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ABSTRACT

Cartesian coordinate system. The governing equations of the probfem incompressible Navier-Stokes
equations and the continuity equation. The no-slip boundary conditidns are dpplied using ghost cells within the
solid domain. The Dirichlet and Neumann boundary conditi

In the current study, a backward-facing step flow (BFS) by finite 3& scretization is solved in 2D
t

umerical scheme to solve the flow. The
agreement with the data that is calculated

°
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1. Introduction

Stokes flow which was named r George Gabriel Stokes, is a type of fluid flow where advective
inertial forces are small compdred Aith’viscous forces. The Reynolds number is very low (Re «< 1).
This is a typical situation in flowg,where the fluid velocities are very slow, the viscosities are very large.
In practice this type of ffow occurs in the swimming of microorganisms, sperm motility, the flow of
lava, painting brus roblem, lubrication between plates, microelectromechanical and
nanoelectromechangcal s s particularly those with moving parts, and in the flow of viscous
polymers. Backw;wg Step is widely known for its application in internal flow studies. The flow
separation is ca to the sudden changes in the geometry. This creates a zone of recirculation and
a point of flow r&attachment. Strong adverse pressure gradients arise through this process.

-2] and numerical [3-7] studies of backward-facing step flow have been carried out
t flow conditions, laminar [3], transitional and turbulent in detail.

ique [7] is first presented by Harlow & Welch namely, the marker and cell method, implemented
numerically solve the time-dependent flow of an incompressible fluid by finite difference
iscretization. The pressure and the velocity components as the primary variables are defined at cell
centers and cell boundaries, respectively, shown in Figure 1 (a). Further investigations have been
performed to understand the effect of the expansion ratios, the ratio of the channel height (H) to the
inlet channel height (h), at low and moderate Reynolds numbers. It is highlighted that the total pressure
loss rises with the increasing step height (H — h) and decrease with increasing Re number (0 < Re <
200) [3]. Direct numerical simulation of BFS flow has been performed at Re = 395 and expansion
ratio 2 in order to understand the strong adverse pressure gradients attached to the step’s downstream
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which leads to flow instabilities and defines the pressure increasing [5]. The BFS flow problem has also
been investigated numerically and experimentally in the transitional flow regime, from laminar to the
turbulent regime, in a water channel [2]. In the experimental part, electro-diffusion technique is
implemented to measure the wall shear rate. Numerical simulations performed in FLUENT software
using finite volume discretization in 2D. Numerical simulations show good agreement with the
experimental ones, which depicted that the backward-facing flow structure becomes more complex

coordinate system at Re = 0 and the code written in Matlab is provided to the reader fotind in
the Appendix. The authors believe that the readers would benefit from the code an ed that it

could be further developed. °

2. Mathematical and Numerical Formulation )\
The incompressible Navier-Stokes equations that govern the incompressib
Cartesian coordinate system can be written in dimensionless for@@;

while the expansion ratio increases.
In this study, a backward-facing step flow by finite difference discretization is solved i & an
be
se

°
is en

1scous fluid flow in the

The momentum equations along the x-axis and y- axis, respectjvel

ou 0 (uu) o(uv) dp 9%*u 0%u (1)
Re et R TR v "o T o2

ov o(uv) dwv) dp 9*v 9w 2)
Re et Re G TR Ty " T ay2

The continuity equation;

°

ou 0

o vy % 3)
dx dy

In these equations (u, v) repr@ne velocity vector components, p is the pressure and Re is the

er

dimensionless Reynolds b

uD
Re = Rep = pT

(4)

, D is the hydraulic diameter of the inlet channel, that is equivalent to twice its
namic viscosity. The primitive variables can be arranged as shown in Figure 1(a).

The fi ce approximations to the momentum equations (1) and (2) can be written; [6-7]
Th m equations along the x-axis;
ufpt — un,j +R (uu)i+1,j - (uu)i—l,j +R (uv)i,j+1 - (uv)i,j—l + bij — Pi-1,j _ Q)
At ¢ 2% € 20y Ax
41, — LUt U + Upjpr = 2Ug 5 + U jg
Ax? Ay?

