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ABSTRACT. Let R be a ring and R(M) be the lattice of radical submodules
of an R-module M. Although the mapping p : R(R) — R(M) defined by
p(I) = rad(IM) is a lattice homomorphism, the mapping o : R(M) — R(R)
defined by o(N) = (N : M) is not necessarily so. In this paper, we examine
the properties of o, in particular considering when it is a homomorphism. We
prove that a finitely generated R-module M is a multiplication module if and
only if ¢ is a homomorphism. In particular, a finitely generated module M
over a domain R is a faithful multiplication module if and only if o is an

isomorphism.
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1. Introduction

Throughout this paper all rings are commutative with identity and all modules
are unitary. Let R be a ring. For a submodule N of an R-module M, (N : M) is
the ideal {r € R | rM C N} of R. As usual, M is called faithful when (0: M) = 0.

Let M be an R-module and Lr(M) denote the lattice of submodules of M with

respect to the following definitions:
NVL=N+Land NANL=NNL,

for all submodules N and L of M. In particular, we shall denote the lattice Lr(R)
by L£(R). Now consider the mapping A : L(R) — Lr(M) given by A(I) = IM, and
the mapping p : Lr(M) — L(R) given by u(N) = (N : M). Tt is easily seen that
AIVI)=AXI)VA(JT) and u(NAL) = u(N)Ap(L). An R-module M is called a A-
module (resp. p-module) if A(INJ) = AI)ANJT) (resp. u(N+L) = u(N)+ pu(L)).
In other words, A (resp. u) is a lattice homomorphism. These notions have been
introduced by P. F. Smith in [16]; he studied conditions under which A and p are
homomorphisms and, in particular, isomorphisms. By [16, Lemmas 1.3 and 1.4],
A is an isomorphism if and only if x4 is an isomorphism and in this case A and u

are inverses of each other. The module M is called multiplication whenever X is
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a surjection, i.e., for every submodule N of M there exists an ideal I of R such
that N = IM. In this case, we can take I = (N : M) (see for example [2,4]). It
is shown that if M is a faithful multiplication R-module, then the mapping A is a
homomorphism [16, Theorem 2.12]. In particular, A is an isomorphism if and only
if M is a finitely generated faithful multiplication module.

A proper submodule N of M is called a prime submodule if for r € R, m € M,
rm € N implies that r € (N : M) or m € N. Prime submodules have been
introduced by J. Dauns in [3], and then this class of submodules has been extensively
studied by several authors (see, for example, [4,7,13]). For a proper submodule N of
an R-module M the radical of N, denoted by rad N, is the intersection of all prime
submodules of M containing N or, in case there are no such prime submodules,
rad N is M (see, for example, [5,8,9,10,11,14]). A submodule N of M is called a
radical submodule if rad N = N. For an ideal I of a ring R, we assume throughout
that /I denotes the radical of I. It is easily seen that the set of radical submodules
of M with the following operations

NVIL=rad(N+L) and NAL=NNL

forms a lattice. We denote this lattice by R(M). In general R(M) is not a sublattice
of Lr(M). For example, let K be a field and R = K[X,Y] the polynomial ring in
indeterminates X,Y. Moreover, let I = (X) and J = (X — Y?). It is easily seen
that I,J € R(R), but I +J ¢ R(R) since VI+J = /(X,Y?) = (X,Y).

Now consider the mappings p : R(R) — R(M) defined by p(I) = rad(A(I)) =
rad(IM) and o : R(M) — R(R) defined by o(N) = u(N) = (N : M). It is shown

that p is always a homomorphism, but o is not so (see Example 2.3). We say that

an R-module M is a o-module if o is a homomorphism. In this article, we show
that several properties of A and px remain valid for p and o. In Theorem 2.11, it is
proved that a finitely generated R-module M is a o-module if and only if M is a
multiplication module and so if and only if M is a y-module. It is also proved that
the property of being a o-module is a local property for finitely generated modules
(Corollary 2.19).

