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1. Introduction

Let H be a bialgebra and A a right H-comodule algebra. The relationship be-

tween A and its coinvariants subalgebra AcoH was studied in [3] from the viewpoint

of Morita theory. It was shown that the generalized smash product #(H,A) and

AcoH are always connected via a Morita context by using A and a right ideal of A

as the connecting bimodule.

It is well known that quasitriangular Hopf algebras (quantum groups), the def-

inition of which is due to Drinfel’d [4], play a great role in both mathematics and

physics. They are neither commutative nor cocommutative and satisfy the quan-

tum Yang-Baxter equation. The dual notion of quasitriangular Hopf algebras is the

coquasitriangular Hopf algebra which was introduced in [5].

From the time that the definition of weak Hopf algebras was introduced in [1],

quasitriangular weak Hopf algebras were introduced and studied in [7] and [8].

As a generalization of ordinary Hopf algebras, weak Hopf algebras weaken the

comultiplication of unit and the multiplication of couint. They provide a good

framework for studying symmetries of certain quantum field theories. It has turned

out that many results of Hopf algebras can be generalized to weak Hopf algebras.
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BK20150113) and the Funds of Jinling Institute of Technology (2014-jit-n-08, jit-b-201402).
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In recent years, many scholars have studied the weak Hopf algebra in some dif-

ferent fields, for example, Raposo studied crossed products for weak Hopf algebras

in [10], Zhang and Li researched the separable extension of weak module algebras

in [15], Wang and Zhang have drawn up the structure theorem and duality theorem

for endomorphism algebras of weak Hopf algebras in [13], the authors studied the

Maschke theorem for weak smash products based on quasitriangular weak Hopf al-

gebras in [14], as well as the authors studied total integrals for weak Doi-Koppinen

data in [12].

The main purpose of this paper is to study the connection between the Morita

context for weak Doi-Koppinen smash products and the surjectivity of Morita maps,

and obtain a Morita context for endomorphism algebras for weak Doi-Hopf modules

induced by coquasitriangular weak Hopf algebras.

The main results are given the following.

Let H be a weak bialgebra, A a weak right H-comodule algebra and #HL(H,A)

a weak Doi-Koppinen smash product. Then

(#HL(H,A), AcoH ,#HL (H,A)AAcoH ,AcoHQ#HL (H,A))

forms a Morita context, where Q = {λ ∈ #HL(H,A) | λ(h2)(0) ⊗ λ(h2)(1)h1 =

1(0)λ(h) ⊗ 1(1), for all h ∈ H}. That gives the main result of Section 2, and the

surjectivity of the Morita map G is also studied. In Section 3, we give a summary of

properties concerning coquasitriangular weak Hopf algebras, and obtain a Morita

context for endomorphism algebras induced by coquasitriangular weak Hopf alge-

bras as an application of the Morita context for weak Doi-Koppinen smash products.

Throughout, we always work over a fixed field k and use the Sweedler’s notation

([11]) for terminologies on coalgebras and comodules. For a coalgebra C, we write

its comultiplication 4(c) = c1 ⊗ c2, for any c ∈ C; for a right C-comodule M ,

we denote its coaction by ρ(m) = m(0) ⊗m(1), for any m ∈ M . Any unexplained

definitions and notations may be found in [6].

Definition 1.1. Let H be both an algebra and a coalgebra. Then H is called a

weak bialgebra if it satisfies the following conditions:

4(xy) = 4(x)4(y), (1)

for all x, y ∈ H, and

ε(xyz) = ε(xy1)ε(y2z) = ε(xy2)ε(y1z), (2)

42(1H) = (4(1H)⊗ 1H)(1H ⊗4(1H)), (3)

= (1H ⊗4(1H))(4(1H)⊗ 1H), (4)
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for any x, y, z ∈ H, where 4(1H) = 11 ⊗ 12 and 42 = (4⊗ idH) ◦ 4.

Moreover, if there exists a linear map S : H → H, called antipode, satisfying

the following axioms for all h ∈ H:

h1S(h2) = ε(11h)12, (5)

S(h1)h2 = ε(h11)12 (6)

S(h1)h2S(h3) = S(h), (7)

then the weak bialgebra H is called a weak Hopf algebra.

The antipode S of a weak Hopf algebraH is anti-multiplicative and anti-comultip-

licative, and the unit and counit are S-invariants, that is, for any h, g ∈ H,

S(hg) = S(g)S(h), 4(S(h)) = S(h2)⊗ S(h1), S(1H) = 1H , ε ◦ S = S. (8)

Note that H is an ordinary bialgebra if and only if 4(1H) = 1H ⊗ 1H , and if and

only if ε is a multiplication map.

For any weak bialgebra H, it is well known that the maps ΠL , ΠR : H → H,

Π
L

and Π
R

are projections. They are given by ΠL(h) = ε(11h)12, ΠR(h) =

ε(h12)11, Π
L

(g) = ε(12h)11, Π
R

(h) = ε(h11)12. We write HL = ImΠL =

ImΠ
R
, HR = ImΠR = ImΠ

L
.

