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Abstract. Let R be a commutative ring with 1 6= 0, I a proper ideal of R,

and ∼ a multiplicative congruence relation on R. Let R/∼ = { [x]∼ | x ∈
R } be the commutative monoid of ∼-congruence classes under the induced

multiplication [x]∼[y]∼ = [xy]∼, and let Z(R/∼) be the set of zero-divisors of

R/∼. The ∼-zero-divisor graph of R is the (simple) graph Γ∼(R) with vertices

Z(R/∼) \{[0]∼} and with distinct vertices [x]∼ and [y]∼ adjacent if and only

if [x]∼[y]∼ = [0]∼. Special cases include the usual zero-divisor graphs Γ(R)

and Γ(R/I), the ideal-based zero-divisor graph ΓI(R), and the compressed

zero-divisor graphs ΓE(R) and ΓE(R/I). In this paper, we investigate the

structure and relationship between the various ∼-zero-divisor graphs.
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1. Introduction and definitions

Let R be a commutative ring with 1 6= 0, and let Z(R) be its set of zero-

divisors. The zero-divisor graph of R is the (simple) graph Γ(R) with vertices

Z(R)∗ = Z(R)\{0}, the set of nonzero zero-divisors of R, and with distinct vertices

x and y adjacent if and only if xy = 0. There have been several other related “zero-

divisor” graphs associated to R. The ideal-based zero-divisor graph of R with respect

to an ideal I of R is the (simple) graph ΓI(R) with vertices {x ∈ R \ I | xy ∈ I
for some y ∈ R \ I } and with distinct vertices x and y adjacent if and only if

xy ∈ I. For example, Γ{0}(R) = Γ(R). Define an (congruence) equivalence relation

∼ on R by x ∼ y ⇔ annR(x) = annR(y), and let RE = { [x] | x ∈ R } be

the commutative monoid of (congruence) equivalence classes under the induced

multiplication [x][y] = [xy]. Note that [0] = {0} and [1] = R\Z(R); so [x] ⊆ Z(R)∗

for every x ∈ R \ ([0]∪ [1]). The compressed zero-divisor graph of R is the (simple)

graph ΓE(R) with vertices RE \ {[0], [1]} and with distinct vertices [x] and [y]

adjacent if and only if [x][y] = [0], if and only if xy = 0.
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More generally, for any (multiplicative) commutative semigroup S with 0, let

Z(S) = {x ∈ S | xy = 0 for some 0 6= y ∈ S } be the set of zero-divisors of S. The

zero-divisor graph of S is the (simple) graph Γ(S) with vertices Z(S)∗ = Z(S)\{0}
and with distinct vertices x and y adjacent if and only if xy = 0. Thus Γ(R) =

Γ(S), where S = R considered as a monoid under the given ring multiplication;

ΓI(R) = Γ(S), where S = RI is the Rees semigroup of R with respect to the ideal

I; and ΓE(R) = Γ(S), where S = RE as defined above.

The concept of a zero-divisor graph was introduced by I. Beck [11], and then

further studied by D. D. Anderson and M. Naseer [1]. However, they let all the el-

ements of R be vertices of the graph, and they were mainly interested in colorings.

Our definition of Γ(R) and the emphasis on studying the interplay between the

graph-theoretic properties of Γ(R) and the ring-theoretic properties of R are from

[8]. In [22], S. P. Redmond introduced the ideal-based zero-divisor graph ΓI(R).

The compressed zero-divisor graph ΓE(R) (using different notation) was first de-

fined by S. B. Mulay [21, p. 3551]. The semigroup zero-divisor graph Γ(S) was

given by F. R. DeMeyer, T. McKenzie, and K. Schneider in [16]. For additional

information and references about zero-divisor graphs, see [4], [6], [7], [9], [23], and

the two survey articles [2] and [14].

In this paper, we introduce a unifying concept of zero-divisor graph over a com-

mutative ring R with 1 6= 0 based on a multiplicative congruence relation ∼ on R

(i.e., ∼ is an equivalence relation on R and x ∼ y implies xz ∼ yz for x, y, z ∈ R).

Then R/∼ = { [x]∼ | x ∈ R }, the set of ∼-congruence classes of R, is a commutative

monoid under the induced multiplication [x]∼[y]∼ = [xy]∼ with identity element

[1]∼ and zero element [0]∼. Thus Γ∼(R) = Γ(R/∼), called the congruence-based

zero-divisor graph of R with respect to ∼ (or the ∼-zero-divisor graph of R for

short), is the (simple) graph with vertices Z(R/∼)∗ = Z(R/∼) \ {[0]∼} and with

distinct vertices [x]∼ and [y]∼ adjacent if and only if [x]∼[y]∼ = [xy]∼ = [0]∼, if and

only if xy ∼ 0. Special cases of Γ∼(R) include the usual zero-divisor graphs Γ(R)

and Γ(R/I), the ideal-based zero-divisor graph ΓI(R), and the condensed zero-

divisor graphs ΓE(R) and ΓE(R/I) (see Example 2.1). This approach clarifies the

many isolated results concerning the various zero-divisor graphs spread throughout

the literature. While Γ∼(R) is a special case of a semigroup zero-divisor graph,

that concept is much too general for our purposes as our ∼-zero-divisor graphs are

all based on the multiplication in R.

There are other “multiplicative” zero-divisor graphs of R that are not ∼-zero-

divisor graphs. For example, A. Badawi [10] defined the annihilator graph of R
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to be the (simple) graph AG(R) with vertices Z(R)∗ and with distinct vertices

x and y adjacent if and only if annR(x) ∪ annR(y) 6= annR(xy). Then Γ(R) is

a subgraph of AG(R), but AG(R) need not be a Γ∼(R). (Let R = Z8. Then

AG(R) = K3. However, Γ(R) = K1,2, and thus any Γ∼(R) with 3 vertices is also a

K1,2.) For another example, let S be the monoid of ideals of R under the usual ideal

multiplication. Then, following S. Behboodi and Z. Rakeei [12], AG(R) = Γ(S),

the annihilating ideal graph of R, is a semigroup zero-divisor graph that need not

be a Γ∼(R). (Let R = Z2[X,Y ]/(X2, XY, Y 2). Then AG(R) = K4. However, any

Γ∼(R) has at most 3 vertices since |Z(R)∗| = 3.)

Let C(R) be the set of all multiplicative congruence relations on R. Then C(R)

is partially ordered by inclusion, i.e., for ∼1,∼2 ∈ C(R), ∼1 ≤ ∼2 if and only if

∼1 ⊆ ∼2 as subsets of R × R, if and only if x ∼1 y implies x ∼2 y for x, y ∈ R,

if and only if [x]∼1
⊆ [x]∼2

for every x ∈ R. Moreover, C(R) has a least element

=R = { (x, x) | x ∈ R } and a greatest element R×R. For ∼ ∈ C(R), I = [0]∼ is a

semigroup ideal of R. (Recall that a ∅ 6= I ⊆ S of a (multiplicative) commutative

semigroup S is an (semigroup) ideal of S if xy ∈ I for all x ∈ S and y ∈ I. A proper

ideal I of S is a prime (resp., radical) (semigroup) ideal of S if xy ∈ I implies x ∈ I
or y ∈ I (resp., xn ∈ I for some integer n ≥ 1 implies x ∈ I).) In this paper, R will

always be considered a monoid under the given ring multiplication and “ideal of R”

will always mean a ring ideal of R. Note that an ideal of R is always a semigroup

ideal of R, but a semigroup ideal of R need not be an ideal of R. For example,

Z(R) and R \U(R) are always prime semigroup ideals of R, but need not be ideals

of R. In fact, it is easily shown that a ∅ 6= I ⊆ R is a semigroup ideal of R if and

only if I is a union of ideals of R, if and only if I is a union of principal ideals of R.

Also, a prime (resp., radical) ideal of R is always a prime (resp., radical) semigroup

ideal of R, but the converse may fail since a union of prime (resp., radical) ideals

of R is a prime (resp., radical) semigroup ideal of R. However, {0} is an (prime,

radical) ideal of R if and only if it is a (prime, radical) semigroup ideal of R. For I

an (semigroup) ideal of R and x ∈ R, (I : x) = { y ∈ R | xy ∈ I } is an (semigroup)

ideal of R containing I. Moreover, (I : x)/I = annR/I(x+ I) when I is an ideal of

R.

For I a semigroup ideal of R, let CI(R) = {∼ ∈ C(R) | [0]∼ = I }. Then

C(R) =
⊔
{ CI(R) | I is a semigroup ideal of R }, and each CI(R) is nonempty (see

Example 2.1(c)) and partially ordered by inclusion. Note that [0]∼ = R if and only

if ∼ = R×R; so CR(R) = {R×R}. Moreover, for ∼,∼1,∼2 ∈ C(R), [0]∼1 ⊆ [0]∼2

if ∼1 ≤ ∼2; and thus, if ∼1 ≤ ∼ ≤ ∼2 with ∼1,∼2 ∈ CI(R), then ∼ ∈ CI(R).
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We assume that all graphs are simple graphs, i.e., they are undirected graphs

with no multiple edges or loops. By abuse of notation, we will let G, rather than

V (G), denote the vertices of a graph G. Recall that a graph G is connected if there

is a path between any two distinct vertices of G. For vertices x and y of G, let

d(x, y) be the length of a shortest path from x to y (d(x, x) = 0 and d(x, y) = ∞
if there is no such path). The diameter of G is diam(G) = sup{ d(x, y) |x and y

are vertices of G }. The girth of G, denoted by gr(G), is the length of a shortest

cycle in G (gr(G) = ∞ if G contains no cycles). As usual, Kn will denote the

complete graph on n vertices and Km,n will denote the complete bipartite graph

on m,n vertices (m and n may be infinite cardinals). A subgraph G′ of a graph G

is an induced subgraph of G if two vertices of G′ are adjacent in G′ if and only if

they are adjacent in G. For graphs G and G′, a function f : G −→ G′ is a graph

homomorphism if vertices x and y are adjacent in G implies that f(x) and f(y) are

adjacent in G′. The function f is a graph isomorphism if it is bijective and f and

f−1 are both graph homomorphisms (i.e., vertices x and y are adjacent in G if and

only if f(x) and f(y) are adjacent in G′); in this case, we write G ∼= G′ (again, by

abuse of notation, we will often just write G = G′ when f is a naturally induced

graph isomorphism).