An R-module M is said to be primeful if M = (0) or M # (0) and for each
prime ideal P of R containing (0 : M), there exists a prime submodule N of M
such that (N : M) = P. For example, finitely generated modules and projective
modules over integral domains are primeful (see [10, Theorem 2.2 and Corollary
4.3]). If M is a primeful faithful R-module, then p is an injection and hence o is a
surjection (Corollary 3.6). If M is a primeful module over a domain R, then p is an

isomorphism if and only if ¢ is an isomorphism if and only if A is an isomorphism if
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and only if p is an isomorphism if and only if M is a faithful multiplication module
(Theorem 3.8).

2. The mapping o

We begin with some properties of radical of submodules which are frequently

used in the rest of paper.

Lemma 2.1. (See [8, Proposition 2]) Let N and L be submodules of an R-module
M. Then

(1) N CradN,

(2) rad(rad N) =rad N,

(3) rad(NNL) Crad NNrad L,

(4) rad(N + L) = rad(rad N 4+ rad L),
(5) rad(IM) =rad(vVIM),

(6)

6 (N:M)C(radN : M).

In [16], it is seen that A is not a homomorphism in general. In contrast, p is a

homomorphism because of the following:
p(INV J) = p(NT+J) =r1ad(VT + JM) = rad((I + J)M)

=rad(IM + JM) = rad(rad(IM) + rad(JM))
= rad(IM) V rad(JM) = p(I) V p(.J).

Using [9, Corollary 2 to Proposition 1], we have

rad((INJ)M) Crad(IM) Nrad(JM) = rad(IJM) Crad((I N J)M).
Therefore,
p(INT)=p(INJ)=rad((INJ)M) =rad(IM) Nrad(JM) = p(I) A p(J).

Here, it is worth noting that o is well-defined. In fact, \/m (rad(rad N) :
M) = (rad N : M). Also clearly (rad N : M) C \/(rad N : M). Thus \/(rad N : M) =
(rad N : M). Therefore if N is a radical submodule, then /(N : M) = (N : M).
This means that (N : M) is a radical ideal and so o is well-defined.

Recall that M is a o-module in case the mapping ¢ is a homomorphism.

Lemma 2.2. Let R be a ring and M an R-module. Then M is a o-module if and
only if (rad(N + L) : M) = /(N : M) + (L : M) for all radical submodules N and
L of M.
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Proof. It is clear that o (NAL) = (NNL: M) = (N: M)N(L: M) =oc(N)Ac(L)
for all radical submodules N and L of M. Thus ¢ is a homomorphism if and only
if o(NVL)=0(N)Vo(L)if and only if (rad(N+ L) : M) = /(N : M) + (L : M)
for all radical submodules N and L of M. O

Let M be an R-module and N a proper submodule of M. Let
Ey(N)={rxz:r € R and x € M such that r"z € N for some n € N}.

The envelop submodule of N in M is defined to be the submodule of M generated by
Ep(N). An R-module M is said to satisfy the radical formula if rad N = REy(N),
for each submodule N of M. Now by using the above lemma, we give an example

which shows ¢ need not be a homomorphism.

Example 2.3. Let R=7 and M = Z & Z. Let N = Z(2,0) and L = 7(0,2). It
is easily seen that En(Z(2,0)) = Z(2,0) and Ep(Z(0,2)) = Z(0,2). Since, by [5,
Corollary 12], M satisfies the radical formula, we have radZ(2,0) = Z(2,0) and
radZ(0,2) = 7(0,2). Thus N and L are radical submodules of M. Also clearly
(N:M)=(L:M)=0. Hence /(N : M)+ (L: M) = 0. On the other hand, let
re€ (N+L:M). Then r(1,0) € N + L = Z(2,0) + Z(0,2) and hence there exist
r1,72 € R such that r(1,0) = (r,0) = r1(2,0) + r2(0,2) = (211, 2r2). Thus r = 2ry.
This shows that (N + L : M) C 2Z. The reverse inclusion is obvious, and thus
(N+L:M)=2Z. Hence, by [7, Proposition 2], N + L is a prime submodule of
M and so rad(N + L) = N + L. Thus we have (rad(N + L) : M) = 2Z # (0) =
VN : M)+ (L:M).

