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Abstract. In this paper, we introduce the notions of strongly t-extending and

strongly t-Baer modules. We provide several characterizations and investigate

properties of each of these concepts. It is shown that, while a direct sum-

mand of a strongly t-extending module inherits the property, direct sums of

strongly t-extending modules do not. Moreover, when a direct sum of strongly

t-extending modules is strongly t-extending, is investigated. Also, it is proved

that every strongly t-extending module has strongly summand intersection

property and densely co-Hopfian property.
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1. Introduction

The idea of investigating a mathematical structure via its representations in sim-

pler structures is commonly used and often successful. The representation theory

of extending modules and Baer modules has developed greatly in the recent years.

It is an area which is very firmly based on the detailed understanding of examples,

and there are many powerful techniques for investigating representations of partic-

ular extending modules (resp. Baer modules) and for relating representations of

different extending modules (resp. Baer modules) to one another. One point of this

paper is to introduce a subclass of t-extending modules (resp. t-Baer modules).

The notion of an extending module can be traced back to work of von Neumann

in the 1930s. His interest in quantum mechanics led him to develop “continuous

geometry”, which we today refer to as upper and lower continuous complete mod-

ular lattices. In recent years theory of extending modules and rings has come to

play an important role in the theory of rings and modules. A module M is called

extending if every submodule is essential in a direct summand. Many properties of

extending modules have been introduced and studied by several authors.
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The Baer property for rings was first considered by Kaplansky [11]. A ring R

is called Baer if the right annihilator of any subset of R is generated as a right

ideal by an idempotent. The notion of Baer property in a general module theoretic

setting has been introduced by Rizvi and Roman. In [13], a strong connection is

established between extending modules and Baer modules.

In [3], Asgari and Haghany introduced the concept of t-extending modules and

t-Baer modules by using second singular submodules. The notion of a strongly

extending module is introduced in [9], which is a subclass of the class of extending

modules. Motivated by definitions of strongly extending modules and t-extending

modules, we introduce the notion of strongly t-extending modules which are par-

ticular t-extending modules and a generalization of strongly extending modules.

After some preliminaries in Section 2, we propose the definition of a strongly

t-extending module in Section 3. We explore some equivalent conditions for a

module to be strongly t-extending. It is shown that direct summands of strongly

t-extending modules are too strongly t-extending. A natural question to ask, for

strongly t-extending modules in whether the property is preserved by a direct sum

of such modules. First we answer this in the negative by an example. Next we

give a necessary condition for a sum of strongly t-extending modules to be strongly

t-extending. Also it is shown that strongly t-extending modules are densely co-

Hopfian.

We define and investigate strongly t-Baer modules in Section 4, which were

motivated by definitions of t-Baer modules and Abelian Baer modules. We give

characterizations of a strongly t-Baer notion. We show that every direct summand

of a strongly t-Baer module is strongly t-Baer. Necessary and sufficient conditions

are given to show that a direct sum of strongly t-Baer modules is strongly t-Baer.

2. Preliminaries

Throughout all rings (not necessarily commutative rings) have identities and all

modules are unital right modules. For the sake of completeness, we state some

definitions and notations used throughout this paper. Let M be a module over a

ring R. For submodules N and K of M , N ≤ K denotes N is a submodule of K and

End(M) denotes the ring of right R-module endomorphisms of M . We denote by

rM (.) the right annihilator of a subset of End(M) with elements from M . In what

follows, by ≤⊕ and ≤ess we denote, respectively, a module direct summand and an

essential submodule of M . The symbols Z, Zn and Q stand for the ring of integers,

the ring of residues modulo n and the ring of rational numbers, respectively.
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Recall that the singular submodule Z(M) of a module M is the set of m ∈ M
with rR(m) ≤ess RR, or equivalently, mI = 0 for some essential right ideal I of

R. The second singular (or Goldie torsion) submodule Z2(M) is the submodule

of M which is defined by Z( M
Z(M) ) = Z2(M)

Z(M) . If N is a submodule of M , then

Z(N) = Z(M) ∩ N and so Z2(N) = Z2(M) ∩ N . A module M is called singular

if Z(M) = M and nonsingular if Z(M) = 0. A module M is called Z2-torsion if

Z2(M) = M . If Mi are R-modules(i ∈ I), then Z(⊕i∈IMi) = ⊕i∈IZ(Mi) and so

Z2(⊕i∈IMi) = ⊕i∈IZ2(Mi).

Definition 2.1. (a) An R-module M is called strongly extending if each sub-

module of M is essential in a fully invariant direct summand of M ([9]).

