MAPPINGS BETWEEN LATTICES OF RADICAL SUBMODULES

Hosein Fazaeli Moghimi and Javad Bagheri Harehdashti Received: 29 March 2015; Revised: 12 December 2015 Communicated by A. Çiğdem Özcan

ABSTRACT. Let R be a ring and $\mathcal{R}(M)$ be the lattice of radical submodules of an R-module M. Although the mapping $\rho:\mathcal{R}(R)\to\mathcal{R}(M)$ defined by $\rho(I)=\mathrm{rad}(IM)$ is a lattice homomorphism, the mapping $\sigma:\mathcal{R}(M)\to\mathcal{R}(R)$ defined by $\sigma(N)=(N:M)$ is not necessarily so. In this paper, we examine the properties of σ , in particular considering when it is a homomorphism. We prove that a finitely generated R-module M is a multiplication module if and only if σ is a homomorphism. In particular, a finitely generated module M over a domain R is a faithful multiplication module if and only if σ is an isomorphism.

Mathematics Subject Classification (2010): 13C13, 13C99, 06B99 Keywords: σ -modules, multiplication modules, primeful modules

1. Introduction

Throughout this paper all rings are commutative with identity and all modules are unitary. Let R be a ring. For a submodule N of an R-module M, (N:M) is the ideal $\{r \in R \mid rM \subseteq N\}$ of R. As usual, M is called faithful when (0:M) = 0. Let M be an R-module and $\mathcal{L}_R(M)$ denote the lattice of submodules of M with respect to the following definitions:

$$N \vee L = N + L$$
 and $N \wedge L = N \cap L$,

for all submodules N and L of M. In particular, we shall denote the lattice $\mathcal{L}_R(R)$ by $\mathcal{L}(R)$. Now consider the mapping $\lambda:\mathcal{L}(R)\to\mathcal{L}_R(M)$ given by $\lambda(I)=IM$, and the mapping $\mu:\mathcal{L}_R(M)\to\mathcal{L}(R)$ given by $\mu(N)=(N:M)$. It is easily seen that $\lambda(I\vee J)=\lambda(I)\vee\lambda(J)$ and $\mu(N\wedge L)=\mu(N)\wedge\mu(L)$. An R-module M is called a λ -module (resp. μ -module) if $\lambda(I\wedge J)=\lambda(I)\wedge\lambda(J)$ (resp. $\mu(N+L)=\mu(N)+\mu(L)$). In other words, λ (resp. μ) is a lattice homomorphism. These notions have been introduced by P. F. Smith in [16]; he studied conditions under which λ and μ are homomorphisms and, in particular, isomorphisms. By [16, Lemmas 1.3 and 1.4], λ is an isomorphism if and only if μ is an isomorphism and in this case λ and μ are inverses of each other. The module M is called multiplication whenever λ is

a surjection, i.e., for every submodule N of M there exists an ideal I of R such that N = IM. In this case, we can take I = (N : M) (see for example [2,4]). It is shown that if M is a faithful multiplication R-module, then the mapping λ is a homomorphism [16, Theorem 2.12]. In particular, λ is an isomorphism if and only if M is a finitely generated faithful multiplication module.

A proper submodule N of M is called a prime submodule if for $r \in R$, $m \in M$, $rm \in N$ implies that $r \in (N:M)$ or $m \in N$. Prime submodules have been introduced by J. Dauns in [3], and then this class of submodules has been extensively studied by several authors (see, for example, [4,7,13]). For a proper submodule N of an R-module M the radical of N, denoted by rad N, is the intersection of all prime submodules of M containing N or, in case there are no such prime submodules, rad N is M (see, for example, [5,8,9,10,11,14]). A submodule N of M is called a radical submodule if rad N = N. For an ideal I of a ring R, we assume throughout that \sqrt{I} denotes the radical of I. It is easily seen that the set of radical submodules of M with the following operations

$$N \vee L = \operatorname{rad}(N + L)$$
 and $N \wedge L = N \cap L$

forms a lattice. We denote this lattice by $\mathcal{R}(M)$. In general $\mathcal{R}(M)$ is not a sublattice of $\mathcal{L}_R(M)$. For example, let K be a field and K = K[X,Y] the polynomial ring in indeterminates X,Y. Moreover, let K = K(X) and K = K(X,Y). It is easily seen that K = K(X), but K = K(X) since K = K(X) since K = K(X).