In Section 2, we give some basic properties of Γ∼(R) and investigate the structure

of CI(R). For example, we show that each CI(R) has a least element (given by x ∼ y
⇔ x = y or x, y ∈ I) and a greatest element (given by x ∼ y ⇔ (I : x) = (I : y)). In

Section 3, we study functions between ∼-zero-divisor graphs. For ∼1, ∼2 ∈ CI(R)

with ∼1 ≤ ∼2, there is a surjective function F : Γ∼1(R) −→ Γ∼2(R) given by

F ([x]∼1
) = [x]∼2

and an injective graph homomorphism G : Γ∼2
(R) −→ Γ∼1

(R)

such that FG = 1Γ∼2
(R). In particular, there is a largest (resp., smallest) ∼-zero-

divisor graph with I = [0]∼, namely, ΓI(R) (resp., ΓE(R/I) when I is an ideal

of R). In Section 4, for a subring R of a commutative ring T with 1 6= 0, and

∼R ∈ C(R) and ∼T ∈ C(T ) with ∼R ⊆ ∼T and [0]∼R
= [0]∼T

∩ R, we consider

the induced function F : Γ∼R
(R) −→ Γ∼T

(T ) given by F ([x]∼R
) = [x]∼T

. If

∼R = ∼T ∩ (R × R), then F is an injective graph homomorphism; so Γ∼R
(R) is

isomorphic to an induced subgraph of Γ∼T
(T ). In Section 5, we investigate the

more general question of when a homomorphism f : R −→ T of rings induces a

function F : Γ∼(R) −→ Γ∼′(T ) of graphs given by F ([x]∼) = [f(x)]∼′ for some ∼
∈ C(R) and ∼′ ∈ C(T ).

Throughout, R will be a commutative ring with 1 6= 0, Z(R) its set of zero-

divisors and Z(R)∗ = Z(R) \ {0}, nil(R) its set of nilpotent elements, U(R) its
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group of units, T (R) = RS , where S = R \ Z(R), its total quotient ring, and

dim(R) its Krull dimension. As usual, we assume that a subring has the same

identity element as the ring, and all ring and monoid homomorphisms send the

identity to the identity. We say that R is reduced if nil(R) = {0}. Let N, Z, Zn, and

Q denote the positive integers, integers, integers modulo n, and rational numbers,

respectively, and A∗ = A \ {0}. For any undefined ring-theoretic terminology, see

[18] or [19]; for semigroups, see [17]. A general reference for graph theory is [13].

To avoid trivialities, we will implicitly assume when necessary that Γ∼(R) is not

the empty graph.

Most of the results in the first four sections of this paper are from the second-

named author’s PhD dissertation [20] at The University of Tennessee under the

direction of the first-named author.

2. Basic results

In this section, we give some basic properties of Γ∼(R) and investigate the struc-

ture of CI(R). We start with some examples of multiplicative congruence realations

and their corresponding congruence-based zero-divisor graphs. In each case, it is

easily verified that ∼ ∈ C(R).

Example 2.1. Let R be a commutative ring with 1 6= 0.

(a) Let ∼ be =R. Then R/∼ = R, Γ∼(R) = Γ(R), the usual zero-divisor graph

of R (we identify [x]∼ = {x} with x), and [0]∼ = {0}. Thus ∼ ∈ C{0}(R).

(b) Let I be a proper ideal of R, and let ∼I ∈ C(R) be defined by x ∼I y

⇔ x − y ∈ I for x, y ∈ R. Then R/∼I = R/I, Γ∼I
(R) = Γ(R/I), and

[0]∼I
= I. Thus ∼I ∈ CI(R), and ∼I ≤ ∼J if and only if I ⊆ J . (Note

that for I a semigroup ideal of R, ∼I defines a multiplicative congruence

relation on R if and only if I is an ideal of R.)

(c) Let I be a semigroup ideal of R, and let ∼I ∈ C(R) be defined by x ∼I y ⇔
x = y or x, y ∈ I for x, y ∈ R. Then R/∼I = RI is the Rees semigroup of

R with respect to I, and [0]∼I
= I. (The Rees semigroup is usually denoted

by R/I, where the semigroup ideal I collapses to 0.) Thus ∼I ∈ CI(R), and

∼I ≤ ∼J if and only if I ⊆ J . If I is an ideal of R, then Γ∼I
(R) = ΓI(R),

the ideal-based zero-divisor graph of R with respect to I (again, we identify

[x]∼I
= {x} with x for x ∈ R \ I). Hence, for any semigroup ideal I of R,

we will denote Γ∼I
(R) by ΓI(R).

(d) Let I be a semigroup ideal of R, and let ∼ ∈ C(R) be defined by x ∼ y

⇔ (I : x) = (I : y) for x, y ∈ R. Then [0]∼ = I; so ∼ ∈ CI(R). If
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I is a proper ideal of R, then Γ∼(R) = ΓE(R/I), the compressed zero-

divisor graph of R/I (we identify [x]∼ in R/∼ with [x+ I] in (R/I)E, see

Corollary 5.2). Throughout this paper, we will identify this Γ∼(R) with

ΓE(R/I). If I = {0}, then (I : x) = annR(x); so Γ∼(R) = ΓE(R), the

compressed zero-divisor graph of R.

(e) Let G be a (multiplicative) subgroup of U(R), and let ∼G ∈ C(R) be defined

by x ∼G y ⇔ y = ux for x, y ∈ R and u ∈ G. Then [0]∼G
= {0}; so

∼G ∈ C{0}(R). For example, Γ∼{1}(R) = Γ(R). Moreover, for subgroups

G1, G2 ⊆ U(R), we have ∼G1
≤ ∼G2

if and only if G1 ⊆ G2, and thus

∼G1 = ∼G2 if and only if G1 = G2.

The next example illustrates the added diversity associated with ∼-zero-divisor

graphs. Recall that for m,n ∈ N, there is a commutative ring R with 1 6= 0 such

that Γ(R) = Kn if and only if n + 1 is a prime power [8, Theorem 2.10], and

Γ(R) = Km,n if and only if m+ 1 and n+ 1 are both prime powers [8, p. 439].

Example 2.2. (a) Let R = Q[X]/(X2) = Q[x] with x2 = 0. Then Z(R)∗ =

{αx | α ∈ Q∗ }; so Γ(R) = Kω and ΓE(R) = K1. For an integer n ≥ 1,

let Gn = { 2nki/j | k ∈ Z, i, j ∈ Z \ 2Z }, and let Gω = { i/j | i, j ∈ Z \ 2Z }.
Then Gn is a multiplicative subgroup of Q∗ ⊆ U(R) for every n ∈ N∪ {ω}.
Define ∼n = ∼Gn

∈ C{0}(R) as in Example 2.1(e). It is easily veri-

fied that Z(R/∼ω)∗ = { [x]∼ω
, [2x]∼ω

, . . . , [2nx]∼ω
, . . . } and Z(R/∼n)∗ =

{ [x]∼n,[2x]∼n
, . . . , [2(n−1)x]∼n

}; so Γ∼ω
(R) = Kω and Γ∼n

(R) = Kn for

every integer n ≥ 1.

(b) Let R = Q × Q. Then Γ(R) = Kω,ω and ΓE(R) = K1,1 = K2. For

n ∈ N ∪ {ω}, let Gn be as in part (a) above. Then Gm,n = Gm × Gn ⊆
Q∗ × Q∗ = U(R). Define ∼Gm,n

∈ C{0}(R) as in Example 2.1(e). It is

easily verified that Γ∼Gm,n
(R) = Km,n for every m,n ∈ N ∪ {ω}.

It is well known that Γ(R) and ΓE(R) are the empty graph if and only if R is

an integral domain and that ΓI(R) is the empty graph if and only if I = R or I is

a prime ideal of R. A similar result holds for Γ∼(R).

Theorem 2.3. Let R be a commutative ring with 1 6= 0, and let ∼ ∈ C(R).

(a) Γ∼(R) is the empty graph if and only if [0]∼ = R or [0]∼ is a prime semi-

group ideal of R.

(b) Γ∼(R) is the empty graph for every ∼∈ C(R) if and only if R is a field.
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Proof. (a) This follows since Z(R/∼) = ∅ if and only if R/∼ = {[0]∼} (i.e.,

[0]∼ = R), and Z(R/∼) = {[0]∼} if and only if [0]∼ is a prime semigroup ideal of

R.

(b) If R is a field, then {0} and R are the only semigroup ideals of R and {0} is

a prime semigroup ideal of R. Thus Γ∼(R) is the empty graph when R is a field by

part (a). Conversely, suppose that R is not a field. Hence R has a proper ideal I

that is not a prime ideal. Let ∼ ∈ CI(R) be defined by x ∼ y ⇔ x = y or x, y ∈ I.

Then Γ∼(R) = ΓI(R) is not the empty graph. �

The following fundamental lemma will be used in several places throughout this

paper.

Lemma 2.4. Let R be a commutative ring with 1 6= 0, x ∈ R, and ∼1,∼2 ∈ C(R)

with [0]∼1 = [0]∼2 . Then [x]∼1 ∈ Z(R/∼1)∗ if and only if [x]∼2 ∈ Z(R/∼2)∗.