(b) A module M is said to be Abelian Baer, if for any left ideal I of End(M),

rM (I) is a fully invariant direct summand of M ([14]).

(c) A submodule N of M is called t-essential in M if for every submodule N ′ of

M , N ∩N ′ ≤ Z2(M) implies that N ′ ≤ Z2(M). The notation N ≤tess M
denotes that N is t-essential in M ([3]).

(d) A submodule C is called t-closed (resp. closed) if C has no t-essential

(resp. essential) extension in M . The symbol C ≤tc M denotes that C is a

t-closed submodule of M ([3]).

(e) A module M is called t-extending if every t-closed submodule of M is a

direct summand of M ([3]).

(f) An R-module M is said to be t-Baer, if tM (I) = {m ∈ M | Im ⊆ Z2(M)}
is a direct summand of M for each left ideal I of End(M) ([3]).

(g) An R-module M is said to be strongly t-Rickart, if tM (φ) is a fully invariant

direct summand of M for each φ ∈ End(M). An R-module M is said to

be strongly Rickart, if Ker(φ) is a fully invariant direct summand of M for

each φ ∈ End(M) ([8,9]).

(h) An R-module M is said to have summand intersection property (SIP), if

the intersection of any two direct summands is a direct summand of M .

M is said to have the strongly summand intersection property (SSIP) if the

intersection of any family of direct summands is a direct summand of M

([1]).

(i) The module M is called weakly co-Hopfian(wcH) if every injective endo-

morphism has an essential image ([10]).

(l) An R-module M is called densely co-Hopfian (dcH) if for all injective en-

domorphisms f of M , f(M) is a t-essential submodule of M ([2]).
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(k) An idempotent e ∈ R is called left semicentral if re = ere, for each r ∈ R,

equivalently, eR is an ideal of R. The set of all semicentral idempotents of

R will be denoted by Sl(R). If e2 = e ∈ End(M), then e ∈ Sl(End(M)) if

and only if eM is a fully invariant direct summand ([6,7]).

It is known from [2, Proposition 1.1] that

Z2(M) = {m ∈M | mI = 0 for some I ≤tess RR}.

We need the following propositions proved in [9, Theorem 2.4], [3, Proposition

2.2], [3, Proposition 2.6], [3, Corollary 2.8], [3, Proposition 2.9] and [4, Lemma 2.3],

respectively.

Proposition 2.2. Let M be a module.

(a) M is strongly extending if and only if it is extending and each direct sum-

mand of M is fully invariant.

(b) The following statements are equivalent for a submodule N of M .

(i) N ≤tess M ;

(ii) N + Z2(M) ≤ess M ;

(iii) N+Z2(M)
Z2(M) ≤ess M

Z2(M) ;

(iv) M
N is Z2-torsion.

(c) Let C be a submodule of M . The following statements are equivalent:

(i) C is t-closed in M ;

(ii) C contains Z2(M) and C is closed in M ;

(iii) M
C is nonsingular.

(d) Let L ⊆ K be two submodules of M . If L is t-closed in K and K is t-closed

in M , then L is t-closed in M .

(e) Let C ≤M . If C ′ ≤tc M , then C ∩ C ′ ≤tc C.

Lemma 2.3. Let M be a module. Then every submodule N of M is contained in

a t-closed submodule C of M , where N ≤tess C.

3. Strongly t-extending modules

We start this section with the following definition.

Definition 3.1. An R-module M is called strongly t-extending if for each submod-

ule N of M , there exists a fully invariant direct summand of M containing N as a

t-essential submodule.

Clearly, every Z2-torsion module is strongly t-extending. Moreover, every strongly

extending module is strongly t-extending.
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The next result gives several equivalent conditions for a module to be strongly

t-extending.

Theorem 3.2. The following are equivalent for an R-module M .

(1) M is strongly t-extending;

(2) Every t-closed submodule of M is a fully invariant direct summand;

(3) M is t-extending and each direct summand of M which contains Z2(M) is

fully invariant;

(4) M = Z2(M)⊕M ′, where M ′ is a strongly extending module;

(5) Every submodule of M which contains Z2(M) is essential in a fully invari-

ant direct summand;

(6) Every submodule of M which contains Z2(M) is t-essential in a fully in-

variant direct summand;

(7) For every submodule A of M , N is a fully invariant direct summand of M ,

where N
A = Z2(MA );

(8) For every submodule A of M , there exists a decomposition M
A = N

A ⊕
N ′

A

such that N is a fully invariant direct summand of M and N ′ ≤tess M .

Proof. (1) ⇒ (2) Let N be a t-closed submodule of M . Since M is strongly t-

extending, N ≤tess F , where F is a fully invariant direct summand of M . So

N = F and hence N is fully invariant direct summand of M .