The momentum equations along the y-axis;
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Uir,l;rl - viT,lj (uv)i+1,j - (uv)i—l,j (vv)i,j+1 - (VV)i,j—1 bij —Pij-1 (6)
Re + Re + Re + =
At 2Ax 2Ay Ay
Vigr,j — 2V + Vg + Vijer — 2V V54
Ax? Ay?

The similar approximations to the continuity;

CUWivnj Wiy Vijer T Vi1 0 L
Ax Ay B \(
The no-slip boundary conditions can be applied using ghost cells within the solid %@g@hown in

Figure 1(b). The application of uj, = 0 requires that u;,; ; = 0. In a similar m& pplication of

vp = 0 requires that v; 44 j = —v; ;.
2.1 Stokes flow

Using the above described MAC (Marker and Cell) [7], [8] s¢hemSyto splve Stokes flow (Re = 0)
within the backward step [0,5] X [0,1]. The boundary congditiolg call be seen in Figure 2. The
computation is proceeded using the local numbering similargo that of)fn Figure 3.

Vo

® &{)
- T Nogfig

T T T

Vi+1,j Vi+l,j-%—1
p.. “b=0
l—s o LJ —
T T Ui T Uit
Vi Virlj

Figw he arrangement of primitive variables and (b) the application of no-slip boundary

condition.
E (o,z = 24(1-9)(0.5-
u(()yy)) Z; )(0.5-y) ‘I'f g’ })3 i g
\ u(5y) =p
V(5.3 =0

Y
umw—o/// w0) = 0

v(0y) =0 vx.0) = 0

~
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Figure 2: Computational domain and boundary conditions.

PP AN R AN S I I B I N

Va1 Vo Vas Yoy Vo5 Vog Vo1 Vog Vg Vao

Up—= 9,

U, F—= o u1—>o u1—>0 U1—>0 U1—>o u1—>o u1—>o uz—>o L&—>o Lb—>

lpm ° r% 8 |p13 ° ltpm ¢ |p15 ! ltpwe ¢ 1p17 ¢ lxpws o [pwg ! ltpm ?

Y ([ ]

Viq Via Vig Vig Vis Vig Viz Vig Vig Vao

4 u, " 4 Y " " " " 4 - f
— o — o — o —= o — o —= o — o —= o — o — o

lp1 [pz lp3 4 [p“ |P5 [pe 1p7 [pg [pg 0 P

v, v v, v, V5 v v, v v

1=1 X
Figure 3: The local numbering of primitive variables,

2.2 Boundary conditions

The boundary conditions were given below have been implernen.te the inlet, outlet, top and bottom
boundaries accordingly.

e Inlet: Dirichlet boundary condition was applied. T ity profile was given as parabolic
function.

u(0,y) = -24(1—-y)(0.5-y) v(0 y > 0.5
u(0,y) = v(0,y) = y <05
°
e Bottom: Dirichlet boundary conditi as applied.
u(x,0) = %' ,00=0
e Top: Dirichlet boundary cofdi s applied.
u(x, 1) = v(x,1) =0
e Outlet: Neumann,boun ondition was implemented.
ou Ly A v 0 atx—s
ox patx= =

,\) ox2

The coeffi¢ients fnatrix A as depicted in Figure 4 includes the coefficients of u and v velocities and
pressurcSii -Momentum, Y-Momentum and Continuity equations respectively. The matrix A is

3. Coding

e oundary values. Finally, u and v velocities in the direction of X and Y with the pressure
esydefined in the cell centers is calculated by the matrix multiplication of inverse of A and the right

1: Coefficients of u velocities in the X-Momentum equation.
A12: 0

Au13: Coefficients of pressures in the X-Momentum equation.
A21: 0

A22: Coefficients of v velocities in the Y-Momentum equation.
Au13: Coefficients of pressures in the Y-Momentum equation.
A3z1: Coefficients of u velocities in the Continuity equation.
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Az2: Coefficients of v velocities in the Continuity equation.
A33: 0