Now consider the mappings $\rho: \mathcal{R}(R) \to \mathcal{R}(M)$ defined by $\rho(I) = \operatorname{rad}(\lambda(I)) = \operatorname{rad}(IM)$ and $\sigma: \mathcal{R}(M) \to \mathcal{R}(R)$ defined by $\sigma(N) = \mu(N) = (N:M)$. It is shown that ρ is always a homomorphism, but σ is not so (see Example 2.3). We say that an R-module M is a σ -module if σ is a homomorphism. In this article, we show that several properties of λ and μ remain valid for ρ and σ . In Theorem 2.11, it is proved that a finitely generated R-module M is a σ -module if and only if M is a multiplication module and so if and only if M is a μ -module. It is also proved that the property of being a σ -module is a local property for finitely generated modules (Corollary 2.19).

An R-module M is said to be primeful if M=(0) or $M\neq(0)$ and for each prime ideal P of R containing (0:M), there exists a prime submodule N of M such that (N:M)=P. For example, finitely generated modules and projective modules over integral domains are primeful (see [10, Theorem 2.2 and Corollary 4.3]). If M is a primeful faithful R-module, then ρ is an injection and hence σ is a surjection (Corollary 3.6). If M is a primeful module over a domain R, then ρ is an isomorphism if and only if σ is an isomorphism if and only if σ is an isomorphism if

and only if μ is an isomorphism if and only if M is a faithful multiplication module (Theorem 3.8).

2. The mapping σ

We begin with some properties of radical of submodules which are frequently used in the rest of paper.

Lemma 2.1. (See [8, Proposition 2]) Let N and L be submodules of an R-module M. Then

- (1) $N \subseteq \operatorname{rad} N$,
- (2) $\operatorname{rad}(\operatorname{rad} N) = \operatorname{rad} N$,
- (3) $\operatorname{rad}(N \cap L) \subseteq \operatorname{rad} N \cap \operatorname{rad} L$,
- (4) $\operatorname{rad}(N+L) = \operatorname{rad}(\operatorname{rad} N + \operatorname{rad} L),$
- (5) $\operatorname{rad}(IM) = \operatorname{rad}(\sqrt{I}M),$
- (6) $\sqrt{(N:M)} \subseteq (\operatorname{rad} N:M)$.

In [16], it is seen that λ is not a homomorphism in general. In contrast, ρ is a homomorphism because of the following:

$$\rho(I \vee J) = \rho(\sqrt{I+J}) = \operatorname{rad}(\sqrt{I+J}M) = \operatorname{rad}((I+J)M)$$
$$= \operatorname{rad}(IM + JM) = \operatorname{rad}(\operatorname{rad}(IM) + \operatorname{rad}(JM))$$
$$= \operatorname{rad}(IM) \vee \operatorname{rad}(JM) = \rho(I) \vee \rho(J).$$

Using [9, Corollary 2 to Proposition 1], we have

$$rad((I \cap J)M) \subseteq rad(IM) \cap rad(JM) = rad(IJM) \subseteq rad((I \cap J)M).$$

Therefore,

$$\rho(I \wedge J) = \rho(I \cap J) = \operatorname{rad}((I \cap J)M) = \operatorname{rad}(IM) \cap \operatorname{rad}(JM) = \rho(I) \wedge \rho(J).$$

Here, it is worth noting that σ is well-defined. In fact, $\sqrt{(\operatorname{rad} N:M)}\subseteq (\operatorname{rad}(\operatorname{rad} N):M)=(\operatorname{rad} N:M)$. Also clearly $(\operatorname{rad} N:M)\subseteq \sqrt{(\operatorname{rad} N:M)}$. Thus $\sqrt{(\operatorname{rad} N:M)}=(\operatorname{rad} N:M)$. Therefore if N is a radical submodule, then $\sqrt{(N:M)}=(N:M)$. This means that (N:M) is a radical ideal and so σ is well-defined.

Recall that M is a σ -module in case the mapping σ is a homomorphism.