(2) ⇒ (3) Since every t-closed submodule of M is a direct summand, M is t-

extending. We will prove that each direct summand of M which contains Z2(M) is

fully invariant. Let K ≤⊕ M which contains Z2(M). Since K ≤⊕ M , K is closed

in M . By Proposition 2.2(c), K is t-closed in M and so by (2), K is fully invariant.

(3)⇒ (4) Since M is t-extending, M = Z2(M)⊕M ′, where M ′ is extending (by

[3, Theorem 2.11]). We will prove that M ′ is strongly extending. By Proposition

2.2(a), it suffices to show that each direct summand of M ′ is fully invariant in M ′.

Let K ≤⊕ M ′. Hence K⊕Z2(M) ≤⊕ M and contains Z2(M). By (3), K⊕Z2(M)

is fully invariant in M . We will prove that K is fully invariant in M ′. Let f ∈
End(M ′), so 1Z2(M)⊕ f ∈ End(M). Thus (1Z2(M)⊕ f)(Z2(M)⊕K) ⊆ Z2(M)⊕K
because Z2(M)⊕K is fully invariant in M . Therefore Z2(M)⊕f(K) ⊆ Z2(M)⊕K.

Hence f(K) ⊆ K and K is fully invariant in M ′.

(4) ⇒ (5) Let K be a submodule of M which contains Z2(M). By modular

law, K = Z2(M) ⊕ (K ∩ M ′). Since M ′ is strongly extending, K ∩ M ′ ≤ess

N for some fully invariant direct summand N of M ′. As N ≤⊕ M ′, Z2(M) ⊕
N ≤⊕ M . Since K ∩ M ′ ≤ess N , Z2(M) ⊕ (K ∩ M ′) ≤ess Z2(M) ⊕ N . We

will prove that Z2(M) ⊕ N is a fully invariant direct summand of M . By (4),
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M = Z2(M) ⊕M ′. Hence End(M) =

(
End(Z2(M)) Hom(M ′, Z2(M))

Hom(Z2(M),M ′) End(M ′)

)
=(

End(Z2(M)) Hom(M ′, Z2(M))

0 End(M ′)

)
(because Hom(Z2(M),M ′) = 0). Therefore

for each f ∈ End(M), we have f(Z2(M)⊕N) ⊆ Z2(M)⊕N , as N is fully invariant

in M ′. Hence K is essential in a fully invariant direct summand of M .

(5)⇒ (6) It is clear from Proposition 2.2(b).

(6) ⇒ (7) Let A be a submodule of M and consider a submodule N defined by

N/A = Z2(M/A). Since M
N
∼=

M
A

Z2(
M
A )

is nonsingular, N is a t-closed submodule

of M , by Proposition 2.2(c). By (6), N is t-essential in a fully invariant direct

summand of M and so N is a fully invariant direct summand of M .

(7)⇒ (8) Let A be a submodule of M . By (7), there exists a fully invariant direct

summand N of M , say M = N⊕K, where N
A = Z2(MA ). Thus M

A = N
A⊕

K+A
A . Since

M
K+A

∼=
M
A

K+A
A

∼= N
A = Z2(MA ), we have M

K+A is Z2-torsion, hence K + A ≤tess M ,

by Proposition 2.2(b).

(8)⇒ (1) Let N be a submodule of M , then by Lemma 2.3, N ≤tess C for some

t-closed submodule C of M . By (8), M
C = K

C ⊕
K′

C , where K is a fully invariant

direct summand of M and K ′ ≤tess M . Hence by Proposition 2.2(b), M
K′ is Z2-

torsion and so K
C
∼=

M
C
K′
C

∼= M
K′ is Z2-torsion. By Proposition 2.2(b) C ≤tess K. Since

C is t-closed, C = K. Hence N is t-essential in a fully invariant direct summand

of M . �

The next example shows that strongly t-extending modules need not be strongly

extending.

Example 3.3. Consider M = Zn ⊕ Z as a Z-module where n is a positive inte-

ger. By Theorem 3.2(4), M is strongly t-extending. However M is not strongly

extending, by Proposition 2.2(a), because Z is not a fully invariant direct summand

of M .

By Theorem 3.2, each strongly t-extending module is t-extending, but the con-

verse does not hold in general, as the following example shows.

Example 3.4. Let F be a field, R =

(
F F

0 F

)
and M be an arbitrary R-module.

Then Z2(M) ⊕ R is a t-extending module which is not strongly t-extending since

RR is not strongly extending.