Proof. Suppose that [0]∼1
= [0]∼2

, and let x ∈ R. Then [x]∼1
= [0]∼1

if and

only if [x]∼2 = [0]∼2 , and [x]∼1 [y]∼1 = [0]∼1 for [y]∼1 ∈ (R/∼1)∗ if and only if

[x]∼2 [y]∼2 = [0]∼2 for [y]∼2 ∈ (R/∼2)∗. Thus [x]∼1 ∈ Z(R/∼1)∗ if and only if

[x]∼2
∈ Z(R/∼2)∗. �

Now, we investigate the relative size of congruence-based zero-divisor graphs

compared to the usual zero-divisor graph. The next result demonstrates that, in

certain cases, we have |Γ∼(R)| ≤ |Γ(R)| (also, see Corollary 3.3). However, the

remark that follows provides an example for which |Γ∼(R)| > |Γ(R)|.

Theorem 2.5. Let R be a commutative ring with 1 6= 0, and let ∼ ∈ C(R). If

R = Z(R) ∪ U(R) or ∼ ∈ C{0}(R), then |Γ∼(R)| = |Z(R/∼)∗| ≤ |Z(R)∗| = |Γ(R)|.
In particular, the inequality holds if dim(R) = 0 (e.g., R is finite).

Proof. Let x ∈ R. If ∼ ∈ C{0}(R), then [0]=R
= {0} = [0]∼. Thus x ∈ Z(R)∗

if and only if [x]∼ ∈ Z(R/∼)∗ by Lemma 2.4. If R = Z(R) ∪ U(R), then clearly

x ∈ Z(R)∗ if [x]∼ ∈ Z(R/∼)∗ (the converse may fail, see Remark 2.6(b)). Hence

|Γ∼(R)| = |Z(R/∼)∗| ≤ |Z(R)∗| = |Γ(R)|. �

Remark 2.6. (a) We may have |Γ∼(R)| = |Z(R/∼)∗| > |Z(R)∗| = |Γ(R)| for

∼ ∈ C(R). For example, let R = Z and I = 4Z. Then the graphs ΓI(R)

and Γ(R/I) are both nonempty although Z(R) = {0}, and thus Γ(R) is the

empty graph.

(b) Also, x ∈ Z(R)∗ need not imply that [x]∼ ∈ Z(R/∼) for ∼ ∈ C(R). For

example, let R = Z2 × Z2, I = {0} × Z2, and ∼ ∈ CI(R) be defined by x ∼
y ⇔ x− y ∈ I. Then (1, 0) ∈ Z(R)∗, but [(1, 0)]∼ = [(1, 1)]∼ 6∈ Z(R/∼).
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(c) We may have Γ∼1
(R) = Γ∼2

(R) 6= ∅ for distinct ∼1,∼2 ∈ CI(R). This is

because distinct multiplicative congruence relations ∼ on R may yield the

same Z(R/∼). Specifically, this would happen if they restrict to the same

congruence relation on Z(R). For example, let R = Z4. Then C{0}(R) =

{=R,∼}, where x ∼ y ⇔ annR(x) = annR(y), and =R < ∼. However,

=R and ∼ agree on Z(R); so Γ(R) = ΓE(R)(= K1). In fact, for R a

commutative ring with 1 6= 0, Γ(R) = ΓE(R) 6= ∅ if and only if R is

a Boolean ring (not Z2), Z4, or Z2[X]/(X2) [4, Corollary 2.7], also cf.

Corollary 2.12.

Probably the two best known results for Γ(R) are that Γ(R) is connected with

diam(Γ(R)) ∈ {0, 1, 2, 3} [8, Theorem 2.3] and gr(Γ(R)) ∈ {3, 4,∞} ([8, Theorem

2.4], [15, Theorem 1.6], [21, (1.4)]). These two results also hold for ΓI(R) and

ΓE(R); in fact, both are special cases for the semigroup zero-divisor graph Γ(S)

[16, Theorems 1.2 and 1.5]. These two results also hold for every Γ∼(R). Moreover,

gr(ΓE(R)) ∈ {3,∞} [6, Theorem 3.1], and thus gr(Γ∼(R)) ∈ {3,∞} when I is a

proper ideal of R and ∼ ∈ CI(R) is defined by x ∼ y ⇔ (I : x) = (I : y) since

Γ∼(R) = ΓE(R/I) by Example 2.1(d).

Theorem 2.7. Let R be a commutative ring with 1 6= 0, and let ∼ ∈ C(R).

(a) Γ∼(R) is connected with diam(Γ∼(R)) ∈ {0, 1, 2, 3}.
(b) gr(Γ∼(R)) ∈ {3, 4,∞}.

Proof. Since Γ∼(R) = Γ(R/∼) is a semigroup zero-divisor graph, part (a) follows

from [16, Theorem 1.2] and part (b) follows from [16, Theorem 1.5]. �

Let ∼ ∈ C(R). Many properties of Γ∼(R) are determined by the semigroup

ideal I = [0]∼ and happen in “levels” given by CI(R) (see Section 3). We have

already observed in Lemma 2.4 that for ∼1,∼2 ∈ CI(R), [x]∼1 ∈ Z(R/∼1)∗ if and

only if [x]∼2 ∈ Z(R/∼2)∗. Of special interest are the cases when either I = {0}
or I is an ideal of R. For example, distinct vertices [x]∼ and [y]∼ are adjacent

in Γ∼(R) if and only if [xy]∼ = [0]∼, and hence if and only if xy ∈ I. Thus, if

[0]∼ = {0} (i.e., ∼ ∈ C{0}(R)), then [x]∼ and [y]∼ are adjacent in Γ∼(R) if and only

if xy = 0. In fact, [0]∼ = {0} if and only if xy = 0 whenever xy ∼ 0 for x, y ∈ R.

Also, let ∼ ∈ C{0}(R); then Γ∼(R) = ∅ if and only if R is an integral domain by

Theorem 2.3(a).

We next show that every CI(R) has a least element ∼1, a greatest element ∼3,

and CI(R) = {∼ ∈ C(R) | ∼1 ≤ ∼ ≤ ∼3 }. Of course, we may have ∼ ≤ ∼′ for ∼,

∼′ in distinct CI(R) (cf. Example 2.1(b),(c)).



ZERO-DIVISOR GRAPHS OVER A COMMUTATIVE RING 119

Theorem 2.8. Let R be a commutative ring with 1 6= 0, and let I be a semigroup

ideal of R. Define ∼1, ∼3 ∈ CI(R) by x ∼1 y ⇔ x = y or x, y ∈ I and x ∼3 y ⇔ (I :

x) = (I : y). Then ∼1 ≤ ∼ ≤ ∼3 for every ∼ ∈ CI(R). Moreover, if ∼1 ≤ ∼ ≤ ∼3

for ∼ ∈ C(R), then ∼ ∈ CI(R). Thus CI(R) = {∼ ∈ C(R) | ∼1 ≤ ∼ ≤ ∼3 }.

Proof. Let ∼ ∈ CI(R); so [0]∼ = I = [0]∼1 = [0]∼3 . First, we show that ∼1 ≤
∼. Suppose that x ∼1 y; then x = y or x, y ∈ I. If x = y, then x ∼ y since ∼ is

reflexive. Otherwise, x, y ∈ I = [0]∼; so x ∼ y. Thus ∼1 ≤ ∼.

Next, we show that ∼ ≤ ∼3 for ∼ ∈ CI(R). Suppose that x ∼ y, and let

z ∈ (I : x). Then zx ∈ I = [0]∼. Thus zx ∼ zy gives zy ∈ [0]∼ = I, and hence

z ∈ (I : y). Thus (I : x) ⊆ (I : y). The proof of the reverse inclusion is similar; so

(I : x) = (I : y). Hence x ∼3 y; so ∼ ≤ ∼3.

For the “moreover” statement, note that ∼1 ≤ ∼ ≤ ∼3 gives I = [0]∼1
⊆ [0]∼ ⊆

[0]∼3 = I. Thus [0]∼ = I; so ∼ ∈ CI(R). �

Corollary 2.9. Let R be a commutative ring with 1 6= 0, and let ∼ ∈ C(R). Define

∼3 by x ∼3 y ⇔ annR(x) = annR(y). Then ∼ ∈ C{0}(R) if and only if =R ≤ ∼ ≤
∼3. Thus C{0}(R) = {∼ ∈ C(R) | x ∼ y ⇒ annR(x) = annR(y) }.

Our next goal is to determine when |CI(R)| = 1 for I a proper semigroup ideal of

R (recall that |CR(R)| = 1). By Theorem 2.8, |CI(R)| = 1 if and only if ∼1 = ∼3.

First, we need the following lemma.

Lemma 2.10. Let R be a commutative ring with 1 6= 0, and let I be a proper ideal

of R. Define ∼2,∼3 ∈ CI(R) by x ∼2 y ⇔ x−y ∈ I and x ∼3 y ⇔ (I : x) = (I : y).

If ∼2 = ∼3, then I is a radical ideal of R.

Proof. Suppose that ∼2 = ∼3, and let x2 ∈ I. Then (1 +x+ I)(1−x+ I) = 1 + I;

so 1 + x + I ∈ U(R/I). Thus (I : 1 + x)/I = annR/I(1 + x + I) = {0 + I};
so (I : 1 + x) = I = (I : 1). Hence 1 + x ∼3 1, and thus 1 + x ∼2 1. Hence

x = (1 + x)− 1 ∈ I, and thus I is a radical ideal of R. �

Recall that a ring R is a Boolean ring if x2 = x for every x ∈ R. A Boolean

ring R is necessarily commutative and reduced with char(R) = 2, dim(R) = 0,

U(R) = {1}, and Z(R) = R \ {1}. Also, a finite ring R is a Boolean ring if and

only if R ∼= Zn
2 for some integer n ≥ 1.