7 Y-Momentum ® %
7”é37] A32 A33 1 p 0 — Continuity &
Figure 4: The coefficients matrix structure '\(%’

u b | X-Momentum
I
:F)
I
i

i3

§>

2
<
I
(e}

Table 1: Pseudo code for Stokes flow

1 - Define computational domain dimensions ([0,5] x [0,1])

2 - Define number of nodes along X and Y directions (Imax & Jmax) ;
turig, ang? Cont. equation

3 - Create sparse matrix A which includes coefficients of X, Y — Mo
4 - Create X-Momentum coefficients in matrix A K
for i = l:Imax

for j = 1:Jmax-1
if i=1 (Inlet boundary)
ifecc>0.5

Dirichlet boundary condition
else ®

No-slip boundary condition x

end if
else if i = Imax (Outlet boundary)
Out-flow boundary condition
else
Calculate pressure coefficights locatipfi in matrix A
if j =1 (Bottom boundary)
No-slip boundary canditi
else if j = Jmax-1 (Zop houndary)
No-slip boundary cénditijon
else
Inner cells

omentum coefficients in matrix A

or\y,= 1:Imax-1
rf j = 1 (Bottom boundary)
No-slip boundary condition
' else if j = Jmax (Top boundary)
No-slip boundary condition
else
Calculate pressure coefficients location in matrix A
if i=1 (Inlet boundary)
No-slip boundary condition
else if I = Imax-1 (Outlet boundary)
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Out-flow boundary condition
else
Inner cells
end if
end if
end for
end for
6 - Create continuity equation coefficients in matrix A
for i = Imax-1
for j = Jmax-1
Inner cells
end for
end for
7 — Calculate velocities in the direction of X-Y and pressures

4. Results

Backward-facing step flow has been solved with continuity @n
equations as governing equations. Finite difference method with th

pressible Navier-Stokes
A® scheme was implemented to
compute the u, v velocities in the X-Y directions and pre s in the cell centers. u velocity
distribution can be seen in Figure 5. u velocity profile
in FLUENT. It can be seen from Figure 6 that the

verified data. v velocity and dynamic pressure distfibutio

compared with the data calculated
code shows good agreement with the
¢ depicted in Figure 7 and 8. The vertical
velocity changes dominantly occur around thednlet ry because of the geometrical discontinuity.
The computations were proceeded with 10 finite difference nodes along the X and Y directions

respectively. The comparison between t of finite difference nodes on streamlines can be seen
n of error value for different number of finite difference

nodes. The absolute error value has b creased by increasing the nodes number.

in Figure 9 and 10. Table 1 shows theComp

u velocity

cooooooooomE N
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‘b . X

r"S: u velocity distribution with 101 and 21 finite difference nodes along the X and Y directions
respectively.
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Figure 6: u velocity comparison between the currentnume 1;1 study and data by Fluent at X=3.
~ }
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Figure 7: v velggity/distribution with 101 and 21 finite difference nodes along the X and Y

directions respectively.
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Figure 8: Dynamic pressure distribution with 101 and 21 finite difference nodes along the X and Y
directions respectively.
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Table 1. Comparison of error value for different number of finite difference nodes.

Exact 5x11 11x51 21x101
0.75000000000 | 0.75000002188 | 0.74999999943 | 0.74999999974
Error 10%(%) 2.92 0.08 0.03 0&'
&
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Figure 10: S N/ectors with 51 and 11 finite difference nodes along the X and Y directions

respectively.
Accordi provided parabolic function, the maximum u velocity is 1.5 in inlet section. In Figure
6, ocity’profile can be seen at section X=3 that is twice the inlet section. Here, the maximum
elo u is 0.75, which shows that the problem provides the conservation of mass.