Theorem 3.5. If M is a strongly t-extending module, then each direct summand

of M is strongly t-extending.
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Proof. Let N ≤⊕ M , say M = N ⊕ K. Since M is strongly t-extending, M is

t-extending, so are N and K by [3, Proposition 2.14]. We will show that each direct

summand of N contains Z2(N) is fully invariant. Let H ≤⊕ N and Z2(N) ⊆ H.

Since K is t-extending, K = Z2(K) ⊕K ′, where K ′ is extending (by [3, Theorem

2.11]). Since H ≤⊕ N , H⊕Z2(K) is a direct summand of M which contains Z2(M),

hence by Theorem 3.2(3), H⊕Z2(K) is a fully invariant direct summand of M . We

will prove that H is fully invariant in N . If f ∈ End(N), then 1K ⊕ f ∈ End(M).

Thus (1 ⊕ f)(Z2(K) ⊕ H) = Z2(K) ⊕ f(H) ⊆ Z2(K) ⊕ H. This implies that

f(H) ⊆ H. Thus N is t-extending and each direct summand of N that contains

Z2(N) is fully invariant, therefore N is strongly t-extending, by Theorem 3.2(3). �

In [9], it is shown that strongly extending modules are wcH. The following propo-

sition shows that strongly t-extending modules are dcH.

Theorem 3.6. If M is strongly t-extending, then M is dcH.

Proof. By Theorem 3.2, M = Z2(M) ⊕ M ′, where M ′ is strongly extending.

Therefore M
Z2(M)

∼= M ′ is wcH. Let f : M → M be a monomorphism. Since

f(Z2(M)) ⊆ Z2(M), f̄ : M
Z2(M) →

M
Z2(M) with f̄(m + Z2(M)) = f(m) + Z2(M) is

a homomorphism. Let f̄(m + Z2(M)) = f(m) + Z2(M) = 0. So f(m) ∈ Z2(M)

and f(m)I = 0 for some I ≤tess RR. Since f is a monomorphism, mI = 0, and

hence m ∈ Z2(M). Thus f̄ is a monomorphism. Since M
Z2(M) is wcH, f̄( M

Z2(M) ) ≤
ess

M
Z2(M) . So f(M)+Z2(M)

Z2(M) ≤ess M
Z2(M) . By Proposition 2.2(b), f(M) ≤tess M , hence

M is dcH. �

Proposition 3.7. If M is a strongly t-extending module, then M has SSIP for

direct summands that contain Z2(M).

Proof. Suppose that M is strongly t-extending and let {Mi}i∈I be a family of

direct summands of M that contain Z2(M) and Mi = eiM for some idempotent

ei of End(M), for all i ∈ I. If ∩i∈IMi = 0, then there is nothing to prove.

Suppose that ∩iMi 6= 0 and so ∩iMi ≤tess eM for some e ∈ Sl(End(M)). Since

Z2(M) ⊆ ∩iMi, we have ∩iMi ≤ess eM by Proposition 2.2(b). Therefore for each

i ∈ I, (1− ei)M ∩ eM = 0, whence eM ⊆ eiM . Thus ∩iMi = eM and M has SSIP

for {Mi}i∈I . �

In the following, for a free module F , rank(F ) denotes the minimum cardinality

of any basis of F .

Theorem 3.8. Let R be a ring and F be a free R-module. The following are

equivalent.
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(1) F is strongly t-extending;

(2) (i) RR is strongly t-extending and rank(F ) = 1, or

(ii) R is Z2-torsion.

Proof. (1)⇒ (2) Let F be a freeR-module and strongly t-extending with rank(F ) ≥
2. By Theorem 3.5, R is strongly t-extending. Hence by Theorem 3.2, R =

Z2(R)⊕R′. Let F = R(I), then F = Z2(R)(I)⊕R′(I) where R′(I) is strongly extend-

ing. Hence its direct summands must be fully invariant. Therefore Hom(R′, R′) = 0

and so R′ = 0. Thus R is Z2-torsion.

(2)⇒ (1) It is clear. �

Lemma 3.9. Let M be a module. If K ≤ N is a fully invariant submodule of M

and N ≤⊕ M , then K is fully invariant in N .

Proof. Let K ≤ N and N ≤⊕ M . Hence there exists e2 = e ∈ End(M) such that

N = eM and so End(N) = eEnd(M)e. Let f ∈ End(N) = eEnd(M)e. So there

exists g ∈ End(M) such that f = ege. Hence f(K) = ege(K) = eg(K) ⊆ eK = K

because K is fully invariant in M . Thus K is fully invariant in N . �

In general, a direct sum of strongly t-extending modules need not be a strongly

t-extending module, as the following example shows.