Theorem 2.11. Let R be a commutative ring with 1 6= 0, and let I be a proper

ideal of R. Define ∼1,∼2,∼3 ∈ CI(R) by x ∼1 y ⇔ x = y or x, y ∈ I, x ∼2 y ⇔
x− y ∈ I, and x ∼3 y ⇔ (I : x) = (I : y).
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(a) ∼1 = ∼2 if and only if I = {0}. Moreover, in this case, ∼1 = ∼2 = =R.

(b) ∼2 = ∼3 if and only if R/I is a Boolean ring.

(c) ∼1 = ∼3 if and only if I = {0} and R is a Boolean ring. Moreover, in this

case, ∼1 = ∼2 = ∼3 = =R.

Proof. By Theorem 2.8, ∼1 ≤ ∼2 ≤ ∼3.

(a) Clearly, ∼1 = ∼2 = =R when I = {0}. Conversely, suppose that ∼1 = ∼2.

Let x ∈ I. Then x + 1 ∼2 1 since (x + 1) − 1 = x ∈ I; so also x + 1 ∼1 1. Thus

x+ 1 = 1 or x+ 1, 1 ∈ I. Since I is a proper ideal of R, necessarily x+ 1 = 1, and

hence x = 0. Thus I = {0}.
(b) Suppose that∼2 =∼3. We show thatR/I is a Boolean ring. Let x ∈ R. Then

it is easily shown that (I : x) = (I : x2) since I is a radical ideal of R by Lemma 2.10.

Thus x2 ∼3 x, and hence x2 ∼2 x. Thus x2 − x ∈ I; so (x+ I)2 = x2 + I = x+ I.

Hence R/I is a Boolean ring.

Conversely, suppose that R/I is a Boolean ring. Since ∼2 ≤ ∼3 by Theorem 2.8,

we need only show that ∼3 ≤ ∼2. Let x ∼3 y for x, y ∈ R. Then (I : x) = (I : y).

Now x2 + I = x + I since R/I is a Boolean ring; so (x − 1)x = x2 − x ∈ I.

Thus x − 1 ∈ (I : x) = (I : y); so xy − y ∈ I. Similarly, yx − x ∈ I; so

x− y = (xy − y)− (yx− x) ∈ I. Hence x ∼2 y. Thus ∼3 ≤ ∼2; so ∼2 = ∼3.

(c) This follows directly from parts (a) and (b). �

Corollary 2.12. Let R be a commutative ring with 1 6= 0, I an ideal of R, and

∼ ∈ CI(R). Then |CI(R)| = 1 if and only if either I = R, or I = {0} and R is

a Boolean ring. Moreover, if I = R, then Γ∼(R) = ∅; and if I = {0} and R is

a Boolean ring, then Γ∼(R) = Γ(R), and Γ(R) = ∅ if and only if R = Z2. Thus

|CI(R)| ≥ 2 when I is a nonzero, proper ideal of R (and Γ∼(R) = ∅ for ∼ ∈ CI(R)

if and only if I is a prime ideal of R).

Corollary 2.13. Let R be a commutative ring with 1 6= 0.

(a) If R is a field, then |C(R)| ≥ 2. Moreover, |C(R)| = 2 if and only if R = Z2.

(b) If R is a Boolean ring and not a field, then |C(R)| ≥ 7.

(c) If R is not a Boolean ring and not a field, then |C(R)| ≥ 5.

Proof. (a) Suppose that R is a field. Then {0} and R are the only semigroup

ideals of R; so C(R) = C{0}(R) t CR(R). Thus |C(R)| = |C{0}(R)| + |CR(R)| ≥
|C{0}(R)|+ 1 ≥ 2. Moreover, |C(R)| = 2 if and only if |C{0}(R)| = 1, if and only if

R is a Boolean ring by Corollary 2.12, if and only if R = Z2 since R is also a field.

(b) and (c) Suppose that R is not a field. Then R has a nonzero, proper ideal I,

and |CI(R)| ≥ 2 by Corollary 2.12. If R is not a Boolean ring, then |C{0}(R)| ≥ 2 by
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Corollary 2.12 again; so |C(R)| ≥ |C{0}(R)|+|CI(R)|+|CR(R)| ≥ 2+2+1 = 5. If R is

a Boolean ring, then |C{0}(R)| = 1 by Corollary 2.12, R has another nonzero, proper

ideal J with |CJ(R)| ≥ 2, and Z(R) = R \ {1} is a semigroup ideal of R that is not

an ideal of R. Thus |C(R)| ≥ |C{0}(R)|+ |CI(R)|+ |CJ(R)|+ |CZ(R)(R)|+ |CR(R)| ≥
1 + 2 + 2 + 1 + 1 = 7. �

Remark 2.14. (a) One can easily show that |C(Z4)| = |C(Z2[X]/(X2))| = 5

and |C(Z2×Z2)| = 7; so the lower bounds in Corollary 2.13 may be realized.

Moreover, for a Boolean ring R, |C(R)| = 7 if and only if R = Z2×Z2. Also,

|C(Z3)| = 3, and |C(Z5)| = 4 (see [20, Example 3.16] for details). However,

Γ∼(R) = ∅ for every ∼ ∈ C(R) when R is a field by Theorem 2.3(b).

(b) If U(R) has incomparable subgroups, then C{0}(R) has incomparable ele-

ments by Example 2.1(e). For example, if R contains Q, then C{0}(R)

is uncountable and has incomparable elements (see [20, Example 3.17] for

details; also see Example 2.2(b)).

By Theorem 2.11(c), if I is a proper ideal of R, then ∼1 = ∼3 (i.e., |CI(R)| = 1)

if and only if I = {0} and R is a Boolean ring. This may fail, however, if I is

only assumed to be a semigroup ideal of R. For example, let R = Z2 × Z2 and

I = Z(R) = R \ {(1, 1)}. Then I is a nonzero, proper semigroup ideal of R, but

not an ideal of R, and it is easily verified that ∼1 = ∼3; so |CI(R)| = 1. In fact,

let R be any Boolean ring. Then R = Z(R) ∪ {1}, I = Z(R) = R \ {1} is a prime

semigroup ideal of R, and |CI(R)| = 1. Note that I is an (prime) ideal of R if and

only if it is the unique maximal ideal of R, i.e., R = Z2.

Next, we consider the case when |CI(R)| = 1 for I a semigroup ideal of R.

Theorem 2.15. Let R be a commutative ring with 1 6= 0, and let I be a proper

semigroup ideal of R. Define ∼1,∼3 ∈ CI(R) by x ∼1 y ⇔ x = y or x, y ∈ I and

x ∼3 y ⇔ (I : x) = (I : y).

(a) If ∼1 = ∼3, then U(R) = {1} and R is reduced.

(b) If U(R) = {1}, then R \ {1} is a prime semigroup ideal of R and ∼1 = ∼3

for I = R \ {1}.
(c) If U(R) = {1}, then R is a Boolean ring if and only if dim(R) = 0.

(d) If dim(R) = 0 (e.g., R is finite), then U(R) = {1} if and only if R is a

Boolean ring.

Proof. (a) Suppose that ∼1 = ∼3. Let x ∈ U(R). Then (I : x) = I = (I : 1); so

x ∼3 1. Hence x ∼1 1; so x = 1 since I is a proper semigroup ideal of R. Thus
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U(R) = {1}. If x2 = 0 for x ∈ R, then 1 + x ∈ U(R) = {1}; so x = 0. Hence R is

reduced.

(b) Suppose that U(R) = {1}. Then it is easily verified that R \ {1} is a prime

semigroup ideal of R and ∼1 = ∼3 for I = R \ {1}.
(c) Suppose that U(R) = {1}. Any Boolean ring R has dim(R) = 0. Conversely,

suppose that dim(R) = 0. Then R is reduced by parts (a) and (b) and zero-

dimensional by hypothesis; so R is von Neumann regular [18, Theorem 3.1]. Thus

every x ∈ R has the form ue, where u ∈ U(R) and e ∈ R is idempotent [18,

Theorem 3.2]. Hence every element of R is idempotent since U(R) = {1}; so R is

a Boolean ring.

(d) Suppose that dim(R) = 0. If R is a Boolean ring, then U(R) = {1}. Con-

versely, suppose that U(R) = {1}. Then R is a Boolean ring by part (c). �

Corollary 2.16. Let R 6= Z2 be a commutative ring with 1 6= 0.

(a) R has a nonzero, proper semigroup ideal I with |CI(R)| = 1 if and only if

U(R) = {1}.
(b) If dim(R) = 0 (e.g., R is finite), then R has a nonzero, proper semigroup

ideal I with |CI(R)| = 1 if and only if R is a Boolean ring.

Remark 2.17. (a) The dim(R) = 0 hypothesis is needed in Theorem 2.15(d)

and Corollary 2.16(b). For example, let R = Z2[X1, . . . , Xn] for n ≥ 1.

Then dim(R) = n ≥ 1 and U(R) = {1}; so |CI(R)| = 1 for I = R \ {1} by

Theorem 2.15(b), but R is not a Boolean ring.

(b) Let R be a commutative ring with 1 6= 0. Then I = Z(R) and J = R\U(R)

are always prime semigroup ideals of R; so Γ∼(R) = ∅ for every ∼ ∈
CI(R)∪ CJ(R) by Theorem 2.3(a). Note that J is an ideal of R if and only

if R is quasilocal (with maximal ideal J), and |CJ(R)| = 1 if and only if

U(R) = {1} by Theorem 2.15(a),(b).

(c) Let R be a commutative ring with 1 6= 0. If dim(R) = 0, then R is a

Boolean ring if and only if R = Z(R)∪{1} by Theorem 2.15(d). We ask if

the dim(R) = 0 hypothesis is needed. See [3, Section 2] for other conditions

that force R to be a Boolean ring.