nclusions

In this study, a backward-facing step flow by well-known finite difference discretization is solved in
2D Cartesian coordinate system using the incompressible Navier-Stokes momentum equations and the
continuity equation. The convective terms in the momentum equations is discretized by using second
order finite difference formulations, while pressure and time discretization is of first order. In the
continuity equation the discretization in the main flow direction is of the first order and the cross flow
is of the second order. The problem is considered as a Stokes flow. A Matlab code is written and
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compared with the results of Fluent software. It can be seen from the results that the numerical code
shows good agreement with the verified data. In the future, a 3D simulation of backward-facing step
flow with and without the viscosity effect will be examined by finite difference and finite volume
methods. Although the second order discretization could be problematic in 3D flow problems, higher
order discretization along with averaging and smoothing methods will be planned to utilized.
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Appendix

Matlab code for the backward step flow by finite difference method in 2D.

o°

Prepared by Cihad Celik - 508192006
Backward Step Flow by Finite Difference Method in 2D
2

% 29-01-2021

(]
clear all
clc

o°

% Computational domain dimensions

H = 1; % Height of the solution domain (Y direction)

W =5; % Width of the solution domain (X direction) [ ]

Nodes = menu('# of nodes on Y and X axis','5x21','11x51','21x101','Oth N
if Nodes ==1; Jmax = 5;

elseif Nodes ==2; Jmax = 11;

elseif Nodes ==3; Jmax = 21;

elseif Nodes ==4; Jmax = input...

('Define # of nodes on Y axis (# of nodes on X axis calcula® omakically): ");
end )iﬁii’,

dx = H/ (Jmax-1);

dx2 = dx*dx;

(Jmax—l)*Imax+(Imax—l)*Jmax+(Jma§;l)*( % number of u+v+P

Imax = W/dx+1;

t u = (Jmax-1)*Imax; % number of u velocities

t v = (Imax-1)*Jmax; % number of v velocities

t p = (Jmax-1)* (Imax-1); % number of pressure int

t u x=1));

= sgarse(i, j, s, t_uvp, b);
RHS = sparse(i, j, s, t_uvp, 1);

x_axis = 0:dx:W;
x_axis_center = (dx/2):dx:
y _axis = 0:dx:H;
yac = (dx/2):dx: (H-dx/2);

%% X - Momentum
s=0;
for i = 1l:Imax
for j = 1:JIm
m = (j-1)*I

% Dirichlet boundary condition
A(m,m) = 1;
RHS (m) = -24*(l-yac(s))*(0.5-yac(s));
end
elseif i1 == Imax
n = ((j-1)*(Imax-1)+i-1)+ (Jmax-1) *Imax+ (Imax-1)*Jmax;
% Out-flow boundary condition
A(m,m) = -1/dx; A(m,m-1) = 1/dx;
A(m,n) = 1;
RHS (m) 0;

1

1

A(m,m) = 5/dx2; A(m,m+l) = -1/dx2; A(m,m-1) = -1/dx2;
A(m,m+Imax) = -1/dx2;
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A(m,n) = 1/dx; A(m,n-1) = -1/dx;
RHS (m) = 0/dx2;
elseif j == Jmax-1
A(m,m) = 5/dx2; A(m,m+l) = -1/dx2; A(m,m-1) = -1/dx2;
A(m,m-Imax) = -1/dx2;
A(m,n) = 1/dx; A(m,n-1) = -1/dx;

RHS (m) = 0/dx2;

else
A(m,m) = 4/dx2; A(m,m+l) = -1/dx2; A(m,m-1) = -1/dx2; ...
A(m,m+Imax) = -1/dx2; A(m,m-Imax) = -1/dx2; { ]
A(m,n) = 1/dx; A(m,n-1) = -1/dx;
RHS (m) = 0/dx2;
end
end :;