Hence, by [2], we obtain

4(1H) = 11 ⊗ 12 ∈ HR ⊗HL, xy = yx, (9)

and

4(x) = 11x⊗ 12, 4(y) = 11 ⊗ y12, (10)

ε(hΠL(g)) = ε(hg), ε(hg) = ε(hΠ
L

(g)), (11)

ε(ΠR(h)g) = ε(hg), ε(hg) = ε(Π
R

(h)g), (12)

hΠL(g) = ε(h1g)h2, g1ε(hg2) = ΠR(h)g, (13)

hΠ
L

(g) = ε(h2g)h1, g2ε(hg1) = Π
R

(h)g, (14)

h1 ⊗ΠL(h2) = 11h⊗ 12, ΠR(h1)⊗ h2 = 11 ⊗ h12, (15)

Π
L

(h1)⊗ h2 = 11 ⊗ 12h, h1 ⊗Π
R

(h2) = h11 ⊗ 12, (16)

for any h, g ∈ H,x ∈ HL, y ∈ HR.

For a weak Hopf algebra H with antipode S, we have the following assertions:

ΠL ◦ S = ΠL ◦ΠR = S ◦ΠR, ΠR ◦ S = ΠR ◦ΠL = S ◦ΠL, (17)

ΠL(h1)⊗ h2 = S(11)⊗ 12h, h1 ⊗ΠR(h2) = h11 ⊗ S(12), (18)

h1 ⊗Π
L

(h2) = S(12)h⊗ 11, Π
R

(h1)⊗ h2 = 12 ⊗ hS(11), (19)
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for any h ∈ H.

Definition 1.2. Let H be a weak bialgebra, and A a right H-comodule, which is

also an algebra with a unit, such that

ρA(ab) = ρA(a)ρA(b), (20)

for all a, b ∈ A. Then, by [2], A is called a weak right H-comodule algebra if the

following equivalent statements hold:

ρ2A(1A) = 1(0) ⊗ 111(1) ⊗ 12, (21)

a(0) ⊗Π
R

(a(1)) = a1(0) ⊗ 1(1), (22)

a(0) ⊗ΠL(a(1)) = 1(0)a⊗ 1(1), (23)

ρA(1A) ∈ A⊗HL, (24)

for all a ∈ A, where ρ2A = (ρA ⊗ idH) ◦ ρA.

Definition 1.3. Let H be a weak bialgebra, and A a weak right H-comodule

algebra. If M is both a left A-module and a right H-comudule such that for all

a ∈ A and m ∈M ,

ρ(a ·m) = a(0) ·m(0) ⊗ a(1)m(1), (25)

then M is called a weak left-right Doi-Hopf module.

From now on, AM
H will denote the category of weak left-right Doi-Hopf modules.

In a similar way, we can define weak right Doi-Hopf modules.

Let H be a weak bialgebra, and A a weak right H-comodule algebra. The H-

coinvariants subalgebra of A is defined by

AcoH = {x ∈ A | x(0) ⊗ x(1) = |x(0) ⊗ΠL(x(1))}.

Then, by [10], AcoH = {x ∈ A | x(0) ⊗ x(1) = 1(0)x⊗ 1(1)}.

2. Morita context for weak Doi-Koppinen smash products

In this section, we mainly concern with the Morita context for weak Doi-Koppinen

smash products. Consequently, the surjectivity of the Morita maps are studied.

Let H be a weak bialgebra, and A a weak right H-comodule algebra. Define a

left action on A by for any a ∈ A and x ∈ HL,

x→ a = a(0)ε(a(1)x). (26)
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Then, it is not difficult to prove that (A,→) is a left HL-module. Hence, as in

[13], we can form a generalized smash product #HL(H,A) = HomHL(H,A) as a

space whose multiplication is defined by

(α ∗ β)(h) = α(β(h2)(1)h1)β(h2)(0), (27)

for any α, β ∈ #HL(H,A) and h ∈ H, where HomHL(H,A) is the set of left HL-

module maps from H to A. Then #HL(H,A) is an associative algebra with identity

element, denoted by 1#HL (H,A), (1#HL (H,A)(h) = ε(1(1)h)1(0) for all h ∈ H, but is

not µ ◦ ε in [13]). In the following, we call the algebra a weak Doi-Koppinen smash

product.

Lemma 2.1. Let #HL(H,A) be a weak Doi-Koppinen smash product. Then A can

be viewed as a subalgebra of #HL(H,A) by identifying a ∈ A with the map

ia : H → A, h 7→ εH(1(1)h)a1(0).

In what follows, we write a for ia.

Proof. Let us check that the map ia ∈ #HL(H,A). For any a ∈ A and x ∈ HL,

x→ ia(h) = ε(1(1)h)x→ (a1(0)) = ε(1(2)h)ε(a(1)1(1)x)a(0)1(0)

= ε(a(1)1(1)Π
L

(h)x)a(0)1(0) = ε(a(1)Π
L

(h)x)a(0)
(9)
= ε(a(1)xΠ

L
(h))a(0)

(11)
= ε(a(1)xh)a(0)

(2)
= ε(a(1)11)ε(12xh)a(0) = ε(a(1)1(1)11)ε(12xh)a(0)1(0)

(21)
= ε(a(1)1(1)1)ε(1(1)2xh)a(0)1(0) = ε(a(1)1(1)xh)a(0)1(0)

= ε(a(1)xh)a(0)
(12)
= ε(Π

R
(a(1))xh)a(0)

(22)
= ε(1(1)xh)a1(0) = ia(xh). �

Lemma 2.2. Let #HL(H,A) be a weak Doi-Koppinen smash product. Then the

following equations hold:

(1) (a ∗ β)(h) = aβ(h), so, let us write aβ for a ∗ β,

(2) (α ∗ a)(h) = α(a(1)h)a(0), in particular, (α ∗ 1A)(1H) = α(1H),

for any a ∈ A,α, β ∈ #HL(H,A) and h ∈ H.