Corollary 2.4. Ewvery finitely generated p-module is a o-module.

Proof. Let M be a finitely generated p-module over a ring R. By [12, Theorem
4.4],

(rad(N+L): M) =+/(N+L:M)=+/(N: M)+ (L:M),
for all radical submodules N and L of M. Thus M is a o-module by Lemma 2.2. [

In Theorem 2.11, we will show that a finitely generated module is a o-module
if and only if M is a y-module. Note that this fact is not true in general. See the

following example.

Example 2.5. Let M = Z(p™>), the Prifer p-group. Since M is a primeless Z-
module, by [13, Proposition 1.7] M’ = M & M is a primeless Z-module. Hence M’

is a o-module, whereas it is not a p-module by [16, Corollary 3.3].
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Theorem 2.6. Let M be a o-module over a ring R and let L, N be submodules of

(1) If M =rad(N + L) (or in particular M = N + L), then there ezists a € R
such that aM C rad N and (1 —a)M Crad L.

(2) If M is a finitely generated module such that M = N + L, then there exists
a € R such that aM C N and (1 —a)M C L.

Proof. (1) By Lemma 2.2, R = (M : M) = (rad(N + L) : M) = (rad(rad N +
radL) : M) = /(rad N : M) + (rad L : M). Thus R = (rad N : M) + (rad L : M).
Now the desired result is clear.

(2) Since M = N + L =rad(N + L), by (1) we have R = (rad N : M) + (rad L :
M). Since M is finitely generated, by [12, Theorem 4.4], R = /(N : M)++/(L : M)
and hence R = (N : M)+ (L : M). Now, clearly the result follows. O

Using the previous theorem we are able to show that there is no integral domain,
say R, such that any R-module is a o-module. We will show that this statement is

also true for each arbitrary ring (see Corollary 2.13).

Corollary 2.7. Let R be an integral domain and P a non-zero prime ideal. Then
the R-module M = P & P s not a o-module.

Proof. Suppose that M = P @ P is a o-module. By Theorem 2.6 (1), there
exists @ € R such that a(P @ P) C rad(P ® 0) = rad P @ rad0 = P ¢ 0 and
(1-a)(P®P) Crad(l0® P) = rad0 dradP = 0@ P, so that aP = 0 and
(1 —a)P =0 giving P = 0, a contradiction. O

Corollary 2.8. Let M be a o-module over a ring R. Then

(1) For each mazimal ideal P of R either M = PM or there exist m € M and
p € P such that (1 — p)M C rad(Rm).

(2) If M is a finitely generated module, then for each mazimal ideal P of R
there exist m € M and p € P such that (1 —p)M C Rm.

Proof. Let P be a maximal ideal of R such that M # PM. We know that M/PM
is a non-zero semisimple module and hence contains a maximal submodule. Assume
that L be a maximal submodule of M such that PM C L and m € M \ L.

(1) By Theorem 2.6 (1), there exists an element p € R such that pM C L and
(1—p)M Crad(Rm). If p ¢ P, then R = P+ Rp and hence M = PM +pM C L,
a contradiction. Thus p € P, as required.

(2) By [16, Corollary 3.4]. O
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Lemma 2.9. (See [4, Theorem 1.2]) Let R be a ring. Then an R-module M is a

multiplication module if and only if for each mazimal ideal P of R either

(1) for each m € M there exists p € P such that (1 —p)m =0, or
(2) there exist x € M and q € P such that (1 — q)M C Rzx.

Lemma 2.10. (See [16, Corollary 2.11]) Let R be any ring. Then an R-module M
is a finitely generated multiplication module if and only if for each mazimal ideal
P of R there exist m € M, p € P such that (1 —p)M C Rm.

Theorem 2.11. Let R be any ring and M a finitely generated R-module. Then

the following are equivalent.

