ kY .
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Therefore, kY is homotopy associative. Let δX be the homotopy inverse of (X, x0, υX) and δY = r ◦ δ ◦ i. Then,

(δY , 1Y ) ◦ kY = (r ◦ δX ◦ i, 1Y ) ◦
(
(r ∨ r) ◦ kX ◦ i

)
=
(
(r ◦ δX ◦ i ◦ r) ∨ r

)
◦ (kX ◦ i)

≃
(
(r ◦ δX) ∨ r

)
◦ (kX ◦ i)

= r ◦
(
(δX , 1X) ◦ kX

)
◦ i

≃ r ◦
(
(1X , δX) ◦ kX

)
◦ i

= (r ∨ (r ◦ δX)) ◦ (kX ◦ i)

≃
(
r ∨ (r ◦ δX ◦ i ◦ r)

)
◦ (kX ◦ i)

= (1Y , r ◦ δX ◦ i) ◦
(
(r ∨ r) ◦ kX ◦ i

)
= (1Y , δY ) ◦ kY .

So (Y, y0, υY ) has a homotopy inverse. Consequently, (Y, y0, υY ) is a CH-cogroup. □

Corollary 3.3. Let (X, x0, υX) be a CH-cogroup and (Y, y0, υY ) has the same homotopy type with (X, x0, υX). Then,
(Y, y0, υY ) is a CH-cogroup.

Proof. Take i = g : Y → X and r = h : X → Y in Theorem 3.2 as homotopy equivalences and take kY = (h ◦ h) ◦ kX ◦

g. □

Theorem 3.4. Let (X, x0, υX) and (Y, y0, υY ) have the same homotopy type. If (X, x0, υX) is an abelian CH-cogroup,
then (Y, y0, υY ) also an abelian CH-cogroup.

Proof. Let g and h are homotopy equivalences. By Corollary 3.3, (Y, y0, υY ) is a CH-cogroup with the comultiplication
kY = (g ∨ g) ◦ kX ◦ h. Since kX is homotopy commutative, then there exists a map

λX : X ∨ X ⇒ X ∨ X, λX(a, b) = (b, a)

such that λX ◦ kX ≃ kX . Let λY : Y ∨ Y → Y ∨ Y be defined as λY (a′, b′) = (b′, a′) for all a′, b′ ∈ Y . Then,

λY ◦ kY = λY ◦ (g ∨ g) ◦ kX ◦ h = (g ∨ g) ◦ λX ◦ kX ◦ h ≃ (g ∨ g) ◦ kX ◦ h = kY .

So kY is homotopy commutative. □

Theorem 3.2 gives these results: A deformation retract of a CH-cogroup is also a CH-cogroup and a deformation
retract of an abelian CH-cogroup is also abelian CH-cogroup.

Theorem 3.5. Let (X, x0, υX) be a CH-cogroup. The set [(X, x0, υX); (Y, y0, υY )] is a group for every pointed closure
space (Y, y0, υY ). If (X, x0, υX) is an abelian CH-cogroup, then [(X, x0, υX); (Y, y0, υY )] is abelian.

Proof. Define
∆ : [(X, x0, υX); (Y, y0, υY )] × [(X, x0, υX); (Y, y0, υY )]→ [(X, x0, υX); (Y, y0, υY )]

as the homotopy class of the following composition:

X X ∨ X Y
kX ( f ,g)

for all [ f ], [g] ∈ [(X, x0, υX); (Y, y0, υY )]. Let [ f1] = [g1] and [ f2] = [g2]). Then,(
( f1, f2) ◦ kX

)
(x) = ( f1, f2)(x, x0) = f2(x)(

( f1, f2) ◦ kX

)
(x) = ( f1, f2)(x0, x) = f2(x)(

(g1, g2) ◦ kX

)
(x) = (g1, g2)(x, x0) = g1(x)(

(g1, g2) ◦ kX

)
(x) = (g1, g2)(x0, x) = g2(x).
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Therefore, ∆([ f1], [ f2]) = [( f1, f2) ◦ kX] = [(g1, g2) ◦ kX] = ∆([g1], [g2]). So ∆ is well defined.
Let ε : X → Y, ε(x) = y0, for all x ∈ X. Then,

∆([g], [ε]) = [( f , ε) ◦ kX] = [g ◦ (1X , ς) ◦ kX] = [g ◦ 1X] = [g]

for any [g] ∈ [(Y, y0, υY ); (X, x0, υX)]. We get ∆([ε], [g]) = [g] by a similar way. So [ε] is the unit element of
[(Y, y0, υY ); (X, x0, υX)] for ∆.
Let [1] be the unit function of [(X, x0, υX); (Y, y0, υY )]. Let show ∆ is associative:

∆ ◦ ([1] × ∆) ([ f ], ([g], [h])) = ∆([ f ],∆([g], [h])) = ∆
(
[ f ], [(g, h) ◦ kX]

)
= [( f , (g, h) ◦ kX) ◦ kX]
= [( f , (g, h) ◦ (kX ∨ 1X) ◦ kX]
= [( f , (g, h) ◦ (1X ∨ kX) ◦ kX]
= [( f , g) ◦ kX , h) ◦ kX]
= ∆([( f , g) ◦ kX], [h]) = ∆(∆([ f ], [g]), [h])
= ∆ ◦ (∆ × [1])(([ f ], [g]), [h]).

Let δ be the homotopy inverse of (X, x0, υX). For any [ f ] ∈ [(X, x0, υX); (Y, y0, υY )],

∆([ f ], [ f ◦ δ]) = [( f , f ◦ δ) ◦ kX] = [ f ◦ (1X , δ) ◦ kX] = [ f ◦ ς] = [e].

Similarly ∆([ f ◦ δ], [ f ]) = [e]. Therefore, [ f ◦ δ] is the homotopy inverse of [ f ]. Finally, let kX be abelian. Then,

∆([ f ], [g]) = [( f , g) ◦ kX] = [(g, f ) ◦ kX] = ∆([g], [ f ]).

□

The category whose objects are pointed closure spaces and the set of morphisms

hom((X, x0, υX), (Y, y0, υY )) = [(X, x0, υX), (Y, y0, υY )]

is called the homotopy category of the pointed closure spaces, denoted CHC . The composition of morphisms is the
operation ∆ that defined as in Theorem 3.5.

Theorem 3.6. Let (X, x0, υX) be a CH-cogroup. There exists a covariant functor from CHC to the category of groups
and homomorphisms.

Proof. Define ΥX from CHC to the category of sets and functions such that associates to an object (Y, y0, υY ) the set
ΥX(Y, y0, υY ) = [(X, x0, υX), (Y, y0, υY )] and to a morphism [g] the function

ΥX([g]) = g∗ : [(X, x0, υX), (Z, z0, υZ)]→ [(X, x0, υX), (Y, y0, υY )], g∗([ f ]) = [g ◦ f ],

where [g] ∈ [(Z, z0, υZ), (Y, y0, υY ), ]. Let [ f ], [h] ∈ [(X, x0, υX), (Z, z0, υZ)].

g∗(∆([ f ], [h])) = g∗([(h, f ) ◦ kX])
= [g ◦ ((h, f ) ◦ kX)]
= [(g ◦ h, g ◦ f ) ◦ kX]
= ∆([g ◦ h], [g ◦ f ])
= ∆(g∗([h]), g∗([ f ])).

Therefore, g∗ is a homomorphism. By the Theorem 3.5, ΥX(Y, y0, υY ) = [(X, x0, υX), (Y, y0, υY )] is a group with the
binary operation ∆ . Let show that ΥX is a covariant functor.
Let [1Y ] ∈ [(Y, y0, υY ), (Y, y0, υY )] be the unit morphism of CHC. Then,

ΥX([1Y ] = (1Y )∗ : [(X, x0, υX), (Y, y0, υY )]→ [(X, x0, υX), (Y, y0, υY )]

and for any morphism [ f ] ∈ [(X, x0, υX), (Y, y0, υY )], (1X)∗([ f ]) = [ f ◦ 1X] = [ f ]. So ΥX([1X]) is the unit morphism.
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Let [ f ] ∈ [(Z, z0, υZ), (Y, y0, υY )] and [g] ∈ [(W,w0, υW ), (Z, z0, υZ)]. Then,

ΥX([ f ◦ g])([h]) = [( f ◦ g) ◦ h] = [ f ◦ (g ◦ h)]
= ΥX([ f ])([g ◦ h)
= ΥX([ f ])(ΥX([g])([h]))
= (ΥX([ f ]) ◦ ΥX([g]))([h])

for any morphism [h] ∈ [(X, x0, υX), (W,w0, υW )]. Then,ΥX([ f ◦g]) = Υ([ f ])◦ΥX([g]), soΥX is a convariant functor. □

By Theorem 3.5 and 3.6, we get that result: There exists a covariant functor from CHC to the category of abelian
groups and homomorphisms.
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