Lemma 2.2. Let R be a ring and M an R-module. Then M is a σ -module if and only if $(\operatorname{rad}(N+L):M)=\sqrt{(N:M)+(L:M)}$ for all radical submodules N and L of M.

Proof. It is clear that $\sigma(N \wedge L) = (N \cap L : M) = (N : M) \cap (L : M) = \sigma(N) \wedge \sigma(L)$ for all radical submodules N and L of M. Thus σ is a homomorphism if and only if $\sigma(N \vee L) = \sigma(N) \vee \sigma(L)$ if and only if $(\operatorname{rad}(N + L) : M) = \sqrt{(N : M) + (L : M)}$ for all radical submodules N and L of M.

Let M be an R-module and N a proper submodule of M. Let

$$E_M(N) = \{rx : r \in R \text{ and } x \in M \text{ such that } r^n x \in N \text{ for some } n \in \mathbb{N}\}.$$

The envelop submodule of N in M is defined to be the submodule of M generated by $E_M(N)$. An R-module M is said to satisfy the radical formula if rad $N = RE_M(N)$, for each submodule N of M. Now by using the above lemma, we give an example which shows σ need not be a homomorphism.

Example 2.3. Let $R = \mathbb{Z}$ and $M = \mathbb{Z} \oplus \mathbb{Z}$. Let $N = \mathbb{Z}(2,0)$ and $L = \mathbb{Z}(0,2)$. It is easily seen that $E_M(\mathbb{Z}(2,0)) = \mathbb{Z}(2,0)$ and $E_M(\mathbb{Z}(0,2)) = \mathbb{Z}(0,2)$. Since, by [5, Corollary 12], M satisfies the radical formula, we have $\operatorname{rad}\mathbb{Z}(2,0) = \mathbb{Z}(2,0)$ and $\operatorname{rad}\mathbb{Z}(0,2) = \mathbb{Z}(0,2)$. Thus N and L are radical submodules of M. Also clearly (N:M) = (L:M) = 0. Hence $\sqrt{(N:M) + (L:M)} = 0$. On the other hand, let $r \in (N+L:M)$. Then $r(1,0) \in N+L = \mathbb{Z}(2,0) + \mathbb{Z}(0,2)$ and hence there exist $r_1, r_2 \in R$ such that $r(1,0) = (r,0) = r_1(2,0) + r_2(0,2) = (2r_1,2r_2)$. Thus $r = 2r_1$. This shows that $(N+L:M) \subseteq 2\mathbb{Z}$. The reverse inclusion is obvious, and thus $(N+L:M) = 2\mathbb{Z}$. Hence, by [7, Proposition 2], N+L is a prime submodule of M and so $\operatorname{rad}(N+L) = N+L$. Thus we have $(\operatorname{rad}(N+L):M) = 2\mathbb{Z} \neq (0) = \sqrt{(N:M) + (L:M)}$.

Corollary 2.4. Every finitely generated μ -module is a σ -module.

Proof. Let M be a finitely generated μ -module over a ring R. By [12, Theorem 4.4],

$$(rad(N+L): M) = \sqrt{(N+L: M)} = \sqrt{(N: M) + (L: M)},$$

for all radical submodules N and L of M. Thus M is a σ -module by Lemma 2.2. \square

In Theorem 2.11, we will show that a finitely generated module is a σ -module if and only if M is a μ -module. Note that this fact is not true in general. See the following example.

Example 2.5. Let $M = \mathbb{Z}(p^{\infty})$, the Prüfer p-group. Since M is a primeless \mathbb{Z} -module, by [13, Proposition 1.7] $M' = M \oplus M$ is a primeless \mathbb{Z} -module. Hence M' is a σ -module, whereas it is not a μ -module by [16, Corollary 3.3].

Theorem 2.6. Let M be a σ -module over a ring R and let L, N be submodules of M.

- (1) If $M = \operatorname{rad}(N + L)$ (or in particular M = N + L), then there exists $a \in R$ such that $aM \subseteq \operatorname{rad} N$ and $(1 a)M \subseteq \operatorname{rad} L$.
- (2) If M is a finitely generated module such that M = N + L, then there exists $a \in R$ such that $aM \subseteq N$ and $(1 a)M \subseteq L$.