(1) M is a o-module.
(2) M is a multiplication module.
(3) M is a p-module.

Proof. (1) = (2) Let M be a o-module. Then by Corollary 2.8 and Lemma 2.10,
M is a multiplication module.

(2) = (1) Let M be a multiplication R-module. Since M is finitely generated,
by [15, Exercise 9.23], /(IM : M) = /T + (0: M) (%) for all ideals I of R. Now,
let N and L be submodules of M. Consider the finitely generated R-module M /L
and the ideal (N : M) instead of M and I, in (x), respectively. Then

VN : M)+ (L: M) =\/(N
\/((
V(((N: M)M +L)/L: M/L)
V(N : MM+ L: M)

=(N+L:M)=(rad(N+L): M).

M)+ (0: M/L)

N:M)(M/L): M/L)

Thus M is a o-module.
(2) & (3) follows from [16, Theorem 3.8]. O

Corollary 2.12. Let M be a finitely generated R-module. Then the following

statements are equivalent.

(1) (N+L:M)=(N:M)+(L:M) for all submodules N and L of M.
(2) (rad(N+L): M)=+/(N: M)+ (L: M) for all radical submodules N and
L of M.

Proof. It is clear, by Theorem 2.11 and definitions of a o-module and a p-module.
O
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Corollary 2.13. Let R be any (non-zero) ring and let M be a non-zero finitely
generated R-module. Then the R-module M & M is not a o-module.

Proof. Use Theorem 2.11 and [16, Corollary 3.3]. O

Corollary 2.14. Let M be an R-module. Then the following statements are equiv-

alent.

(1) Ewery finitely generated submodule of M is a o-module.
(2) Every finitely generated submodule of M is a p-module.
(3) R=(Rzx: Ry)+ (Ry: Rx) for all elements x,y € M.

Proof. (1) = (3) Let z,y € M. Then

R = (rad(Rz + Ry) : Rz + Ry) =\/(Rx : Rz + Ry) + (Ry : Rz + Ry)
=y/(Rz : Ry) + (Ry : Rx).

Thus R = (Rz : Ry) + (Ry : Rx).
(3) = (2) is obtained from [16, Corollary 3.9].
(2) = (1) Clear by Theorem 2.11. O

A ring R is called arithmetical it IN(J+ K) = (INJ)+ (INK) for any ideals
I, J and K of R.

Corollary 2.15. Let R be a ring. Then the following statements are equivalent.

(1) R is an arithmetical ring.

(2) Ewery finitely generated ideal of R is a o-module.
Proof. By Corollary 2.14 and [6, Exercise 18, p. 150]. |

Remark 2.16. Let R be a domain with the field of fractions K. A non-zero ideal
I of R is called invertible provided I='I = R where I7' = {k € K : kI C R}.
The domain R is called Priifer when every non-zero finitely generated ideal of R
is tnvertible. By [6, Theorem 6.6 and Exercise 18, p 150], a domain R is Priifer
if and only if R is arithmetical. Thus, by Corollary 2.15, a domain R is Prifer if
and only if every finitely generated ideal of R is a o-module. Using this fact, we

conclude that a submodule of a o-module need not be a o-module.

Corollary 2.17. Let M be a module over a local Ting R. Then the following are

equivalent.

(1) M is a chain module.
(2) Every finitely generated submodule of M is a o-module.
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(3) Every finitely generated submodule of M is cyclic.

In particular, if R is a local domain, then R is a valuation domain if and only if

every finitely generated ideal of R is a o-module.

Proof. The result follows by combining [16, Proposition 3.15] and Theorem 2.11.
O

In the following Rg and Mg denote the ring of fractions and the module of

fractions, respectively.

Lemma 2.18. Let R be a ring and M be a finitely generated p-module (o-module)
over R. Also, let S be a multiplicatively closed subset of R. Then Mg is a pi-module

(o-module) over Rg.