Proof. Since A is a subalgebra of #HL(H,A) by Lemma 2.1, we have

(a ∗ β)(h)
(27)
= a(β(h2)(1)h1)β(h2)(0) = ε(1(1)β(h2)(1)h1)a1(0)β(h2)(0)

= ε(β(h2)(1)h1)aβ(h2)(0) = ε(β(h2)(1)11)ε(12h1)aβ(h2)(0)

= ε(β(h2)(1)1(1)11)ε(12h1)aβ(h2)(0)1(0)
(21)
= ε(1(1)h1)aβ(h2)1(0)

(14)
= aβ(Π

R
(1(1))h)1(0) = aβ(1(1)h)1(0) = a(1(1) → β(h))1(0)

(26)
= aβ(h)(0)1(0)ε(β(h)(1)1(1)) = aβ(h).



6 ZHONGWEI WANG, YUANYUAN CHEN AND LIANGYUN ZHANG

That is, (1) holds. Moreover,

(α ∗ a)(h) = α(a(h2)(1)h1)a(h2)(0) = α(ε(1(1)h2)(a1(0))(1)h1)(a1(0))(0)

= ε(1(2)h2)α(a(1)1(1)h1)a(0)1(0) = α(a(1)1(1)h1)a(0)1(0)

= α(a(1)h)a(0),

so, (2) holds.

In particular,

(α ∗ 1A)(1H) = α(1(1))1(0) = (1(1) → α(1H))1(0)

= ε(α(1H)(1)1(1))α(1H)(0)1(0)

= α(1H). �

Lemma 2.3. The left regular A-module A can be extended to a left #HL(H,A)-

module by the following rule

α ⇀ a = α(a(1))a(0) = (α ∗ a)(1H), (28)

for all a ∈ A and α ∈ #HL(H,A). Furthermore, A is a (#HL(H,A), AcoH)-

bimodule, where A is a right AcoH-module via the multiplication of A.

Proof. For any a ∈ A and α, β ∈ #HL(H,A),

(α ∗ β) ⇀ a = (α ∗ β)(a(1))a(0) = α(β(a(1)2)(1)a(1)1)β(a(1)2)(0)a(0)

= α(β(a(1))(1)a(0)(1))β(a(1))(0)a(0)(0)

= α((β(a(1))a(0))(1))(β(a(1))a(0))(0)

= α ⇀ (β ⇀ a),

and 1#HL (H,A) ⇀ a = 1#HL (H,A)(a(1))a(0) = ε(1(1)a(1))1(0)a(0) = a.

The second equation of (28) holds by Lemma 2.2. Furthermore, for any a ∈
A, x ∈ AcoH and α ∈ #HL(H,A), we have

α ⇀ (ax) = α(a(1)x(1))a(0)x(0) = α(a(1)Π
L(x(1)))a(0)x(0)

(23)
= α(a(1)1(1))a(0)1(0)x = α(a(1))a(0)x

= (α ⇀ a)x.

By the above proof, we know that A is a (#HL(H,A), AcoH)-bimodule, which

completes the proof of the lemma. �

Lemma 2.4. Define the set

Q = {λ ∈ #HL(H,A) | λ(h2)(0) ⊗ λ(h2)(1)h1 = 1(0)λ(h)⊗ 1(1), for all h ∈ H}.

Then, for any λ ∈ Q and α ∈ #HL(H,A),

α ∗ λ = α(1H)λ, (29)
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and Q is a right ideal of #HL(H,A). Furthermore, Q is a (AcoH ,#HL(H,A))-

bimodule.

Proof. First, for any h ∈ H,λ ∈ Q and α ∈ #HL(H,A), by Lemma 2.2, we have

(α ∗ λ)(h) = α(λ(h2)(1)h1)λ(h2)(0) = α(1(1))1(0)λ(h)

= α(1H)λ(h).

Next, the following calculation shows thatQ is a right ideal: for any h ∈ H,λ ∈ Q
and α ∈ #HL(H,A),

(λ ∗ α)(h2)(0) ⊗ (λ ∗ α)(h2)(1)h1

= (λ(α(h3)(1)h2)α(h3)(0))(0) ⊗ (λ(α(h3)(1)h2)α(h3)(0))(1)h1
(20)
= λ(α(h3)(2)h2)(0)α(h3)(0) ⊗ λ(α(h3)(2)h2)(1)α(h3)(1)h1

= 1(0)λ(α(h2)(1)h1)α(h2)(0) ⊗ 1(1)

= 1(0)(λ ∗ α)(h)⊗ 1(1).