Proof. (1) By Lemma 2.2, $R = (M:M) = (\operatorname{rad}(N+L):M) = (\operatorname{rad}(\operatorname{rad}N+L):M) = \sqrt{(\operatorname{rad}N:M) + (\operatorname{rad}L:M)}$. Thus $R = (\operatorname{rad}N:M) + (\operatorname{rad}L:M)$. Now the desired result is clear.

(2) Since M = N + L = rad(N + L), by (1) we have R = (rad N : M) + (rad L : M). Since M is finitely generated, by [12, Theorem 4.4], $R = \sqrt{(N : M)} + \sqrt{(L : M)}$ and hence R = (N : M) + (L : M). Now, clearly the result follows.

Using the previous theorem we are able to show that there is no integral domain, say R, such that any R-module is a σ -module. We will show that this statement is also true for each arbitrary ring (see Corollary 2.13).

Corollary 2.7. Let R be an integral domain and P a non-zero prime ideal. Then the R-module $M = P \oplus P$ is not a σ -module.

Proof. Suppose that $M = P \oplus P$ is a σ -module. By Theorem 2.6 (1), there exists $a \in R$ such that $a(P \oplus P) \subseteq \operatorname{rad}(P \oplus 0) = \operatorname{rad}P \oplus \operatorname{rad}0 = P \oplus 0$ and $(1-a)(P \oplus P) \subseteq \operatorname{rad}(0 \oplus P) = \operatorname{rad}0 \oplus \operatorname{rad}P = 0 \oplus P$, so that aP = 0 and (1-a)P = 0 giving P = 0, a contradiction.

Corollary 2.8. Let M be a σ -module over a ring R. Then

- (1) For each maximal ideal P of R either M = PM or there exist $m \in M$ and $p \in P$ such that $(1 p)M \subseteq rad(Rm)$.
- (2) If M is a finitely generated module, then for each maximal ideal P of R there exist $m \in M$ and $p \in P$ such that $(1-p)M \subseteq Rm$.

Proof. Let P be a maximal ideal of R such that $M \neq PM$. We know that M/PM is a non-zero semisimple module and hence contains a maximal submodule. Assume that L be a maximal submodule of M such that $PM \subseteq L$ and $m \in M \setminus L$.

(1) By Theorem 2.6 (1), there exists an element $p \in R$ such that $pM \subseteq L$ and $(1-p)M \subseteq \operatorname{rad}(Rm)$. If $p \notin P$, then R = P + Rp and hence $M = PM + pM \subseteq L$, a contradiction. Thus $p \in P$, as required.

(2) By [16, Corollary 3.4].
$$\Box$$

Lemma 2.9. (See [4, Theorem 1.2]) Let R be a ring. Then an R-module M is a multiplication module if and only if for each maximal ideal P of R either

- (1) for each $m \in M$ there exists $p \in P$ such that (1-p)m = 0, or
- (2) there exist $x \in M$ and $q \in P$ such that $(1-q)M \subseteq Rx$.

Lemma 2.10. (See [16, Corollary 2.11]) Let R be any ring. Then an R-module M is a finitely generated multiplication module if and only if for each maximal ideal P of R there exist $m \in M$, $p \in P$ such that $(1-p)M \subseteq Rm$.

Theorem 2.11. Let R be any ring and M a finitely generated R-module. Then the following are equivalent.

- (1) M is a σ -module.
- (2) M is a multiplication module.
- (3) M is a μ -module.

Proof. (1) \Rightarrow (2) Let M be a σ -module. Then by Corollary 2.8 and Lemma 2.10, M is a multiplication module.

 $(2) \Rightarrow (1)$ Let M be a multiplication R-module. Since M is finitely generated, by [15, Exercise 9.23], $\sqrt{(IM:M)} = \sqrt{I + (0:M)}$ (*) for all ideals I of R. Now, let N and L be submodules of M. Consider the finitely generated R-module M/L and the ideal (N:M) instead of M and I, in (*), respectively. Then

$$\begin{split} \sqrt{(N:M) + (L:M)} &= \sqrt{(N:M) + (0:M/L)} \\ &= \sqrt{((N:M)(M/L):M/L)} \\ &= \sqrt{(((N:M)M + L)/L:M/L)} \\ &= \sqrt{((N:M)M + L:M)} \\ &= \sqrt{(N+L:M)} = (\mathrm{rad}(N+L):M). \end{split}$$

Thus M is a σ -module.