3. Zero-divisor graph maps

In this section, we study functions between ∼-zero-divisor graphs over a commu-

tative ring R with 1 6= 0. Specifically, for ∼1, ∼2 ∈ CI(R) with ∼1 ≤ ∼2, we define

a surjective function F : Γ∼1
(R) −→ Γ∼2

(R) given by F ([x]∼1
) = [x]∼2

and an

injective graph homomorphism G : Γ∼2
(R) −→ Γ∼1

(R) such that FG = 1Γ∼2 (R).
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Let I be a semigroup ideal of R and ∼1, ∼2 ∈ C(R) with ∼1 ≤ ∼2. Then

it is easily verified that 1R : R −→ R induces a surjective monoid homomorphism

f : R/∼1 −→ R/∼2 given by f([x]∼1
) = [x]∼2

with f([0]∼1
) = [0]∼2

and f([1]∼1
) =

[1]∼2
. In fact, f is well-defined if and only if ∼1 ≤ ∼2, and f is injective if and only

if ∼1 = ∼2. Now suppose, in addition, that ∼1, ∼2 ∈ CI(R) (i.e., I = [0]∼1
= [0]∼2

).

Then [x]∼1 ∈ Z(R/∼1)∗ if and only if [x]∼2 ∈ Z(R/∼2)∗ by Lemma 2.4. Thus f

induces a surjective function F : Γ∼1(R) −→ Γ∼2(R) given by F ([x]∼1) = [x]∼2 , i.e.,

F = f |Z(R/∼1)∗ . Moreover, for distinct adjacent vertices [x]∼1
and [y]∼1

in Γ∼1
(R),

either F ([x]∼1
) = F ([y]∼1

) or F ([x]∼1
) and F ([y]∼1

) are adjacent in Γ∼2
(R). Note

that F may be well-defined or injective (and hence a graph isomorphism) without

f being well-defined or injective (cf. Remark 2.6(c)). Since F is surjective, there

is an (not necessarily unique) injective function G : Γ∼2
(R) −→ Γ∼1

(R) such that

FG = 1Γ∼2
(R) (i.e., for each z ∈ Z(R/∼2)∗, choose an α(z) ∈ Z(R/∼1)∗ such

that F (α(z)) = z, and then define G(z) = α(z)). Moreover, G([x]∼2) and G([y]∼2)

are adjacent in Γ∼1(R) if and only if [x]∼2 and [y]∼2 are adjacent in Γ∼2(R) since

[0]∼1
= [0]∼2

= I. Thus G is an injective graph homomorphism and embeds Γ∼2
(R)

as an induced subgraph of Γ∼1
(R). We record these observations in the following

theorem.

Theorem 3.1. Let R be a commutative ring with 1 6= 0, and let ∼1, ∼2 ∈ C(R)

with ∼1 ≤ ∼2. Then there is a surjective monoid homomorphism f : R/∼1 −→
R/∼2 given by f([x]∼1) = [x]∼2 . If [0]∼1 = [0]∼2 , then f induces a surjective

function F : Γ∼1
(R) −→ Γ∼2

(R) given by F ([x]∼1
) = [x]∼2

and an injective graph

homomorphism G : Γ∼2
(R) −→ Γ∼1

(R) such that FG = 1Γ∼2
(R). Moreover, for

distinct adjacent vertices [x]∼1
and [y]∼1

in Γ∼1
(R), either F ([x]∼1

) = F ([y]∼1
)

or F ([x]∼1) and F ([y]∼1) are adjacent in Γ∼2(R); and Γ∼2(R) is isomorphic to an

induced subgraph of Γ∼1(R).

Thus, by Theorems 2.8 and 3.1, for a fixed semigroup ideal I of R, there is a

largest and a smallest ∼-zero-divisor graph for ∼ ∈ CI(R). The largest is ΓI(R),

and the smallest is Γ∼(R), where x ∼ y ⇔ (I : x) = (I : y). Moreover, Γ∼(R) =

ΓE(R/I) when I is a proper ideal of R. Hence, for I = {0}, Γ(R) is the largest and

ΓE(R) is the smallest zero-divisor graph. In [5, p. 1450070-4], it was observed that

ΓE(R) is isomorphic to a subgraph of Γ(R), and in [22, Corollary 2.7] that ΓI(R)

contains |I| disjoint subgraphs isomorphic to Γ(R/I).

However, for ∼1, ∼2 ∈ CI(R) with ∼1 ≤ ∼2, the function F : Γ∼1
(R) −→ Γ∼2

(R)

given by F ([x]∼1) = [x]∼2 need not be a graph homomorphism since distinct adja-

cent vertices in Γ∼1(R) may collapse to the same vertex in Γ∼2(R). For example,
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let R = Z8, ∼1 = =R, and define ∼2 by x ∼2 y ⇔ annR(x) = annR(y). Then ∼1,

∼2 ∈ C{0}(R) with ∼1 ≤ ∼2, Γ∼1(R) = Γ(R) = K2, and Γ∼2(R) = ΓE(R) = K1;

so F : Γ(R) −→ ΓE(R) is not a graph homomorphism. The next theorem gives a

sufficient condition for F to be a graph homomorphism.

Theorem 3.2. Let R be a commutative ring with 1 6= 0, I a radical semigroup

ideal of R, and ∼1, ∼2 ∈ CI(R) with ∼1 ≤ ∼2. Then F : Γ∼1
(R) −→ Γ∼2

(R) given

by F ([x]∼1
) = [x]∼2

is a surjective graph homomorphism.

Proof. Suppose that distinct vertices [x]∼1
and [y]∼1

are adjacent in Γ∼1
(R). Thus

[xy]∼1
= [x]∼1

[y]∼1
= [0]∼1

; so xy ∼1 0. Hence xy ∼2 0 since ∼1 ≤ ∼2. If [x]∼2

= [y]∼2 , then x ∼2 y; so x2 ∼2 xy ∼2 0. Thus x2 ∈ [0]∼2 = I, and hence x ∈ I
since I is a radical semigroup ideal of R. But then [x]∼1 = [0]∼1 , a contradiction.

Thus [x]∼2
and [y]∼2

are distinct adjacent vertices in Γ∼2
(R), and hence F is a

surjective graph homomorphism. �

Corollary 3.3. Let R be a commutative ring with 1 6= 0.

(a) Let ∼ ∈ C{0}(R). Then there are surjective functions Γ(R) −→ Γ∼(R) −→
ΓE(R). Thus |ΓE(R)| ≤ |Γ∼(R)| ≤ |Γ(R)|. Moreover, if R is reduced, then

these functions are graph homomorphisms.

(b) Let I be a proper ideal of R. Then there are surjective functions ΓI(R) −→
Γ(R/I) −→ ΓE(R/I). Thus |ΓE(R/I)| ≤ |Γ(R/I)| ≤ |ΓI(R)|. Moreover,

if R/I is reduced (i.e., I is a radical ideal of R), then these functions are

graph homomorphisms.

(c) Let I be a proper semigroup ideal of R and ∼ ∈ CI(R). Then there are

surjective functions ΓI(R) −→ Γ∼(R) −→ Γ∼′(R), where ∼′ ∈ CI(R) is

defined by x ∼′ y ⇔ (I : x) = (I : y). Thus |Γ∼′(R)| ≤ |Γ∼(R)| ≤ |ΓI(R)|.
Moreover, if I is a radical semigroup ideal of R, then these functions are

graph homomorphisms.

In the following corollary, let the surjective and injective functions be those given

in Theorem 3.1, and note that the injective functions may be chosen to make the

diagrams commute.

Corollary 3.4. Let R be a commutative ring with 1 6= 0, I a proper ideal of R,

and ∼ ∈ CI(R). Then there are surjective functions
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ΓI(R)

Γ∼(R)

Γ(R/I)

ΓE(R/I)

F

F

F ′

F
′

and injective graph homomorphisms

ΓE(R/I)

Γ∼(R)

Γ(R/I)

ΓI(R)

G′

G
′

G

G

such that the above diagrams commute and F G = 1Γ∼(R), F G = 1Γ(R/I), F
′G′ =

1ΓE(R/I), and F
′
G
′

= 1ΓE(R/I). Moreover, Γ∼(R) and Γ(R/I) are each isomorphic

to an induced subgraph of ΓI(R), and ΓE(R/I) is isomorphic to an induced subgraph

of Γ∼(R), Γ(R/I), and ΓI(R).

4. More zero-divisor graph maps

In this section, we extend the results from the previous section using the inclusion

function i : R −→ T , where R is a subring of T , as a natural generalization of

the identity function 1R : R −→ R. More precisely, let R be a subring of a

commutative ring T with 1 6= 0, and let ∼R ∈ C(R) and ∼T ∈ C(T ). We say that

∼R and ∼T are compatible, denoted by ∼R ≤i ∼T , if x ∼R y implies x ∼T y for

x, y ∈ R, equivalently, if ∼R ⊆ ∼T (and thus ∼R ⊆ ∼T ∩ (R × R)). Note that

if T = R, then ∼R ≤i ∼T if and only if ∼R ≤ ∼T . Also, ∼R ≤i ∼T if and only

if [x]∼R
⊆ [x]∼T

∩ R for every x ∈ R. In particular, [0]∼R
⊆ [0]∼T

∩ R when ∼R

≤i ∼T . Note that the inclusion map i : R −→ T induces a well-defined monoid

homomorphism f : R/∼R−→ T/∼T given by f([x]∼R
) = [x]∼T

if and only if ∼R

≤i ∼T .