Last, let us check Q to be an (AcoH ,#HL(H,A))-bimodule. In fact, if x ∈ AcoH ,

then xλ ∈ Q for any λ ∈ Q. That is because

(xλ)(h2)(0) ⊗ (xλ)(h2)(1)h1 = (xλ(h2))(0) ⊗ (xλ(h2))(1)h1

= x(0)λ(h2)(0) ⊗ x(1)λ(h2)(1)h1

= x1(0)λ(h2)(0) ⊗ 1(1)λ(h2)(1)h1

= xλ(h2)(0) ⊗ λ(h2)(1)h1

= x1(0)λ(h)⊗ 1(1) = 1(0)xλ(h)⊗ 1(1)

= 1(0)(xλ)(h)⊗ 1(1),

the last second equality holds since for x ∈ AcoH , we have x1(0)⊗1(1) = x(0)⊗x(1) =

x(0) ⊗ ΠL(x(1))
(23)
= 1(0)x ⊗ 1(1). Hence, we know that Q is a (AcoH ,#HL(H,A))-

bimodule since Q is a right ideal of #HL(H,A), which completes our proof. �

Corollary 2.5. If H has an antipode S (i.e. H is a weak Hopf algebra), then

Q = {λ ∈ #HL(H,A) | λ(h2)1(0) ⊗ S(1(1))h1 = λ(h)(0) ⊗ S(λ(h)(1)) for all h ∈ H}.

Proof. Since for any a ∈ A,

a(0) ⊗ΠR(a(1)) = a(0) ⊗ ε(a(1)12)11

= a(0)1(0) ⊗ ε(a(1)1(1)12)11

= a(0)1(0) ⊗ ε(a(1)1(1)1)ε(1(1)212)11

= a1(0) ⊗ ε(1(1)12)11

= a1(0) ⊗ΠR(11) = a1(0) ⊗ S(1(1)),
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if λ ∈ Q, then for all h ∈ H,

(ρA ⊗ idH)(λ(h2)(0) ⊗ λ(h2)(1)h1) = (ρA ⊗ idH)(1(0)λ(h)⊗ 1(1))

=⇒ λ(h2)(0) ⊗ λ(h2)(1) ⊗ λ(h2)(2)h1 = 1(0)λ(h)(0) ⊗ 1(1)λ(h)(1) ⊗ 1(2)

=⇒ λ(h2)(0) ⊗ S(λ(h2)(1))⊗ λ(h2)(2)h1 = 1(0)λ(h)(0) ⊗ S(1(1)λ(h)(1))⊗ 1(2)

=⇒ λ(h2)(0) ⊗ S(λ(h2)(1))λ(h2)(2)h1 = 1(0)λ(h)(0) ⊗ S(1(1)λ(h)(1))1(2)

=⇒ λ(h2)(0) ⊗ΠR(λ(h2)(1))h1 = 1(0)λ(h)(0) ⊗ S(λ(h)(1))Π
R(1(1))

=⇒ λ(h2)1(0) ⊗ S(1(1))h1 = 1(0)λ(h)(0) ⊗ S(λ(h)(1))S(1(1))

=⇒ λ(h2)1(0) ⊗ S(1(1))h1 = λ(h)(0) ⊗ S(λ(h)(1)).

Conversely, if λ(h2)1(0)⊗S(1(1))h1 = λ(h)(0)⊗S(λ(h)(1)) for some λ ∈ #HL(H,A),

then

λ(h2)(0)1(0) ⊗ λ(h2)(1)1(1) ⊗ S(1(2))h1 = λ(h)(0) ⊗ λ(h)(1) ⊗ S(λ(h)(2))

=⇒ λ(h2)(0)1(0) ⊗ λ(h2)(1)1(1)S(1(2))h1 = λ(h)(0) ⊗ λ(h)(1)S(λ(h)(2))

=⇒ λ(h2)(0) ⊗ λ(h2)(1)h1 = λ(h)(0) ⊗ΠL(λ(h)(1))
(23)
=⇒ λ(h2)(0) ⊗ λ(h2)(1)h1 = 1(0)λ(h)⊗ 1(1),

that is, λ ∈ Q, which completes the proof of this corollary. �

Lemma 2.6. The following associativity relations hold:

(1) (aλ) ⇀ b = a(λ ⇀ b),

(2) (α ⇀ a)λ = α ∗ (aλ),

for all a, b ∈ A, λ ∈ Q and α ∈ #HL(H,A).

Proof. The proof is straightforward by Lemma 2.2. �

According to Lemma 2.3, we know that A is a (#HL(H,A), AcoH)-bimodule,

and by Lemma 2.4, Q is a (AcoH ,#HL(H,A))-bimodule, so, we obtain two tensor

products A⊗AcoH Q and Q⊗#HL (H,A) A. Hence we have the following lemma.

Lemma 2.7. The map

F : A⊗AcoH Q→ #HL(H,A), F (a⊗AcoH λ) = aλ,

is a #HL(H,A)-bimodule map, where A⊗AcoH Q denotes the relative tensor product

of A and Q on AcoH . And the map

G : Q⊗#HL (H,A) A→ AcoH , G(λ⊗#HL (H,A) a) = λ ⇀ a,

is an AcoH-bimodule map.