Example 3.10. Suppose that M1 = Zp ⊕ Z and M2 = Zq ⊕ Q, where p, q are

integer numbers. Consider M1 and M2 as Z-modules. By Theorem 3.2, M1 and

M2 are strongly t-extending. Since Z is not fully invariant in Q⊕Z, the Z-module

Q⊕Z is not strongly extending by Proposition 2.2(a). Thus M1⊕M2 is not strongly

t-extending as a Z-module by Theorem 3.2.

We can, however, provide some necessary conditions for a direct sum of any two

modules to be strongly t-extending.

Proposition 3.11. Let M = M1⊕M2. Then M is strongly t-extending if and only

if each t-closed submodule K of M with K ∩M1 ⊆ Z2(M) or K ∩M2 ⊆ Z2(M) is

a fully invariant direct summand of M .

Proof. The necessity is clear. For the sufficiency, let K be a t-closed submodule

in M . By Lemma 2.3, there exists a t-closed submodule L of K such that K ∩
M1 ≤tess L. Since L ≤tc K ≤tc M , L is t-closed in M by Proposition 2.2(d). As

(K ∩M1)∩ (M2 ∩L) = 0 and K ∩M1 ≤tess L, we have M2 ∩L ⊆ Z2(L) ⊆ Z2(M).

By assumption L is a fully invariant direct summand of M , say M = L ⊕ L′. By

modular law K = L⊕ (K ∩ L′). By Lemma 2.3, there exists a t-closed submodule
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N of K such that K ∩ L′ ≤tess N . Since N ≤tc K ≤tc M , N is t-closed in

M . As K ∩ M1 ⊆ L, (K ∩ M1) ∩ L′ = 0. So (N ∩ M1) ∩ (L′ ∩ K) = 0, thus

N ∩ M1 ⊆ Z2(N) ⊆ Z2(M). Therefore N is a fully invariant direct summand

of M , say M = N ⊕ N ′. Since K = L ⊕ (K ∩ L′), using modular law implies

N = (N ∩ L) ⊕ (K ∩ L′). Thus M = (N ∩ L) ⊕ (K ∩ L′) ⊕ N ′. By modular law

L′ = (K∩L′)⊕T for some T ≤M . Hence M = L⊕L′ = L⊕(K∩L′)⊕T = K⊕T . It

remains to show that K is fully invariant. First we show that N and L are strongly

t-extending. Let U ≤tc N . As U ≤tc N ≤tc M , U ≤tc M . Since N ∩M1 ⊆ Z2(M),

we have U ∩M1 ⊆ Z2(M). By assumption U is a fully invariant direct summand of

M and so is a direct summand of N . Since N is a direct summand of M and U is a

fully invariant direct summand of M , U is fully invariant in N by Lemma 3.9. Hence

N is strongly t-extending. Similarly L is strongly t-extending. Since N and L are

t-closed submodules of M , Z2(M) ⊆ L and Z2(M) ⊆ N , by Proposition 2.2(c). So

Z2(M) ⊆ L∩N . As L∩N ≤⊕ N and N is strongly t-extending, L∩N is strongly

t-extending by Theorem 3.5, and so we have L ∩ N = Z2(M) ⊕ Q by Theorem

3.2. Therefore N = Z2(M) ⊕ Q ⊕ (K ∩ L′). Since N is strongly t-extending and

Z2(M) ⊕ (K ∩ L′) ≤⊕ N and Z2(M) = Z2(N) ⊆ Z2(M) ⊕ (K ∩ L′), by Theorem

3.2, Z2(M) ⊕ (K ∩ L′) is fully invariant in N . As N is a fully invariant direct

summand of M and Z2(M) ⊕ (K ∩ L′) is fully invariant in N , Z2(M) ⊕ (K ∩ L′)
is fully invariant in M . As L is strongly t-extending and Z2(L) = Z2(M), L =

Z2(M) ⊕ L1 by Theorem 3.2. Now, we will show that K is fully invariant in M .

We have K = L ⊕ (K ∩ L′) = Z2(M) ⊕ L1 ⊕ (K ∩ L′). Let f ∈ End(M), then

f(K) = f(Z2(M) ⊕ L1 ⊕ (K ∩ L′)) = f(L1) + f(Z2(M) ⊕ (K ∩ L′)) ⊆ f(L) +

f(Z2(M)⊕ (K ∩ L′)) ⊆ L+ (Z2(M)⊕ (K ∩ L′)) = L⊕ (K ∩ L′) = K. Hence K is

a fully invariant direct summand of M . Thus M is strongly t-extending. �

The next theorem gives a condition that a direct sum of two strongly t-extending

modules is strongly t-extending.