Let ∼R ∈ C(R) and ∼T ∈ C(T ) with ∼R ≤i ∼T . Then the monoid homomor-

phism f : R/∼R−→ T/∼T given by f([x]∼R
) = [x]∼T

is injective if and only if

[x]∼T
= [y]∼T

(i.e., x ∼T y) for x, y ∈ R implies [x]∼R
= [y]∼R

(i.e., x ∼R y). Thus

f is injective if and only if ∼T ∩ (R × R) ⊆ ∼R, if and only if [x]∼T
∩ R ⊆ [x]∼R
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for every x ∈ R. Note that if T = R, then f is injective if and only if ∼R = ∼T . In

particular, if f is injective, then [0]∼T
∩ R ⊆ [0]∼R

, and hence [0]∼T
∩ R = [0]∼R

.

Thus f is well-defined and injective if and only if ∼T ∩ (R×R) = ∼R, if and only

if [x]∼T
∩R = [x]∼R

for every x ∈ R.

Now suppose that ∼R ∈ C(R) and ∼T ∈ C(T ) with ∼R ≤i ∼T and [0]∼T
∩R =

[0]∼R
. Then f(Z(R/∼R)∗) ⊆ Z(T/∼T )∗ since for x ∈ R, [x]∼R

= [0]∼R
⇔ [x]∼T

=

[0]∼T
because [0]∼T

∩ R = [0]∼R
(cf. Lemma 2.4). Thus f induces a function

F : Γ∼R
(R) −→ Γ∼T

(T ) given by F ([x]∼R
) = [x]∼T

, i.e., F = f |Z(R/∼)∗ . If [x]∼R

and [y]∼R
are distinct adjacent vertices in Γ∼R

(R), then either F ([x]∼R
) = F ([y]∼R

)

or F ([x]∼R
) and F ([y]∼R

) are adjacent in Γ∼T
(T ). These observations are recorded

in the following theorem.

Theorem 4.1. Let R be a subring of a commutative ring T with 1 6= 0, and let ∼R

∈ C(R) and ∼T ∈ C(T ) with ∼R ≤i ∼T . Then there is a monoid homomorphism

f : R/∼R−→ T/∼T given by f([x]∼R
) = [x]∼T

. If [0]∼T
∩R = [0]∼R

, then f induces

a function F : Γ∼R
(R) −→ Γ∼T

(T ) given by F ([x]∼R
) = [x]∼T

. Moreover, if [x]∼R

and [y]∼R
are distinct adjacent vertices in Γ∼R

(R), then either F ([x]∼R
) = F ([y]∼R

)

or F ([x]∼R
) and F ([y]∼R

) are adjacent in Γ∼T
(T ).

Just as in the previous section, F need not be a graph homomorphism. How-

ever, the next theorem gives several cases where F is a graph homomorphism (cf.

Theorem 3.2).

Theorem 4.2. Let R be a subring of a commutative ring T with 1 6= 0, and

let ∼R ∈ C(R) and ∼T ∈ C(T ) with ∼R ≤i ∼T and [0]∼T
∩ R = [0]∼R

. Then

F : Γ∼R
(R) −→ Γ∼T

(T ) given by F ([x]∼R
) = [x]∼T

is a graph homomorphism

if [0]∼R
is a radical semigroup ideal of R or [0]∼T

is a radical semigroup ideal of

T . Moreover, F is an injective graph homomorphism if ∼T ∩ (R × R) = ∼R; so

Γ∼R
(R) is isomorphic to an induced subgraph of Γ∼T

(T ).

Proof. If [0]∼T
is a radical semigroup ideal of T , then [0]∼R

= [0]∼T
∩R is a radical

semigroup ideal of R. So we need only show that F is a graph homomorphism

when [0]∼R
is a radical semigroup ideal of R. Let [x]∼R

and [y]∼R
be distinct

adjacent vertices in Γ∼R
(R). Then [xy]∼R

= [x]∼R
[y]∼R

= [0]∼R
; so xy ∼R 0. If

[x]∼T
= [y]∼T

, then x ∼T y, and thus x2 ∼T xy ∼T 0; so x2 ∈ [0]∼T
∩ R = [0]∼R

.

Hence x ∈ [0]∼R
; so [x]∼R

= [0]∼R
, a contradiction. The “moreover” statement

follows from the discussion before Theorem 4.1. �

Given ∼T ∈ C(T ), define ∼R = ∼T ∩ (R×R). Clearly, ∼R ∈ C(R), ∼R ≤i ∼T ,

and [0]∼R
= [0]∼T

∩ R. Thus ∼T ∈ CI(T ) implies ∼R ∈ CI∩R(R). Moreover, ∼
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∈ C(R) is compatible with ∼T if and only if ∼ ≤ ∼R since ∼ ≤i ∼T if and only if

∼ ⊆ ∼T ∩ (R × R) = ∼R. Hence ∼R is the greatest element of C(R) with ∼R ≤i

∼T . With these observations, the next theorem follows directly from Theorems 4.1

and 4.2.

Theorem 4.3. Let R be a subring of a commutative ring T with 1 6= 0, and let

∼T ∈ CI(T ). Then ∼R ∈ CI∩R(R) defined by ∼R = ∼T ∩ (R × R) is the greatest

element of C(R) with ∼R ≤i ∼T . The function F : Γ∼R
(R) −→ Γ∼T

(T ) given by

F ([x]∼R
) = [x]∼T

is an injective graph homomorphism; so Γ∼R
(R) is isomorphic

to an induced subgraph of Γ∼T
(T ).

The following examples illustrate the preceding theorem.

Example 4.4. (a) Let ∼T be =T . Then ∼R = ∼T ∩ (R × R) is =R. Thus

Γ(R) is isomorphic to an induced subgraph of Γ(T ).

(b) Let I be a proper ideal of T . Then I ∩ R is a proper ideal of R. Thus ∼T

∈ CI(T ) given by x ∼ y ⇔ x − y ∈ I for x, y ∈ T induces ∼R ∈ CI∩R(R)

given by x ∼R y ⇔ x − y ∈ I ∩ R for x, y ∈ R. Hence Γ(R/(I ∩ R)) is

isomorphic to an induced subgraph of Γ(T/I).

(c) Let I be a proper semigroup ideal of T . Then I ∩ R is a proper semigroup

ideal of R. Thus ∼T ∈ CI(T ) given by x ∼T y ⇔ x = y or x, y ∈ I for

x, y ∈ T induces ∼R ∈ CI∩R(R) given by x ∼R y ⇔ x = y or x, y ∈ I∩R for

x, y ∈ R. Hence ΓI∩R(R) is isomorphic to an induced subgraph of ΓI(T ).

Of course, part (a) is just part (b) or (c) when I = {0}.

However, not all congruence relations and corresponding congruence-based zero-

divisor graphs behave so nicely. Let R be a subring of a commutative ring T

with 1 6= 0. Define ∼T ∈ C{0}(T ) by x ∼T y ⇔ annT (x) = annT (y) and ∼
∈ C{0}(R) by x ∼ y ⇔ annR(x) = annR(y), and let ∼R = ∼T ∩ (R × R). Note

that Γ∼(R) = ΓE(R) and Γ∼T
(T ) = ΓE(T ). For x, y ∈ R, it is always true that

annT (x) = annT (y)⇒ annR(x) = annR(y), but it need not be true that annR(x) =

annR(y) ⇒ annT (x) = annT (y) (see [4, p. 1630] for a specific example). Thus

the “function” F : ΓE(R) −→ ΓE(T ) given by F ([x]∼) = [x]∼T
need not be well-

defined. The function F is well-defined if and only if ∼ ≤i ∼T , if and only if

∼ ≤ ∼T ∩ (R × R) = ∼R. But, by the above comments, ∼R ≤ ∼; so F is well-

defined (and injective) if and only if ∼R = ∼.

For some subrings R of T , things do behave nicely. For example, if T is a

subring of Q(R), the complete ring of quotients of R, then F : ΓE(R) −→ ΓE(T )

is an injective graph homomorphism. Furthermore, if T is a subring of T (R), the
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total quotient ring of R, then F : ΓE(R) −→ ΓE(T ) is a graph isomorphism [4,

Theorem 3.2]. More generally, if T is a flat R-module (e.g., T = RS for S ⊆ R a

multiplicative subset with S ∩ Z(R) = ∅), then annR(x) = annR(y) ⇒ annT (x) =

annR(x)T = annR(y)T = annT (y) for x, y ∈ R. So, in this case, ∼R = ∼ and

F : ΓE(R) −→ ΓE(T ) is an injective graph homomorphism, and thus ΓE(R) is

isomorphic to an induced subgraph of ΓE(T ) [14, Proposition 3.1].

Let R be a subring of a commutative ring T with 1 6= 0, and let ∼T ,∼′T ∈ C(T )

with ∼T ≤ ∼′T . Define ∼R,∼′R ∈ C(R) by ∼R = ∼T ∩ (R × R) and ∼′R = ∼′T ∩
(R×R). It follows that ∼R ≤ ∼′R; so there are surjective monoid homomorphisms

fR : R/∼R −→ R/∼′R and fT : T/∼T −→ T/∼′T given by fR([x]∼R
) = [x]∼′R

and fT ([x]∼T
) = [x]∼′T . Since ∼R ≤i ∼T and ∼′R ≤i ∼′T , there are injective

monoid homomorphisms g : R/∼R −→ T/∼T and g′ : R/∼′R −→ T/∼′T given

by g([x]∼R
) = [x]∼T

and g′([x]∼′R) = [x]∼′T . If [0]∼T
= [0]∼′T , then [0]∼R

=

[0]∼T
∩R = [0]∼′T ∩R = [0]∼′R . So by Theorem 3.1, the monoid homomorphisms fR

and fT induce surjective functions FR : Γ∼R
(R) −→ Γ∼′R(R) and FT : Γ∼T

(T ) −→
Γ∼′T (T ), respectively. By Theorem 4.3, the monoid homomorphisms g and g′ induce

injective graph homomorphisms G : Γ∼R
(R) −→ Γ∼T

(T ) and G′ : Γ∼′R(R) −→
Γ∼′T (T ), respectively. It is easily checked that these functions give commutative

diagrams as recorded in the following theorem.