Proof. It is obvious that A⊗AcoHQ is a left #HL(H,A)-module via α·(a⊗AcoHλ) =

α ⇀ a⊗AcoH λ, and a right #HL(H,A)-module via (a⊗AcoH λ) ·α = a⊗AcoH λ ∗α,
for any a ∈ A, λ ∈ Q and α ∈ #HL(H,A).
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F is a left #HL(H,A)-module map. Since by Lemma 2.6 we have

F (α · (a⊗AcoH λ)) = F (α ⇀ a⊗AcoH λ) = (α ⇀ a)λ

= α ∗ (aλ) = α ∗ F (a⊗AcoH λ).

And F is a right #HL(H,A)-module map. This is because

F ((a⊗AcoH λ) · α) = F (a⊗AcoH λ ∗ α) = a(λ ∗ α)

= (aλ) ∗ α = F (a⊗AcoH λ) ∗ α.

It is obvious that Q⊗#HL (H,A) A is a left AcoH -module via x · (λ⊗#HL (H,A) a) =

xλ⊗#HL (H,A)a by Lemma 2.4, and a right AcoH -module via (λ⊗a)·x = λ⊗#HL (H,A)

ax, for any a ∈ A, x ∈ AcoH and λ ∈ Q.

G is well defined:

ρA(λ ⇀ a) = ρA(λ(a(1))a(0)) = λ(a(2))(0)a(0) ⊗ λ(a(2))(1)a(1)

= 1(0)λ(a(1))a(0) ⊗ 1(1) = 1(0)(λ ⇀ a)⊗ 1(1).

G is a left AcoH -module map: G(x · (λ ⊗#HL (H,A) a)) = G(xλ ⊗#HL (H,A) a) =

(xλ) ⇀ a = x(λ ⇀ a) = xG(λ ⊗#HL (H,A) a). And G is a right AcoH -module

map: G((λ ⊗#HL (H,A) a) · x) = G(λ ⊗#HL (H,A) ax) = λ ⇀ (ax) = (λ ⇀ a)x =

G(λ⊗#HL (H,A)a)x, where the third equation holds since A is a (#HL(H,A), AcoH)-

bimodule, which completes our proof. �

Thus, by the above lemmas, we obtain the following result.

Theorem 2.8. Let H be a weak bialgebra, A a weak right H-comodule algebra, and

#HL(H,A) a weak Doi-Koppinen smash product. Then

(#HL(H,A), AcoH ,#HL (H,A)AAcoH ,AcoHQ#HL (H,A))

forms a Morita context.

Corollary 2.9. Let H be a finite dimensional weak Hopf algebra with bijective an-

tipode S, A a weak right H-comodule algebra, and #HL(H,A) a weak Doi-Koppinen

smash product. Then

(A#H∗, AcoH ,A#H∗AAcoH ,AcoHQA#H∗)

forms a Morita context.

Proof. Since H is a finite dimensional weak Hopf algebra, the weak right H-

comodule algebra A has a weak left H∗-module algebra structure in the natural

way, and #HL(H,A) ∼= A#H∗ as algebras [Remark 3.3, 11], then the conclusion

holds by Theorem 2.8. �

In the following, the Morita maps F and G are studied.
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Lemma 2.10. For any left #HL(H,A)-module M , define MH = {m ∈M | α ·m =

α(1H) ·m, for all α ∈ #HL(H,A)}. Then

MH
∼= #HL (H,A)Hom(A,M),

where #HL (H,A)Hom(A,M) denotes the set of left #HL(H,A)-linear maps from A

to M .

Proof. Define

ψ : MH → #HL (H,A)Hom(A,M), m 7→ (a 7→ a ·m).

The map ψ is well defined, that is, ψ(m) ∈ #HL (H,A)Hom(A,M) for any m ∈MH .

Since for any α ∈ #HL(H,A), ψ(m)(α ⇀ a) = (α ⇀ a) ·m (28)
= (α ∗ a)(1H) ·m =

(α ∗ a) ·m = α · (a ·m) = α · ψ(m)(a).

Define

φ : #HL (H,A)Hom(A,M)→MH , ν 7→ ν(1A).

The map φ is well defined, that is, ν(1A) ∈MH for any ν ∈ #HL (H,A)Hom(A,M).

Since for any α ∈ #HL(H,A), α·ν(1A) = ν(α ⇀ 1A) = ν(α(1(1))1(0)) = ν(α(1H)) =

α(1H) · ν(1A). Moreover, for any a ∈ A,m ∈MH , and ν ∈ #HL (H,A)Hom(A,M),

φψ(m) = ψ(m)(1A) = m,

ψφ(ν)(a) = a · φ(ν) = a · ν(1A) = ν(a).

Hence, ψ is invertible with inverse φ. �

Lemma 2.11. If M ∈ AM
H , then M can be viewed as a left #HL(H,A)-module

via

α ·m = α(m(1)) ·m(0), (30)

for all m ∈M and α ∈ #HL(H,A).

Proof. The proof is straightforward. �

According to Lemma 2.2, we get the next.

Remark. Let H be a weak bialgebra, A a weak right H-comodule algebra, and

#HL(H,A) a weak Doi-Koppinen smash product. Define M coH = {m ∈M | m(0)⊗
m(1) = 1(0) ·m⊗ 1(1)}, for any M ∈ AM

H . Then

AcoH ⊆ AH ,M
coH ⊆MH .