Proof. Let M be a u-module over R. Let Ng and Lg be submodules of Mg. Then
(Ns+Ls:Ms)=((N+L)s: Ms)=((N+L): M))s
— (N M) + (L M))s = (N : M)g + (L : M)g
= (Ns: Mg) + (Lg : Ms).

Thus Mg is a p-module. Also, if M is a finitely generated o-module, then by
Theorem 2.11, Mg is a o-module. O

Now we prove that the property of being o-module is a local property for finitely
generated modules. Let M be an R-module and P a prime ideal of R. We write
Mp instead of Mg when S = R\ P.

Theorem 2.19. Let R be a ring and M be a finitely generated R-module. Then
the following are equivalent.

(1) M is a o-module.

(2) Mp is a o-module for all prime ideals P of R.

(3) My, is a o-module for all mazimal ideals m of R.

Proof. (1) = (2) follows from Lemma 2.18.
(2) = (3) Clear.

(3) = (1) Let N and L be submodules of M. Since My, is a finitely generated
o-module over R,,, by Theorem 2.11, M,, is a p-module. Thus for any maximal
ideal m of R, (Nyy + Ly : M) = (N : M) + (L : My,) and hence (N + L :
M)m = (N : M)+ (L : M))m. Now since “ = 7 is a local property, we have
(N+L:M)=(N:M)+(L:M). Thus M is a finitely generated p-module and
is a o-module by Theorem 2.11. (I
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Proposition 2.20. FEvery homomorphic image of a o-module is a o-module.

Proof. Let M and M’ be R-modules and M a o-module. Suppose that ¢ : M —
M’ be an epimorphism. Then, Im ¢ = M /K for some submodule K of M. Now it is
enough to show that M = M /K is a o-module. For any submodule H of M, we have
H = H/K for some submodule H of M with H D K. Clearly (H : M) = (H : M).
Now let N = N/K and L = L/K be submodules of M. Using [11, Corollary 1.3],

(rad(N+L): M) =(rad(N + L) : M) = (rad(N + L) : M)

=/(N: M)+ (L: M) =+/(N: M)+ (L:M).
Thus M is a o-module. O

Corollary 2.21. Let R be a ring. Then every cyclic R-module M is a o-module.

The converse is true when M is finitely generated and R is local.

Proof. Since R is a o-module over R, it is clear that every cyclic R-module is also
a o-module by Proposition 2.20. For the converse let R be a local ring with the
maximal ideal P, and M a non-zero finitely generated o-module over R. Then by
[1, Corollary 2.5], M # PM. Now by Corollary 2.8, there exist p € P and m € M
such that (1 — p)M C Rm. Hence M = Rm. O

3. Surjectivity and injectivity of p and o

Let R be a ring and let M be an R-module. Recall that p: R(R) = R(M) is a
mapping defined by p(I) = rad(A(I)) = rad(IM) for all radical ideals I of R and
o : R(R) — R(M) is a mapping defined by o(N) = u(N) = (N : M) for all radical
submodules N of M. Thus the surjectivity of A implies the surjectivity of p and the
injectivity of p implies the injectivity of o. In this section, we will investigate the
conditions under which p and o are injective or surjective. The following lemma

plays an important role in this way.

Lemma 3.1. The following holds for the mappings p and o.
(1) opo=o0.
(2) pop=p.

Proof. (1) Let N be a radical submodule of M. Then
opo(N)=op((N: M))=oc(rad(N: M)M)) = (rad((N : M)M) : M).

We show that (rad((N : M)M) : M) = (N : M). Since N is a radical submodule,
(N : M)M C N implies that rad((N : M)M) C N. Thus (rad((N : M)M) : M) C
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(N : M). On the other hand (N : M) C (N : M)M : M) C (rad((N : M)M) : M)
which implies the desired equality. That is, opo(N) = o(N).
(2) Let I be a radical ideal of R. Then

pop(I) = po(rad(IM)) = p((rad(IM) : M)) =rad((rad(IM) : M)M).