 $(2) \Leftrightarrow (3)$ follows from [16, Theorem 3.8].

Corollary 2.12. Let M be a finitely generated R-module. Then the following statements are equivalent.

- (1) (N+L:M)=(N:M)+(L:M) for all submodules N and L of M.
- (2) $(rad(N+L): M) = \sqrt{(N:M) + (L:M)}$ for all radical submodules N and L of M.

Proof. It is clear, by Theorem 2.11 and definitions of a σ -module and a μ -module.

Corollary 2.13. Let R be any (non-zero) ring and let M be a non-zero finitely generated R-module. Then the R-module $M \oplus M$ is not a σ -module.

Proof. Use Theorem 2.11 and [16, Corollary 3.3]. \Box

Corollary 2.14. Let M be an R-module. Then the following statements are equivalent.

- (1) Every finitely generated submodule of M is a σ -module.
- (2) Every finitely generated submodule of M is a μ -module.
- (3) R = (Rx : Ry) + (Ry : Rx) for all elements $x, y \in M$.

Proof. (1) \Rightarrow (3) Let $x, y \in M$. Then

$$R = (\operatorname{rad}(Rx + Ry) : Rx + Ry) = \sqrt{(Rx : Rx + Ry) + (Ry : Rx + Ry)}$$
$$= \sqrt{(Rx : Ry) + (Ry : Rx)}.$$

Thus R = (Rx : Ry) + (Ry : Rx).

 $(3) \Rightarrow (2)$ is obtained from [16, Corollary 3.9].

$$(2) \Rightarrow (1)$$
 Clear by Theorem 2.11.

A ring R is called arithmetical if $I \cap (J + K) = (I \cap J) + (I \cap K)$ for any ideals I, J and K of R.

Corollary 2.15. Let R be a ring. Then the following statements are equivalent.

- (1) R is an arithmetical ring.
- (2) Every finitely generated ideal of R is a σ -module.

Proof. By Corollary 2.14 and [6, Exercise 18, p. 150].

Remark 2.16. Let R be a domain with the field of fractions K. A non-zero ideal I of R is called invertible provided $I^{-1}I = R$ where $I^{-1} = \{k \in K : kI \subseteq R\}$. The domain R is called Prüfer when every non-zero finitely generated ideal of R is invertible. By [6, Theorem 6.6 and Exercise 18, p 150], a domain R is Prüfer if and only if R is arithmetical. Thus, by Corollary 2.15, a domain R is Prüfer if and only if every finitely generated ideal of R is a σ -module. Using this fact, we conclude that a submodule of a σ -module need not be a σ -module.

Corollary 2.17. Let M be a module over a local ring R. Then the following are equivalent.

- (1) M is a chain module.
- (2) Every finitely generated submodule of M is a σ -module.

(3) Every finitely generated submodule of M is cyclic.

In particular, if R is a local domain, then R is a valuation domain if and only if every finitely generated ideal of R is a σ -module.

Proof. The result follows by combining [16, Proposition 3.15] and Theorem 2.11.

In the following R_S and M_S denote the ring of fractions and the module of fractions, respectively.

Lemma 2.18. Let R be a ring and M be a finitely generated μ -module (σ -module) over R. Also, let S be a multiplicatively closed subset of R. Then M_S is a μ -module (σ -module) over R_S .

Proof. Let M be a μ -module over R. Let N_S and L_S be submodules of M_S . Then

$$(N_S + L_S : M_S) = ((N + L)_S : M_S) = ((N + L) : M))_S$$
$$= ((N : M) + (L : M))_S = (N : M)_S + (L : M)_S$$
$$= (N_S : M_S) + (L_S : M_S).$$

Thus M_S is a μ -module. Also, if M is a finitely generated σ -module, then by Theorem 2.11, M_S is a σ -module.

Now we prove that the property of being σ -module is a local property for finitely generated modules. Let M be an R-module and P a prime ideal of R. We write M_P instead of M_S when $S = R \setminus P$.

Theorem 2.19. Let R be a ring and M be a finitely generated R-module. Then the following are equivalent.