Theorem 2.12. In the Morita context (#HL (H,A), AcoH ,#
HL (H,A)AAcoH ,AcoHQ#

HL (H,A)),

the following (a)-(c) are equivalent:
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(a) G : Q ⊗#HL (H,A) A → AcoH , G(λ ⊗#HL (H,A) a) = λ ⇀ a is surjective

(bijective).

(b) There exists an element θ ∈ Q such that θ(1H) = 1A.

(c) For any left #HL(H,A)-module M ,

ξM : Q⊗#HL (H,A) M →MH , λ⊗#HL (H,A) m 7→ λ ·m

is a left AcoH-module isomorphism.

If these conditions hold, then we have

(d) MH = M coH for all M ∈ AM
H .

(e) θ as in (b) is an idempotent element in #HL(H,A), and as algebras

θ ∗#HL(H,A) ∗ θ = AcoHθ ∼= AcoH .

(f) For any left AcoH-module N ,

ΦN : N → (A⊗AcoH N)coH , n 7→ 1A ⊗ n

is an isomorphism.

(g) AcoH is a right AcoH-direct summand of A.

Proof. By Lemma 2.7, we know that the map G is well defined.

(a)⇒ (b) Assume thatG is surjective. Then, there exists an element Σλi⊗#HL (H,A)

ai ∈ Q⊗#HL (H,A)A such that Σλi ⇀ ai = 1A. Set θ = Σλi∗ai. Then θ ∈ Q since Q

is a right ideal of #HL(H,A). Moreover, θ(1H) = (Σλi ∗ai)(1H) = Σλi ⇀ ai = 1A.

(b)⇒ (c) First, Q⊗#HL (H,A)M is a left AcoH -module via the left multiplication

of #HL(H,A) as defined in Lemma 2.7.

Next, let θ ∈ Q with θ(1H) = 1A. For any left #HL(H,A)-module M , define

χM : MH → Q⊗#HL (H,A)M by χM (m) = θ⊗#HL (H,A)m, for any m ∈MH . Then,

for any λ ∈ Q,

ξM ◦ χM (m) = θ ·m = θ(1H) ·m = m,

χM ◦ ξM (λ⊗#HL (H,A) m) = χM (λ ·m) = θ ⊗#HL (H,A) λ ·m

= θ ∗ λ⊗#HL (H,A) m
(29)
= θ(1H)λ⊗#HL (H,A) m

= λ⊗#HL (H,A) m.

Hence, ξM is bijective. It is obvious that ξM is a left AcoH -module map.

(c) ⇒ (a) If taking M = A, we know that G = ξA is bijective with AcoH = AH

since AcoH ⊆ AH by Remark.

(d) It is easy to see that M coH ⊆MH . Let m ∈MH . Then

m = 1A ·m = θ(1H) ·m = θ ·m
(30)
= θ(m(1)) ·m(0),
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so,

ρM (m) = ρM (θ(m(1)) ·m(0)) = θ(m(2))(0) ·m(0) ⊗ θ(m(2))(1)m(1)

= 1(0) · (θ(m(1)) ·m(0))⊗ 1(1)

= 1(0) ·m⊗ 1(1),

that is, m ∈M coH , MH ⊆M coH .

(e) Clearly θ is an idempotent element in #HL(H,A), since for all h ∈ H, by

Lemma 2.2,

θ2(h) = (θ ∗ θ)(h)
(29)
= (θ(1H)θ)(h)

= (1Aθ)(h) = θ(h).

Next, for all α ∈ #HL(H,A), we have

ρA(θ ⇀ α(1H))
(28)
= ρA(θ(α(1H)(1))α(1H)(0))

= θ(α(1H)(1))(0)α(1H)(0)(0) ⊗ θ(α(1H)(1))(1)α(1H)(0)(1)

= θ(α(1H)(1)2)(0)α(1H)(0) ⊗ θ(α(1H)(1)2)(1)α(1H)(1)1

= 1(0)θ(α(1H)(1))α(1H)(0) ⊗ 1(1) (by Lemma 2.4)

= 1(0)(θ ⇀ α(1H))⊗ 1(1),

so, θ ⇀ α(1H) ∈ AcoH . Hence we have

θ ∗ α ∗ θ (29)
= (θ ∗ α)(1H)θ = θ(α(12)(1)11)α(12)(0)θ

= θ((12 → α(1H))(1)11)(12 → α(1H))(0)θ (α ∈ #HL(H,A))
(26)
= ε(α(1H)(1)12)θ(α(1H)(0)(1)11)α(1H)(0)(0)θ

= θ(α(1H)(1))α(1H)(0)θ = (θ ⇀ α(1H))θ ∈ AcoHθ,

that is, we know that θ ∗#HL(H,A) ∗ θ ⊆ AcoHθ. In particular, for any x ∈ AcoH ,

θ ∗ x ∗ θ = (θ ⇀ x)θ = θ(x(1))x(0)θ = θ(1(1))1(0)xθ = θ(1H)xθ = xθ, which shows

AcoHθ ⊆ θ ∗#HL(H,A) ∗ θ, hence θ ∗#HL(H,A) ∗ θ = AcoHθ.

It is easy to verify that the map ω : AcoH → AcoHθ, x 7→ xθ is an isomorphism

of algebras.