Thus pop(I) = rad((rad(IM) : M)M). Now, (rad(IM) : M)M C rad(IM),
implies that rad((rad(IM) : M)M) C rad(IM). On the other hand IM C rad(IM)
implies that I C (rad(IM) : M) and hence IM C (rad(IM) : M)M which gives
rad(IM) C rad((rad(IM) : M)M). Thus rad((rad(IM) : M)M) = rad(IM), that
is pop(I) = p(I). O

Theorem 3.2. With the above notation, the following statements are equivalent.

(1) p is a surjection.

(2) po=1.
(3) N =rad((N : M)M) for every radical submodule N of M.
(4) o is an injection.

Proof. (1) = (2) Let N € R(M). Since p is a surjection, then there exists an ideal
I of R such that p(I) = N. Thus po(N) = pop(I) = p(I) = N.

(4) = (2) Since opo = o, we have opo(N) = o(N) for N € R(M). Since o is
injective, we get po(N) = N. Thus po = 1.

(2) < (3), (2) = (4) and (2) = (1) are clear. O

Theorem 3.3. Let M be an R-module. Then the following statements are equiva-

lent.

1)
(2) op=1.

(3) I = (rad(IM) : M) for every radical ideal I of R.
(4)

p s an injection.
4) o s a surjection.

Proof. Similar to the proof of the previous theorem. (I

Corollary 3.4. Let M be an R-module. Then the mapping p is a bijection if and

only if o is a bijection. In this case p and o are inverses of each other.
Corollary 3.5. If p is an injection, then /(0 : M) = (rad 0 : M).

Proof. By (3) of Theorem 3.3 and (5) of Lemma 2.1, 1/(0 (rad(1/(0: M)M) :
M) = (rad((0: M)M) : M) = (rad0 : M). O
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Let M be a nonzero finitely generated R-module and I a radical ideal of R.
Then, by [10, Proposition 5.3], (rad(IM) : M) = IM : M. Also (IM : M) = I
if and only if (0 : M) C I, by [10, Proposition 3.1]. Thus, using Theorem 3.3,
(1) & (3), we have the following result.

Corollary 3.6. Let R be a ring and M be a primeful faithful R-module. Then p

is an injection and hence o is a surjection.

In the following example, we show that the mapping p may be a monomorphism

(resp. an epimorphism) but not an epimorphism (resp. a monomorphism).

Example 3.7. (1) Every free R-module F is a primeful module. Indeed, for every
prime ideal p of R, (pF : F) = p. Thus, by Corollary 3.6, p is a monomorphism.
Now, let 0 € R(R), F = R®R, and I be a non-zero radical ideal of R. Then 01 is
a non-zero radical submodule of F by [14, Lemma 2.1]. Hence, p(J) = J&J # 01
for each radical ideal J of R, i.e., p is not an epimorphism.

(2) We know that an R-module M is a multiplication module if and only if
the mapping A is an epimorphism. However for every multiplication module, p
is an epimorphism but the converse is not true in general. Primeless modules
are the simplest examples for this case. Let M be a primeless R-module. Then
R(M) = {M} and we have p(I) = rad(IM) = M for all (radical) ideals I of R.
Hence p is an epimorphism but M need not be a multiplication module. For example,
let R=1Z, p be a prime integer and let M be the primeless Z-module Z(p™) & Zp,
where Zy, denotes the cyclic group of order p. Thus p is an epimorphism while, by
[13, Example 3.7], M is not a multiplication R-module. Also it is clear that in this

case p is not a monomorphism.

Theorem 3.8. Let R be a ring and M an R-module. Consider the following
statements:
(1) The mapping p : R(R) — R(M) is an isomorphism.
(2)
3)
(4) The mapping p: LrR(M) — L(R) is an isomorphism.
(5) M is a multiplication module such that I = (IM : M) for every ideal I of
R.
(6) M is a faithful multiplication module.

The mapping o : R(M) — R(R) is an isomorphism.
The mapping X\ : L(R) — Lr(M) is an isomorphism.