%% Y - Momentum

for j

e

-5
S

nd

% Continuity

(]
1:Jmax x
for i = 1l:Imax-1
m (§J-1) * (Imax-1) +i+ (Jmax-1) *Imax;
if § == x)
(]

end

A(m,m) = 1;
RHS (m) = 0;
elseif j == Jmax
A(m,m) = 1;
RHS (m) = 0;
else
n = (j-1)* (Imax-1)+i+ (Jmax-1) *Imax+ (Igna *Jhax;
if 1 ==
A(m,m) = 5/dx2; A(m,m+l) = -1/ ; A(m/m-(Imax-1)) = ...
-1/dx2; A(m, m+ (Imax-1g ) = X

A(m,n) = 1/dx; A(m,n-(Ima )) /dk;
RHS (m) = 0/dx2;
elseif i1 == Imax-1
% Out-flow boundary,CoO
A(m,m) = 1/dx2; -2/dx2; A(m,m-2) = 1/dx2;
RHS (m) = 0/dx2;
else
A(m,m) = 4/df£2; 1) = -1/dx2; A(m,m-1) = -1/dx2;
A(m,m+ (Iax-1) )y = -1/dx2; A(m,m- (Imax-1)) = -1/dx2;
A(m,n) =4,1/dx7 yn-(Imax-1)) = -1/dx;
RHS (m) /~ Q/dx2;
end

end

(Imax-1) +i+ (Jmax-1) *Imax+ (Imax-1) *Jmax;

) *
J-1)* (Imax-1)+i+(3-1);
(§-1) * (Imax-1) +i+ (Jmax-1) *Imax;
m,ml) = -1/dx;
A(m,ml+1l) = 1/dx;
A(m,nl) = -1/dx;
A(m,nl+ (Imax-1)) = 1/dx;
RHS (m) = 0/dx;
end
end
t uv = t ut+t v; % total number of u and v velocities
x = A\RHS;
%% Plot
u vel = x(1:t _u);
u vel = full(u vel);
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v_vel = x(t u+l:t uv);
v_vel = full(v_vel);

P = x(t_uv+l:t uvp);
P = full(P);
x_axis = 0:dx:

x_axis_center
y_axis = 0:dx:
y_axis center

(dx/2) :dx: (W-dx/2) ;

= I =

(dx/2) :dx: (H-dx/2) ;

for i =

1:Imax

for j = l:Jmax-1
m = (j-1)*Imax+i;
u

vel grid(j,i) = u vel(m); )
end
end
for j = l:Jmax
for i = 1l:Imax-1
m = (j-1)* (Imax-1)+i;
v_vel grid(j,i) = v_vel(m); Y x)

end
end
for i = 1l:Imax-1

for j = 1l:Jmax-1

= (jJ-1)* (Imax-1)+1i;
grid(j,i) = P(m);

end

end
[

figure('Name','u velocity', 'NumberTitle' ,&

e I= S

[X,Y] = meshgrid(x_axis,y axis center) ;
contourf (X,Y,u vel grid,10)

xlabel ('x");

ylabel ('y'");

title('u velocity Stokes flow')y
colorbar

figure('Name','v velocity St@kes flJow', 'NumberTitle', 'off')
[X,Y] = meshgrid(x_axis gente pexis) ;

contourf (X,Y,v _vel grid,1

xlabel ('x");

ylabel ('y'");

title('v velocit

colorbar

figure ('Name', re Stokes flow', 'NumberTitle', 'off')

[X1,Y1] x_axis center,y axis center);
contour, ,Y1,Pygrid, 10)
xlabel (
vla
titl
olo
= l:Imax-1
for j = l:Jmax-1
u cen(j,i) = (u_vel grid(j,i+l)+u vel grid(j,i))/2;
end

end

for j = l:Jmax-1
for i = 1l:Imax-1
v_cen(j,i) = (v_vel grid(j+1l,1i)+v_vel grid(j,i))/2;
end
end

figure('Name', 'Stream Stokes flow', 'NumberTitle','off"')
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[mx,my]=meshgrid(x_axis center,y axis center);
XY = stream2(x_axis center,y axis center,u cen,v_cen,mx,my);

streamline (XY) ;
quiver (x_axis center,y axis center,u cen,v_cen);

grid on
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