(f) ΦN is the composition of the following canonical isomorphisms:

N ∼= AcoH ⊗AcoH N
(a)∼= Q⊗#

HL (H,A) A⊗AcoH N
(c)∼= (A⊗AcoH N)H

(d)
= (A⊗AcoH N)coH .

(g) Let π : A→ AcoH , a 7→ θ ⇀ a. Then, by Lemma 2.7, the map π is well defined,

and right AcoH -linear since A is a (#HL(H,A), AcoH)-bimodule by Lemma 2.3.

Moreover, for any x ∈ AcoH , π(x) = θ ⇀ x = θ(x(1))x(0) = θ(1(1))1(0)x = x,

Hence, AcoH is a right AcoH -direct summand of A. �

In a similar way, we can study the equivalent condition for the another Morita

map F : A⊗AcoH Q→ #HL(H,A), F (a⊗AcoH λ) = aλ to be surjective when H is

finite dimensional.
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3. Application to endomorphism algebras induced by coquasitriangular

weak Hopf algebras

In this section, we obtain a Morita context for endomorphism algebras for weak

Doi-Hopf modules induced by coquasitriangular weak Hopf algebras.

Definition 3.1. A k-linear map σ : H ⊗HLHR H → k is called a weak invertible

2-cocycle if the following conditions are satisfied:

σ(1H , x) = σ(x, 1H) = ε(x), (31)

σ(x1, z1)σ(y, x2z2) = σ(y1, x1)σ(y2x2, z), (32)

and there exists τ : H ⊗HLHR H → k such that

σ(x1, y1)τ(x2, y2) = ε(yx), (33)

τ(x1, y1)σ(x2, y2) = ε(xy), (34)

for all x, y, z ∈ H, where τ is called a weak inverse of σ and denoted by σ−1. Here H

is both a right HLHR-module via h·(hLgR) = S(hL)hgR, and a left HLHR-module

via its multiplication.

Definition 3.2. A coquasitriangular weak Hopf algebra is a pair (H,σ), consisting

H and a weak invertible 2-cocycle σ : H ⊗HLHR H → k such that

σ(x1, y1)x2y2 = σ(x2, y2)y1x1, (35)

σ(x, yz) = σ(x1, z)σ(x2, y), (36)

σ(xy, z) = σ(x, z1)σ(y, z2), (37)

for all x, y, z ∈ H.

Definition 3.3. Let (H,σ) be a coquasitriangular weak Hopf algebra, and A a

weak right H-comodule algebra. We say A is quantum commutative with respect to

(H,σ) if

ab = σ−1(b(1), a(1))b(0)a(0), (38)

for all a, b ∈ A.

Proposition 3.4. Let (H,σ) be a coquasitriangular weak Hopf algebra, and A a

weak right H-comodule algebra. Then A is quantum commutative with respect to

(H,σ) if and only if

ab = σ(a(1), b(1))b(0)a(0), (39)

for all a, b ∈ A.
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Proof. For any a, b ∈ A, if A is quantum commutative with respect to (H,σ), we

have

σ(a(1), b(1))b(0)a(0)
(38)
= σ(a(2), b(2))σ

−1(a(1), b(1))a(0)b(0)

= ε(a(1)b(1))a(0)b(0) = ab.

Conversely, if (39) holds, then by (33), we get (38). �

Lemma 3.5. Let (H,σ) be a coquasitriangular weak Hopf algebra, and A a quantum

commutative weak right H-comodule algebra with respect to (H,σ). For any M ∈
AM

H , define a right action of A on M by

m↼ a = σ(m(1), a(1))a(0) ·m(0), (40)

for all a ∈ A,m ∈ M . Then this action makes M into both an A-A-bimodule and

a weak right (A,H)-Hopf module, that is, M ∈ AM
H
A .

Proof. For any a, b ∈ A and m ∈M ,

(m↼ a) ↼ b = σ(m(1), a(1))(a(0) ·m(0)) ↼ b

= σ(m(2), a(2))σ(a(1)m(1), b(1))b(0)a(0) ·m(0)

(35)
= σ(m(1), a(1))σ(m(2)a(2), b(1))b(0)a(0) ·m(0)

(32)
= σ(a(1), b(1))σ(m(1), a(2)b(2))b(0)a(0) ·m(0)

(39)
= σ(m(1), a(1)b(1))a(0)b(0) ·m(0) = m↼ (ab),

m ↼ 1A = σ(m(1), 1(1))1(0) ·m(0)

= σ(m(1) · 1(1), 1H)1(0) ·m(0)

(31)
= ε(S(1(1))m(1))1(0) ·m(0)

(17)
= ε(ΠR(1(1))m(1))1(0) ·m(0)

(12)
= ε(1(1)m(1))1(0) ·m(0) = m.

Moreover,

(a ·m) ↼ b = σ(a(1)m(1), b(1))b(0)a(0) ·m(0)

(37)
= σ(a(1), b(1))σ(m(1), b(2))b(0)a(0) ·m(0)

(39)
= σ(m(1), b(1))ab(0) ·m(0) = a · (m↼ b).