Then (1) and (2) are equivalent. In particular, if R is an integral domain and M

a primeful R-module, then all the above statements are equivalent.
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Proof. (1) & (2) By Theorem 3.2 and Theorem 3.3, p is a bijection if and only if
o is a bijection. Using [16, Lemma 1.2], we conclude that p is an isomorphism if
and only if ¢ is an isomorphism.

(2) = (6) Let o be an isomorphism. Then M is a o-module and hence a mul-
tiplication module by Theorem 2.11. Also by Theorem 3.3 (4) = (3), we have

(0: M) = (rad(\/(0: M)M) : M) = (rad((0 : M)M) : M) = (rad0 : M) =
(rad(0M) : M) = 0. Hence /(0 : M) = 0 which implies that (0 : M) = 0, i.e., M
is faithful.

(6) = (1) Let M be a faithful multiplication R-module. Let N be a radical
submodule of M. Then N = IM for some ideal I of R and we have p(v/T) =
rad(vIM) = rad(IM) = rad N = N. Also, let I and J be radical ideals of R and
p(I) = p(J). Then, by [4, Theorem 2.12], IM = /IM = rad(IM) = rad(JM) =
VJM = JM. Since M is a multiplication primeful module, by [10, Proposition
3.8], it is finitely generated and hence by [4, Theorem 3.1], I = J. Therefore p is
an isomorphism.

(3) — (6) are equivalent by [16, Theorem 4.3 and Corollary 4.5]. O

Lemma 3.9. Let M be a simple R-module. Then
(1) r € (0: M) if and only if r* € (0: M).
(2) 0 is a prime submodule of M and hence rad0 = 0.

Proof. Straightforward. O

Proposition 3.10. Let R be a ring and let M be a semisimple R-module. If p is

a monomorphism, then R is von Neumann regular.

Proof. Let M = @& M; for some non-empty family of simple R-modules M; (i € I)
i€l

and 0 # r € R. Foreach i € I let P, = (0 : M;). Then, using Lemma 3.9,

p(Rr) = rad(Rr( @ M;)) = rad( & M;) = rad(Rr?( & M;)) = p(Rr?), where
jeJ JjeJ JjeJ

J C I such that r ¢ ‘UJP]-. Hence Rr = Rr? and therefore R is von Neumann

VIS

regular. (I

The semisimplicity of M in Proposition 3.10 is necessary. For example, if F' is
a free R-module, then p is a monomorphism, but R need not be a von Neumann
regular ring.

An R-module M is said to be local if it has the largest proper submodule. Note
that an R module M can have a unique maximal submodule without being local.

For example, let p be a prime integer. Then the Z-module Q @ Z/pZ have the
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unique maximal submodule Q & 0, but it is not local because of 0B Z/pZ ¢ Q & 0.
The following proposition may be compared with [16, Proposition 3.12].

Proposition 3.11. Let R be a domain which is not a field, and M a non-zero

injective local R-module. Then

(1) The homomorphism p is neither a monomorphism nor an epimorphism.
(2) The mapping o is a homomorphism which is neither a monomorphism nor

an epimorphism.

Proof. Since R is a domain and M is injective, M is divisible. Thus IM = M, for
all non-zero ideal I of R and (N : M) = 0 for all proper submodule N of M.

(1) Let 0 # r € R be a non-unit. Then p(vRr) = rad(vRrM) = rad M =
M = p(R). Hence p is not a monomorphism. Clearly every maximal ideal of R is
non-zero and hence divisibility of M implies that M = PM for all maximal ideals
P of R. Thus M is not finitely generated and therefore it is not simple. Now let @
be a non-zero proper submodule of M. Then, rad () is non-zero and contained in
M properly. Hence, we have rad Q # p(q) = M for any ideal g of R, and thus p is
not an epimorphism.

(2) Let M be a local R-module and N, L be proper submodules of M. Then
rad(N + L) # M and hence (rad(N+L): M)=0=+/(N: M)+ (L: M). Thus o
is a homomorphism. The last part follows from (1) and Theorem 3.2 and Theorem
3.3. O
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