- (1) M is a σ -module.
- (2) M_P is a σ -module for all prime ideals P of R.
- (3) $M_{\mathfrak{m}}$ is a σ -module for all maximal ideals \mathfrak{m} of R.

Proof. $(1) \Rightarrow (2)$ follows from Lemma 2.18.

- $(2) \Rightarrow (3)$ Clear.
- (3) \Rightarrow (1) Let N and L be submodules of M. Since $M_{\mathfrak{m}}$ is a finitely generated σ -module over R_m , by Theorem 2.11, M_m is a μ -module. Thus for any maximal ideal \mathfrak{m} of R, $(N_{\mathfrak{m}} + L_{\mathfrak{m}} : M_{\mathfrak{m}}) = (N_{\mathfrak{m}} : M_{\mathfrak{m}}) + (L_{\mathfrak{m}} : M_{\mathfrak{m}})$ and hence $(N + L : M)_{\mathfrak{m}} = ((N : M) + (L : M))_{\mathfrak{m}}$. Now since " = " is a local property, we have (N + L : M) = (N : M) + (L : M). Thus M is a finitely generated μ -module and is a σ -module by Theorem 2.11.

Proposition 2.20. Every homomorphic image of a σ -module is a σ -module.

Proof. Let M and M' be R-modules and M a σ -module. Suppose that $\varphi: M \to M'$ be an epimorphism. Then, $\operatorname{Im} \varphi = M/K$ for some submodule K of M. Now it is enough to show that $\overline{M} = M/K$ is a σ -module. For any submodule \overline{H} of \overline{M} , we have $\overline{H} = H/K$ for some submodule H of M with $H \supseteq K$. Clearly $(\overline{H} : \overline{M}) = (H : M)$. Now let $\overline{N} = N/K$ and $\overline{L} = L/K$ be submodules of \overline{M} . Using [11, Corollary 1.3],

$$\begin{aligned} (\operatorname{rad}(\overline{N} + \overline{L}) : \overline{M}) = & (\overline{\operatorname{rad}(N + L)} : \overline{M}) = (\operatorname{rad}(N + L) : M) \\ = & \sqrt{(N : M) + (L : M)} = \sqrt{(\overline{N} : \overline{M}) + (\overline{L} : \overline{M})}. \end{aligned}$$

Thus \overline{M} is a σ -module.

Corollary 2.21. Let R be a ring. Then every cyclic R-module M is a σ -module. The converse is true when M is finitely generated and R is local.

Proof. Since R is a σ -module over R, it is clear that every cyclic R-module is also a σ -module by Proposition 2.20. For the converse let R be a local ring with the maximal ideal P, and M a non-zero finitely generated σ -module over R. Then by [1, Corollary 2.5], $M \neq PM$. Now by Corollary 2.8, there exist $p \in P$ and $m \in M$ such that $(1-p)M \subseteq Rm$. Hence M = Rm.

3. Surjectivity and injectivity of ρ and σ

Let R be a ring and let M be an R-module. Recall that $\rho: \mathcal{R}(R) \to \mathcal{R}(M)$ is a mapping defined by $\rho(I) = \operatorname{rad}(\lambda(I)) = \operatorname{rad}(IM)$ for all radical ideals I of R and $\sigma: \mathcal{R}(R) \to \mathcal{R}(M)$ is a mapping defined by $\sigma(N) = \mu(N) = (N:M)$ for all radical submodules N of M. Thus the surjectivity of λ implies the surjectivity of ρ and the injectivity of μ implies the injectivity of σ . In this section, we will investigate the conditions under which ρ and σ are injective or surjective. The following lemma plays an important role in this way.

Lemma 3.1. The following holds for the mappings ρ and σ .

- (1) $\sigma \rho \sigma = \sigma$.
- (2) $\rho \sigma \rho = \rho$.

Proof. (1) Let N be a radical submodule of M. Then

$$\sigma \rho \sigma(N) = \sigma \rho((N:M)) = \sigma(\operatorname{rad}((N:M)M)) = (\operatorname{rad}((N:M)M):M).$$

We show that $(\operatorname{rad}((N:M)M):M)=(N:M)$. Since N is a radical submodule, $(N:M)M\subseteq N$ implies that $\operatorname{rad}((N:M)M)\subseteq N$. Thus $(\operatorname{rad}((N:M)M):M)\subseteq M$.