Hence, M is an A-A-bimodule. At the same time, we have

ρ(m↼ a) = σ(m(1), a(1))ρ(a(0) ·m(0))

= σ(m(2), a(2))a(0) ·m(0) ⊗ a(1)m(1)

(35)
= σ(m(1), a(1))a(0) ·m(0) ⊗m(2)a(2)

= a(0) ↼m(0) ⊗m(1)a(1).

Hence, M is a weak right Doi-Hopf module. �
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Proposition 3.6. Let (H,σ) be a coquasitriangular weak Hopf algebra, and A

a quantum commutative weak right H-comodule algebra with respect to (H,σ).

Then, for all M,N ∈ AM
H , HomA(M,N) is a left #HL(H,A)-module, where

HomA(M,N) denotes the set of right A-linear maps from H to A.

Proof. For any M,N ∈ AM
H , by Lemma 2.4 M and N can be defined as right

A-modules and made into A-A-bimodules and weak right Doi-Hopf modules. It is

easy to check that the following makes HomA(M,N) into a left #HL(H,A)-module

by (W15) in [13]:

(α · f)(m) = α(f(m(0))(1)S(m(1))) · f(m(0))(0), (41)

for all α ∈ #HL(H,A), f ∈ HomA(M,N) and m ∈M . �

The following lemma can be found in [13].

Lemma 3.7. Let M,N ∈ AM
H . Then HomA(M,N) is a right H-comodule with

coaction given by

f(0)(m)⊗ f(1) = f(m(0))(0) ⊗ f(m(0))(1)S(m(1)), (42)

such that HomA(M,N)coH = HomH
A (M,N) (the linear space of weak right Doi-

Hopf module maps from M to N). Consequently, EndA(M) is a weak right H-

comodule algebra.

By Theorem 2.8 and Lemma 3.7, we have a Morita context for endomorphism

algebra for weak Doi-Hopf modules induced by coquasitriangular weak Hopf alge-

bras.

In what follows, we always assume that M ∈ AM
H .

Theorem 3.8. Let H be a coquasitriangular weak Hopf algebra, A a weak right

H-comodule algebra. Then

(#HL (H,EndA(M)), EndHA (M),#
HL (H,EndA(M))EndA(M)EndH

A
(M),EndH

A
(M)T#

HL (H,EndA(M)))

forms a Morita context, where

T = {λ ∈ #HL(H,EndA(M))| λ(h2)(1(0) ·m)⊗ S(1(1))h1 =

λ(h)(m(0))(0) ⊗ S(λ(h)(m(0))(1)S(m(1))),∀h ∈ H,m ∈M}.

Proof. By the definition of Q in Corollary 2.5, we have

λ(h2)(1(0)(m))⊗ S(1(1))h1 = λ(h)(0)(m)⊗ S(λ(h)(1))
(42)
=⇒ λ(h2)(m(0))⊗ S(m(1)S(m(2)))h1 = λ(h)(m(0))(0) ⊗ S(λ(h)(m(0))(1)S(m(1)))

=⇒ λ(h2)(m(0))⊗ S(ΠL(m(1)))h1 = λ(h)(m(0))(0) ⊗ S(λ(h)(m(0))(1)S(m(1)))

=⇒ λ(h2)(1(0) ·m)⊗ S(1(1))h1 = λ(h)(m(0))(0) ⊗ S(λ(h)(m(0))(1)S(m(1))),
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as needed. So, according to Theorem 2.8, the conclusion holds. �

Corollary 3.9. Let H be a coquasitriangular weak Hopf algebra with bijective an-

tipode S, A a weak right H-comodule algebra and B = AcoH . Then

(#HL(H,A), B,#HL (H,A)AB ,BT
′
#HL (H,A))

forms a Morita context, where

T ′ = {λ ∈ #HL(H,A) | λ(h)(0) ⊗ λ(h)(1) = λ(h2)1(0) ⊗ S−1(h1)1(1)}.

Proof. Let A = M . Then, EndA(A) ∼= A. Hence, EndHA (A) ∼= B by Lemma 2.4

in [13]. Thus, the conclusion holds by Corollary 2.5 and Theorem 3.8. �

Corollary 3.10. Let H be a finite dimensional coquasitriangular weak Hopf alge-

bra, A a weak right H-comodule algebra. Then

(EndB(M), EndHA (M),EndB(M)EndA(M)EndH
A (M),EndH

A (M)TEndB(M))

forms a Morita context. In particular,

(EndB(A), B,EndB(A)AB ,AT
′
EndB(A))

forms a Morita context.

Proof. Since H is finite dimensional and by Theorem 2.8 in [9], we know that

#HL(H,EndA(M)) ∼= EndA(M)#H∗ ∼= EndB(M)

as algebras. Then, the conclusion holds by Theorem 3.8. �

Corollary 3.11. Let H be a coquasitriangular Hopf algebra with bijective antipode

S, A a weak right H-comodule algebra and B = AcoH . Then

(#(H,A), B,#(H,A)AB ,BT
′
#(H,A))

forms a Morita context, where T ′ = {λ ∈ #(H,A) | ρA(λ(h)) = λ(h2)⊗ S−1(h1)},
i.e., the set of all right H-colinear maps from H to A. Here, H is a right H-

comodule via ρH = (id⊗ S−1) ◦ τ ◦ 4.

Proof. It is straightforward by Corollary 3.9. �
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