Theorem 4.5. Let R be a subring of a commutative ring T with 1 6= 0, and let

∼T ,∼′T ∈ C(T ) with ∼T ≤ ∼′T . Define ∼R,∼′R ∈ C(R) by ∼R = ∼T ∩ (R × R)

and ∼′R = ∼′T ∩ (R × R). Then the following diagram of monoid homomorphisms

commutes.

R/∼R T/∼T

R/∼′R T/∼′T

g

fR fT

g′

If [0]∼T
= [0]∼′T , then the following diagram of induced maps of congruence-based

zero-divisor graphs commutes. Moreover, G and G′ are graph homomorphisms.

Γ∼R
(R) Γ∼T

(T )

Γ∼′R(R) Γ∼′T (T )

G

FR FT

G′
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5. Induced zero-divisor graph maps

In this final section, we investigate when a homomorphism f : R −→ T of

commutative rings with 1 6= 0 induces a function F : Γ∼R
(R) −→ Γ∼T

(T ) of

graphs given by F ([x]∼R
) = [f(x)]∼T

. There are two cases, depending on whether

we start with ∼R ∈ C(R) or ∼T ∈ C(T ). These results generalize Section 3, where

R = T and f is the identity function on R, and Section 4, where f is the inclusion

function from R into T .

We start this section with an earlier mentioned result that will be a special case

of Theorem 5.9. Let I be a proper ideal of a commutative ring R with 1 6= 0. In

Example 2.1(b),(d), we observed that in some cases, a ∼ ∈ CI(R) induces a ∼′

∈ C{0}(R/I) such that [x]∼ 7→ [x + I]∼′ gives a graph isomorphism Γ∼(R) −→
Γ∼′(R/I). Thus a ∼-zero-divisor graph may come from different base rings. We

next formalize this “change of rings” result.

Theorem 5.1. Let R be a commutative ring with 1 6= 0, and let I be a proper ideal

of R. Define ∼1 ∈ CI(R) by x ∼1 y ⇔ x− y ∈ I. Given ∼ ∈ CI(R) with ∼1 ≤ ∼,

define ∼′ ∈ C{0}(R/I) by x+ I ∼′ y + I ⇔ x ∼ y. Then F : Γ∼(R) −→ Γ∼′(R/I)

given by F ([x]∼) = [x+ I]∼′ is a graph isomorphism.

Proof. It is easy to verify that ∼′ is well-defined and ∼′ ∈ C{0}(R/I) since ∼1 ≤ ∼.

Define f : R/∼−→ (R/I)/∼′ by f([x]∼) = [x+I]∼′ . It is also easy to verify that f is

a monoid isomorphism and induces a graph isomorphism F : Γ∼(R) −→ Γ∼′(R/I)

given by F ([x]∼) = [x+ I]∼′ , i.e., F = f |Z(R/∼)∗ . �

Corollary 5.2. Let R be a commutative ring with 1 6= 0, and let I be a proper ideal

of R. Define ∼1,∼2 ∈ CI(R) by x ∼1 y ⇔ x−y ∈ I and x ∼2 y ⇔ (I : x) = (I : y).

Then Γ∼1(R) = Γ(R/I) and Γ∼2(R) = ΓE(R/I).

Remark 5.3. The ∼1 ≤ ∼ hypothesis is needed in Theorem 5.1 since ΓI(R) is

usually not a Γ∼′(R/I) for any ∼′ ∈ C(R/I). For example, let R = Z and I =

4Z. Then ΓI(R) is infinite, but every Γ∼′(R/I) is finite since R/I = Z4 is finite

(actually, each Γ∼′(R/I) has at most one point). In fact, ∼′ is well-defined if and

only if ∼1 ≤ ∼ by Remark 5.10(a).

Let R and T be commutative rings with 1 6= 0, f : R −→ T a homomorphism,

∼R ∈ C(R), and ∼T ∈ C(T ). If x ∼R y implies f(x) ∼T f(y) for x, y ∈ R, then we

say that ∼R and ∼T are f -compatible and write ∼R ≤f ∼T . (This notation agrees

with the earlier notation of ≤ and ≤i). For example, =R ≤f ∼T for every ∼T ∈
C(T ), and ∼ ≤f =T for ∼ ∈ C(R) if and only if ∼ ≤ ∼′, where x ∼′ y ⇔ x− y ∈
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kerf . Clearly, ∼R ≤f ∼T if and only if [x]∼R
⊆ f−1([f(x)]∼T

) for every x ∈ R. In

particular, if ∼R ≤f ∼T , then [0]∼R
⊆ f−1([0]∼T

). Also, note that if ∼ ≤ ∼R in

C(R), ∼R ≤f ∼T , and ∼T ≤ ∼′ in C(T ), then ∼ ≤f ∼′.
If ∼R ≤f ∼T , then f induces a monoid homomorphism f : R/∼R −→ T/∼T

given by f([x]∼R
) = [f(x)]∼T

. If, in addition, f(Z(R/∼R)∗) ⊆ Z(T/∼T )∗, then

f induces a function F : Γ∼R
(R) −→ Γ∼T

(T ) given by F ([x]∼R
) = [f(x)]∼T

, i.e.,

F = f |Z(R/∼R)∗ . Note that f(Z(R/∼R)∗) ⊆ Z(T/∼T )∗ if [0]∼R
= f−1([0]∼T

) (cf.

Lemma 2.4). Moreover, if [x]∼R
and [y]∼R

are distinct adjacent vertices in Γ∼R
(R),

then either F ([x]∼R
) = F ([y]∼R

) or F ([x]∼R
) and F ([y]∼R

) are adjacent in Γ∼T
(T ).

Also, as in Theorem 4.2, it is easily verified that F is a graph homomorphism if

f−1([0]∼T
) is a radical semigroup ideal of R (e.g., if [0]∼T

is a radical semigroup

ideal of T ). This was the case for f = 1R in Section 3 and f the inclusion map in

Section 4. We summarize this discussion in the following theorem.

Theorem 5.4. Let R and T be commutative rings with 1 6= 0, ∼R ∈ C(R), and

∼T ∈ C(T ). Suppose that f : R −→ T is a homomorphism such that ∼R ≤f ∼T

and f(Z(R/∼R)∗) ⊆ Z(T/∼T )∗ (e.g., if [0]∼R
= f−1([0]∼T

)), where f : R/∼R −→
T/∼T is the monoid homomorphism given by f([x]∼R

) = [f(x)]∼T
. Then f induces

a function F : Γ∼R
(R) −→ Γ∼T

(T ) given by F ([x]∼R
) = [f(x)]∼T

. Moreover, if

[x]∼R
and [y]∼R

are distinct adjacent vertices in Γ∼R
(R), then either F ([x]∼R

) =

F ([y]∼R
) or F ([x]∼R

) and F ([y]∼R
) are adjacent in Γ∼T

(T ); and F is a graph

homomorphism if f−1([0]∼T
) is a radical semigroup ideal of R.

Example 5.5. Let R and T be commutative rings with 1 6= 0, f : R −→ T a

homomorphism, and I = kerf . Then one can easily verify directly that f induces

a function F : ΓI(R) −→ Γ(T ) given by F (x) = f(x). Let ∼ ∈ C(R) be defined by

x ∼ y ⇔ x = y or x, y ∈ I. Then ∼ ≤f =T and [0]∼ = I = f−1([0]=T
); so this

is a special case of Theorem 5.4. Moreover, F is a graph homomorphism if I is a

radical ideal of R, or more specifically, if T is reduced.

In some cases, the condition f(Z(R/∼R)∗) ⊆ Z(T/∼T )∗ forces f to be injective;

so in these cases, we can assume that R is a subring of T .

Theorem 5.6. Let R and T be commutative rings with 1 6= 0, ∼R ∈ C{0}(R),

and ∼T ∈ C(T ). Suppose that f : R −→ T is a homomorphism such that ∼R ≤f

∼T and f(Z(R/∼R)∗) ⊆ Z(T/∼T )∗, where f : R/∼R −→ T/∼T is the monoid

homomorphism given by f([x]∼R
) = [f(x)]∼T

. If Z(R) 6= {0}, then f is injective.

Proof. Suppose that f(x) = 0 for 0 6= x ∈ R, and let 0 6= y ∈ Z(R). Then

xy ∈ Z(R) and f(xy) = f(x)f(y) = 0. If xy 6= 0, then [xy]∼R
∈ Z(R/∼R)∗
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by Lemma 2.4. Thus [0]∼T
= [f(xy)]∼T

= f([xy]∼R
) 6= [0]∼T

by hypothesis, a

contradiction. Hence xy = 0; so x ∈ Z(R)∗, and thus [x]∼R
∈ Z(R/∼R)∗ by

Lemma 2.4 again. But then f([x]∼R
) = [f(x)]∼T

= [0]∼T
, a contradiction. Hence

kerf = {0}; so f is injective. �

Corollary 5.7. Let R and T be commutative rings with 1 6= 0 and Z(R) 6= {0},
∼T ∈ C{0}(T ), and f : R −→ T a homomorphism. Then f induces a function

F : Γ(R) −→ Γ∼T
(T ) given by F (x) = [f(x)]∼T

if and only if f is injective. In

particular, f induces a function F : Γ(R) −→ Γ(T ) given by F (x) = f(x) if and

only if f is injective.

Given commutative rings R and T with 1 6= 0 and a homomorphism f : R −→
T , we now consider the two problems of when ∼R ∈ C(R) induces a compatible

∼T ∈ C(T ) and when ∼T ∈ C(T ) induces a compatible ∼R ∈ C(R). In both cases,

we will have x ∼R y ⇔ f(x) ∼T f(y).