Theorem 3.12. Let M1 and M2 be strongly t-extending modules and M ′i ≤Mi such

that Mi = Z2(Mi) ⊕M ′i for i = 1, 2. If Hom(N1,M
′
2) = 0 and Hom(N2,M

′
1) = 0

for each N1 ≤M ′1 and N2 ≤M ′2, then M = M1 ⊕M2 is strongly t-extending.

Proof. Let K be a t-closed submodule of M such that K ∩M1 ⊆ Z2(M). By

Proposition 2.2(c), Z2(M) ⊆ K. Therefore Z2(M1) = Z2(M) ∩M1 ⊆ K ∩M1 ⊆
Z2(M) ∩M1 = Z2(M1) and so K ∩M1 = Z2(M1). Thus K ∩M ′1 = (K ∩M1) ∩
M ′1 = Z2(M1) ∩ M ′1 = 0. By modular law, K = Z2(M) ⊕ (K ∩ (M ′1 ⊕ M ′2)).

Put C = K ∩ (M ′1 ⊕ M ′2). Let πi : M ′1 ⊕ M ′2 → M ′i be the canonical pro-

jection for i = 1, 2. As Ker(π2|C) = Ker(π2) ∩ C = M ′1 ∩ C = M ′1 ∩ K =
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0, we have a monomorphism π2|C : C → M ′2. Since π1|C = π1((π2|C)−1) :

π2(C) → M ′1 ∈ Hom(π2(C),M ′1) and by assumption Hom(π2(C),M ′1) = 0, we

have π1(C) = 0. Thus C ⊆ Ker(π1) = M ′2. By Proposition 2.2(e), C is t-closed

in M ′1 ⊕ M ′2 so C is t-closed in M ′2. Since M ′2 is nonsingular and strongly ex-

tending, C is a fully invariant direct summand of M ′2. As Hom(M ′1,M
′
2) = 0

and Hom(M ′2,M
′
1) = 0, End(M ′1 ⊕ M ′2) =

(
End(M ′1) 0

0 End(M ′2)

)
, therefore

M ′2 is fully invariant in M ′1 ⊕ M ′2. Thus C is fully invariant in M ′1 ⊕ M ′2 by

[5, Lemma 1.1]. Since C ≤⊕ M ′2 ≤⊕ M ′1 ⊕ M ′2, C is a direct summand of

M ′1 ⊕ M ′2. As End(M) =

(
End(Z2(M)) Hom(M ′1 ⊕M ′2, Z2(M))

Hom(Z2(M),M ′1 ⊕M ′2) End(M ′1 ⊕M ′2)

)
=(

End(Z2(M)) Hom(M ′1 ⊕M ′2, Z2(M))

0 End(M ′1 ⊕M ′2)

)
, K = Z2(M)⊕C is a fully invariant di-

rect summand of M . Similarly, if K∩M2 ⊆ Z2(M), then K is a fully invariant direct

summand of M . Therefore by Proposition 3.11, M is strongly t-extending. �

4. Strongly t-Baer modules

The purpose of this section is to introduce the concept of strongly t-Baer modules

which are particular t-Baer modules, and study some basic properties of this new

class of modules. For the rest of the article, M is an R-module and S = End(MR).

Definition 4.1. A module M is called strongly t-Baer if tM (I) is a fully invariant

direct summand of M for each left ideal I of S.

Clearly every Z2-torsion module is strongly t-Baer. Moreover, the notions of

Abelian Baer and strongly t-Baer coincide for every nonsingular module. In partic-

ular, every Abelian Baer ring is strongly t-Baer (because every Abelian Baer ring

is nonsingular).

The next theorem states some equivalent conditions for a strongly t-Baer module.

Theorem 4.2. The following statements are equivalent for a module M .

(1) M is strongly t-Baer;

(2) M is t-Baer and each direct summand which contains Z2(M) is fully in-

variant;

(3) M = Z2(M)⊕M ′, where M ′ is an Abelian Baer module;

(4) M = Z2(M) ⊕M ′ and for each left ideal I of S, tM (I) ∩M ′ is a fully

invariant direct summand of M ′;

(5) For any left ideal I of S, tM (I) is t-essential in a fully invariant direct

summand of M .
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Proof. (1) ⇒ (2) Let M be a strongly t-Baer module. Therefore M is t-Baer.

Let K be a direct summand of M which contains Z2(M). We will show that K

is fully invariant. Let K = eM for some idempotent e ∈ S. Since tM (1 − e) =

tM (S(1− e)) = eM = K and M is strongly t-Baer, K is fully invariant.

(2)⇒ (3) Let M be a t-Baer module. Assume that each direct summand of M

which contains Z2(M) is fully invariant. Therefore M = Z2(M)⊕M ′. We show M ′

is Abelian Baer. Let I ′ be a left ideal of S′ = End(M ′). Set A = {1Z2(M)⊕φ|φ ∈ I ′}
and I = SA. Then tM (I) = Z2(M) ⊕ rM ′(I ′). As M is t-Baer, tM (I) is a direct

summand of M . Therefore rM ′(I ′) ≤⊕ M ′. It suffices to show that rM ′(I ′) is

fully invariant. Since Z2(M) ⊆ tM (I), tM (I) is fully invariant by assumption. Let

f ∈ End(M ′), then 1Z2(M)⊕ f ∈ S. Hence (1⊕ f)(tM (I)) = Z2(M)⊕ f(rM ′(I ′)) ⊆
Z2(M)⊕ rM ′(I ′) = tM (I). Thus f(rM ′(I ′)) ⊆ rM ′(I ′). Therefore rM ′(I ′) is a fully

invariant direct summand of M ′ and M ′ is Abelian Baer.

(3)⇒ (4) Suppose that M = Z2(M)⊕M ′ where M ′ is Abelian Baer. Let I be a

left ideal of S and A′ = {πφ|M ′ | φ ∈ I} (where π is the canonical projection onto

M ′) and I ′ = S′A′ where S′ = End(M ′). Then tM (I) ∩M ′ = rM ′(I ′). Since M ′ is

Abelian Baer, tM (I) ∩M ′ is a fully invariant direct summand of M ′.

(4) ⇒ (1) Let I be a left ideal of S. Since Z2(M) ⊆ tM (I), by modular

law we have tM (I) = Z2(M) ⊕ (tM (I) ∩ M ′). By (4), tM (I) ∩ M ′ ≤⊕ M ′.

Therefore tM (I) ≤⊕ M . It remains to show that tM (I) is fully invariant in M .

As M = Z2(M) ⊕M ′, we have S =

(
End(Z2(M)) Hom(M ′, Z2(M))

Hom(Z2(M),M ′) End(M ′)

)
=(

End(Z2(M)) Hom(M ′, Z2(M))

0 End(M ′)

)
. Since tM (I)∩M ′ is fully invariant in M ′ and

Z2(M) is fully invariant in M , tM (I) is fully invariant in M . Hence M is strongly

t-Baer.

(1)⇒ (5) It is clear.

(5) ⇒ (1) Let I be a left ideal of S. By (5), tM (I) ≤tess K for some fully

invariant direct summand of M . Since Z2(K) ⊆ Z2(M) ⊆ tM (I), tM (I) ≤ess K
by Proposition 2.2(b). Therefore for each k ∈ K, there exists J ≤ess RR such

that kJ ⊆ tM (I). Hence for each f ∈ I, f(k)J ⊆ Z2(M). This implies that

f(k) + Z2(M) ∈ Z( M
Z2(M) ) = 0. Thus f(k) ∈ Z2(M) for each f ∈ I. So k ∈ tM (I)

and tM (I) = K. Thus for each left ideal I of S, tM (I) is a fully invariant direct

summand in M and so M is strongly t-Baer. �

By Theorem 4.2(5), every strongly t-extending module is strongly t-Baer. The

converse is not true in general.
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Example 4.3. (1) Let R be a domain which is not right Ore. Since RR is

not extending (see [5, Page 1410]), RR is not strongly extending. Let N be

an arbitrary right R-module. Then M = R ⊕ Z2(N) is strongly t-Baer by

Theorem 4.2, which is not a strongly t-extending module.

(2) Let M = Zn⊕Z, where n is a positive integer. Then M is a strongly t-Baer

Z-module which is not Abelian Baer.

Theorem 4.4. If M is strongly t-Baer, then so is every direct summand of M .

Proof. Let N be a direct summand of M , say M = N ⊕K. Since M is strongly

t-Baer, it is t-Baer, therefore each direct summand of M is too, by [3, Theorem 3.6].

Thus N is t-Baer. We will show that each direct summand of N which contains

Z2(N) is fully invariant in N . Let W ≤⊕ N and Z2(N) ⊆ W . Since K is t-Baer,

K = Z2(K)⊕K ′. Thus W ⊕Z2(K) ≤⊕ M and Z2(M) ⊆W ⊕Z2(K). By Theorem

4.2(2), W ⊕ Z2(K) is fully invariant in M . Let f ∈ End(N), then 1K ⊕ f ∈ S.