First, let ∼T ∈ CI(T ). For x, y ∈ R, define ∼R by x ∼R y ⇔ f(x) ∼T f(y). It

is easily verified that ∼R ∈ Cf−1(I)(R) and ∼R ≤f ∼T . We include these and more

in the following theorem.

Theorem 5.8. Let R and T be commutative rings with 1 6= 0, I a semigroup ideal

of T , ∼T ∈ CI(T ), and f : R −→ T a homomorphism. For x, y ∈ R, define ∼R by

x ∼R y ⇔ f(x) ∼T f(y).

(a) ∼R ∈ Cf−1(I)(R) and ∼R ≤f ∼T .

(b) Let ∼ ∈ C(R). Then ∼ ≤f ∼T if and only if ∼ ≤ ∼R.

(c) The function F : Γ∼R
(R) −→ Γ∼T

(T ) given by F ([x]∼R
) = [f(x)]∼T

is

an injective graph homomorphism. If f is surjective, then F is a graph

isomorphism.

Proof. (a) It is easily verified that ∼R ∈ C(R), and ∼R ≤f ∼T by definition. Also,

x ∈ [0]∼R
⇔ x ∼R 0 ⇔ f(x) ∼T 0 ⇔ f(x) ∈ [0]∼T

= I. Thus [0]∼R
= f−1(I); so

∼R ∈ Cf−1(I)(R).

(b) Let ∼ ∈ C(R). We have already observed that ∼ ≤f ∼T when ∼ ≤ ∼R.

Conversely, suppose that ∼ ≤f ∼T . Then x ∼ y ⇒ f(x) ∼T f(y) ⇒ x ∼R y; so ∼
≤ ∼R.

(c) By part (a), ∼R ≤f ∼T and [0]∼R
= f−1([0]∼T

). Thus by Theorem 5.4,

f induces the function F : Γ∼R
(R) −→ Γ∼T

(T ) given by F ([x]∼R
) = [f(x)]∼T

.

If F ([x]∼R
) = F ([y]∼R

), then [f(x)]∼T
= [f(y)]∼T

. Hence f(x) ∼T f(y); so x

∼R y by definition. Thus [x]∼R
= [y]∼R

; so F is injective. Hence F is a graph

homomorphism by Theorem 5.4 again.
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Suppose that f is surjective, and let [z]∼T
∈ Z(T/∼T )∗. Since f is surjective, z =

f(x) for some x ∈ R. It is easily verified that [x]∼R
∈ Z(R/∼R)∗. Thus F ([x]∼R

) =

[f(x)]∼T
= [z]∼T

; so F is surjective, and hence a graph isomorphism. �

Next, let ∼R ∈ CI(R). In this case, we also need to assume that f is surjective,

kerf ⊆ I, and ∼′ ≤ ∼R, where x ∼′ y ⇔ x − y ∈ kerf , to guarantee that ∼T is

well-defined (see Remark 5.10(a)). For w, z ∈ T , define ∼T by w ∼T z ⇔ w = f(x)

and z = f(y) for some x, y ∈ R with x ∼R y. Then ∼T ∈ Cf(I)(R), and as above, we

have f(x) ∼T f(y) ⇔ x ∼R y and ∼R ≤f ∼T . The following theorem generalizes

Theorem 5.1.

Theorem 5.9. Let R and T be commutative rings with 1 6= 0, f : R −→ T a

surjective homomorphism, I a ideal of R with kerf ⊆ I, and ∼R ∈ CI(R) with

∼′ ≤ ∼R, where x∼′y ⇔ x − y ∈ kerf . For w, z ∈ T , define ∼T by w ∼T z ⇔
w = f(x) and z = f(y) for some x, y ∈ R with x ∼R y.

(a) Let x, y ∈ R. Then f(x) ∼T f(y) ⇔ x ∼R y.

(b) ∼T ∈ Cf(I)(T ) and ∼R ≤f ∼T .

(c) Let ∼ ∈ C(T ). Then ∼R ≤f ∼ if and only if ∼T ≤ ∼.

(d) The function F : Γ∼R
(R) −→ Γ∼T

(T ) given by F ([x]∼R
) = [f(x)]∼T

is a

graph isomorphism.

Proof. (a) We show that ∼T is independent of the choices of x, y ∈ R. Suppose

that w = f(x) = f(x′) and z = f(y) = f(y′) for x, x′, y, y′ ∈ R. Then x−x′, y−y′ ∈
kerf ; so x ∼′ x′ and y ∼′ y′. Thus x ∼R x′ and y ∼R y′ since ∼′ ≤ ∼R. Hence x

∼R y ⇔ x′ ∼R y′. Thus f(x) ∼T f(y) ⇔ x ∼R y.

(b) Using part (a), it is now easily verified that ∼R ∈ C(R) and ∼R ≤f ∼T .

Next, let w = f(x) ∈ [0]∼T
. Then f(x) ∼T f(0), and thus x ∼R 0 by definition; so

x ∈ [0]∼R
= I. Hence [0]∼T

= f([0]∼R
) = f(I); so ∼T ∈ Cf(I)(R).

(c) Let ∼ ∈ C(T ). We have already observed that ∼R ≤f ∼ if ∼T ≤ ∼. Con-

versely, suppose that ∼R ≤f ∼; we show that ∼T ≤ ∼. Suppose that f(x) ∼T

f(y). Then x ∼R y by definition, and hence f(x) ∼ f(y) since ∼R ≤f ∼. Thus ∼T

≤ ∼ as desired.

(d) Since f is surjective and I is an ideal of R with kerf ⊆ I = [0]∼R
, we have

f−1([0]∼T
) = f−1(f([0]∼R

)) = [0]∼R
. By Theorem 5.4, f induces the function

F : Γ∼R
(R) −→ Γ∼T

(T ) given by F ([x]∼R
) = [f(x)]∼T

. If [f(x)]∼T
= [f(y)]∼T

,

then f(x) ∼T f(y) and hence x ∼R y. Thus F is an injective graph homomor-

phism by Theorem 5.4 again. The proof that F is surjective is similar to that in

Theorem 5.8(c) above. Hence F is a graph isomorphism. �



ZERO-DIVISOR GRAPHS OVER A COMMUTATIVE RING 133

Remark 5.10. (a) Note that ∼T in Theorem 5.9 is well-defined if and only if

∼′ ≤ ∼R, where x∼′y ⇔ x − y ∈ kerf . Suppose that ∼T is well-defined

and x ∼′ y for x, y ∈ R. Then x − y ∈ kerf ; so f(x) = f(y), and thus

f(x) ∼T f(y). Hence x ∼R y by definition; so ∼′ ≤ ∼R. Also, necessarily

kerf ⊆ I. Let x ∈ kerf . Then f(x) = 0 = f(0) ⇒ f(x) ∼T f(0) ⇒ x ∼R

0 ⇒ x ∈ [0]∼R
. Thus kerf ⊆ [0]∼R

= I.

(b) With the hypotheses of Theorem 5.8, let ∼ ∈ Cf−1(I)(R) with ∼ ≤ ∼R.

Then the function F : Γ∼(R) −→ Γ∼T
(T ) given by F ([x]∼) = [f(x)]∼T

is

the composition of the two functions Γ∼(R) −→ Γ∼R
(R) −→ Γ∼T

(T ). The

first function is surjective, and the second function is injective.

(c) With the hypotheses of Theorem 5.9, let ∼ ∈ Cf(I)(T ) with ∼T ≤ ∼. Then

the function F : Γ∼R
(R) −→ Γ∼(T ) given by F ([x]∼R

) = [f(x)]∼ is the

composition of the two functions Γ∼R
(R) −→ Γ∼T

(T ) −→ Γ∼(T ). The

first function is a graph isomorphism, and the second function is surjective.

(d) With the hypotheses of Theorem 5.8 (resp., Theorem 5.9), given ∼T ,∼′T ∈
C(T ) (resp., ∼R,∼′R ∈ C(R)) with ∼T ≤ ∼′T (resp., ∼R ≤ ∼′R), then it

is easily shown that the induced ∼R,∼′R ∈ C(R) (resp., ∼T ,∼′T ∈ C(T ))

satisfy ∼R ≤ ∼′R (resp., ∼T ≤ ∼′T ). Moreover, if [0]∼T
= [0]∼′T and

[0]∼R
= f−1([0]∼T

) = f−1([0]∼′T ) = [0]∼′R , then we have the associated

commutative diagrams given in Theorem 5.11 below.

We have the following commutative diagrams; details are left to the reader.

Theorem 5.11. Let R and T be commutative rings with 1 6= 0, ∼R,∼′R ∈ C(R) and

∼T ,∼′T ∈ C(T ) with ∼R ≤ ∼′R and ∼T ≤ ∼′T , and f : R −→ T a homomorphism

such that ∼R ≤f ∼T and ∼′R ≤f ∼′T . Let f([x]∼R
) = [f(x)]∼T

, f ′([x]∼R
) =

[f ′(x)]∼T
), gR([x]∼R

) = [x]∼′R , and gT ([x]∼T
) = [x]∼′T . Then the following diagram

of monoid homomorphisms commutes.

R/∼R T/∼T

R/∼′R T/∼′T

f

gR gT

f ′

If [0]∼T
= [0]∼′T and [0]∼R

= f−1([0]∼T
) = f−1([0]∼′T ) = [0]∼′R , then the following

diagram of induced maps of congruence-based zero-divisor graphs commutes. More-

over, F, F ′, GR, and GT are graph homomorphisms if [0]∼T
is a radical semigroup

ideal of T .
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Γ∼R
(R) Γ∼T

(T )

Γ∼′R(R) Γ∼′T (T )

F

GR GT

F ′
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