Since W ⊕Z2(K) is fully invariant in M , (1K ⊕ f)(W ⊕Z2(K)) ⊆W ⊕Z2(K) and

hence f(W ) ⊆W . Thus W is fully invariant in N and N is strongly t-Baer. �

Proposition 4.5. An R-module M is strongly t-Baer if and only if M is a strongly

t-Rickart module and M has the strongly summand intersection property (SSIP) for

direct summands which contain Z2(M).

Proof. Let M be a strongly t-Baer module. Then M is strongly t-Rickart. Let

{Nj}j∈J be a set of direct summands of M which contain Z2(M). Assume that for

each j ∈ J , Nj = ejM for some e2j = ej ∈ S. Since Z2(M) ⊆ Nj , tM (1− ej) = Nj

for each j ∈ J . As ∩j∈JNj = ∩j∈JtM (1 − ej) = tM (I) where I =
∑
j∈J S(1 − ej)

and M is strongly t-Baer, ∩j∈JNj ≤⊕ M . Hence M has SSIP for direct summands

which contain Z2(M).

Conversely, let I be a left ideal of S. Then tM (I) = ∩φ∈ItM (φ). Since M

is strongly t-Rickart, tM (φ) is a fully invariant direct summand of M . Since M

has SSIP for direct summands which contain Z2(M), tM (I) ≤⊕ M . It remains to

show that tM (I) is fully invariant. Since for each φ ∈ I, tM (φ) is fully invariant,

f(tM (I)) = f(∩φ∈ItM (φ)) ⊆ ∩φ∈If(tM (φ)) ⊆ ∩φ∈ItM (φ) for each f ∈ S. Thus

tM (I) is a fully invariant direct summand of M . Therefore M is strongly t-Baer. �

Strongly t-Rickart modules are not strongly t-Baer as the following example

shows.

Example 4.6. Let S = Π∞i=1Z2 and R = {(ai)∞i=1 ∈ S| an is eventually constant }.
By [12, Example 4.1], RR is Rickart. Since R is a commutative ring, it is strongly
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Rickart. Let M be an arbitrary R-module, then R ⊕ Z2(M) is a strongly t-Rickart

R-module by [8, Theorem 4.2] which is not strongly t-Baer (because RR is not Baer).

Theorem 4.7. Let M = ⊕i∈IMi be a direct sum of modules Mi(i ∈ I) for some

index set I. The following are equivalent.

(1) M is strongly t-Baer.

(2) (i) For each i ∈ I, Mi = Z2(Mi)⊕M ′i where M ′i is Abelian Baer.

(ii) For each distinct i, j ∈ I, Hom(M ′i ,M
′
j) = 0.

Proof. (1)⇒ (2) (i) Let M be a strongly t-Baer module. By Theorem 4.4, for each

i ∈ I, Mi is strongly t-Baer. Therefore Mi = Z2(Mi) ⊕M ′i which M ′i is Abelian

Baer by Theorem 4.2.

(ii) By (i), M =
⊕

i(Z2(Mi)⊕M ′i) = Z2(M)
⊕

(⊕iM ′i). Since M is strongly t-

Baer, ⊕iM ′i is Abelian Baer. Thus each direct summand of ⊕iM ′i is fully invariant.

Therefore for each i ∈ I, M ′i is fully invariant in ⊕iM ′i . Hence for each distinct

i, j ∈ I, Hom(M ′i ,M
′
j) = 0.

(2)⇒ (1) As Z2(Mi) ≤⊕ Mi for each i ∈ I and Z2(M) = ⊕iZ2(Mi), Z2(M) ≤⊕

M , say M = Z2(M)⊕M ′ where M ′ = ⊕iM ′i . Let J be a left ideal of S. We show

that tM (J) ∩M ′ is a fully invariant direct summand of M ′. Let e be canonical

projection from M onto M ′. Then tM (J) ∩ M ′ = rM ′(S′J ′) = rM ′(J ′) where

J ′ = {efe| f ∈ J} and S′ = End(M′). By (2)(ii), for each distinct i, j ∈ I,

Hom(M ′i ,M
′
j) = 0, therefore for each f ∈ J , efe = ⊕if ′i where f ′i ∈ End(M ′i).

Thus rM ′(J ′) = ⊕irM ′
i
(J ′i) where J ′i = {f ′i ∈ End(M ′i)| efe = ⊕if ′i for each i ∈ I}.

Since M ′i is Abelian Baer for each i ∈ I, rM ′
i
(J ′i) is a fully invariant direct summand

of M ′i . Therefore tM (J) ∩M ′ = rM ′(S′J ′) is a fully invariant direct summand of

M ′. Hence Theorem 4.2(4) completes the proof. �
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