(N:M). On the other hand $(N:M)\subseteq ((N:M)M:M)\subseteq (\mathrm{rad}((N:M)M):M)$ which implies the desired equality. That is, $\sigma\rho\sigma(N)=\sigma(N)$.

(2) Let I be a radical ideal of R. Then

$$\rho\sigma\rho(I) = \rho\sigma(\operatorname{rad}(IM)) = \rho((\operatorname{rad}(IM):M)) = \operatorname{rad}((\operatorname{rad}(IM):M)M).$$

Thus $\rho\sigma\rho(I)=\operatorname{rad}((\operatorname{rad}(IM):M)M)$. Now, $(\operatorname{rad}(IM):M)M\subseteq\operatorname{rad}(IM)$, implies that $\operatorname{rad}((\operatorname{rad}(IM):M)M)\subseteq\operatorname{rad}(IM)$. On the other hand $IM\subseteq\operatorname{rad}(IM)$ implies that $I\subseteq(\operatorname{rad}(IM):M)$ and hence $IM\subseteq(\operatorname{rad}(IM):M)M$ which gives $\operatorname{rad}(IM)\subseteq\operatorname{rad}((\operatorname{rad}(IM):M)M)$. Thus $\operatorname{rad}((\operatorname{rad}(IM):M)M)=\operatorname{rad}(IM)$, that is $\rho\sigma\rho(I)=\rho(I)$.

Theorem 3.2. With the above notation, the following statements are equivalent.

- (1) ρ is a surjection.
- (2) $\rho \sigma = 1$.
- (3) N = rad((N : M)M) for every radical submodule N of M.
- (4) σ is an injection.

Proof. (1) \Rightarrow (2) Let $N \in \mathcal{R}(M)$. Since ρ is a surjection, then there exists an ideal I of R such that $\rho(I) = N$. Thus $\rho\sigma(N) = \rho\sigma\rho(I) = \rho(I) = N$.

 $(4) \Rightarrow (2)$ Since $\sigma \rho \sigma = \sigma$, we have $\sigma \rho \sigma(N) = \sigma(N)$ for $N \in \mathcal{R}(M)$. Since σ is injective, we get $\rho \sigma(N) = N$. Thus $\rho \sigma = 1$.

$$(2) \Leftrightarrow (3), (2) \Rightarrow (4) \text{ and } (2) \Rightarrow (1) \text{ are clear.}$$

Theorem 3.3. Let M be an R-module. Then the following statements are equivalent.

- (1) ρ is an injection.
- (2) $\sigma \rho = 1$.
- (3) I = (rad(IM) : M) for every radical ideal I of R.
- (4) σ is a surjection.

Proof. Similar to the proof of the previous theorem.

Corollary 3.4. Let M be an R-module. Then the mapping ρ is a bijection if and only if σ is a bijection. In this case ρ and σ are inverses of each other.

Corollary 3.5. If ρ is an injection, then $\sqrt{(0:M)} = (\text{rad } 0:M)$.

Proof. By (3) of Theorem 3.3 and (5) of Lemma 2.1,
$$\sqrt{(0:M)} = (\text{rad}(\sqrt{(0:M)}M):M) = (\text{rad}((0:M)M):M) = (\text{rad}(0:M)M):M$$

Let M be a nonzero finitely generated R-module and I a radical ideal of R. Then, by [10, Proposition 5.3], $(\operatorname{rad}(IM):M) = \sqrt{IM:M}$. Also (IM:M) = I if and only if $(0:M) \subseteq I$, by [10, Proposition 3.1]. Thus, using Theorem 3.3, $(1) \Leftrightarrow (3)$, we have the following result.

Corollary 3.6. Let R be a ring and M be a primeful faithful R-module. Then ρ is an injection and hence σ is a surjection.

In the following example, we show that the mapping ρ may be a monomorphism (resp. an epimorphism) but not an epimorphism (resp. a monomorphism).

Example 3.7. (1) Every free R-module F is a primeful module. Indeed, for every prime ideal p of R, (pF : F) = p. Thus, by Corollary 3.6, ρ is a monomorphism. Now, let $0 \in \mathcal{R}(R)$, $F = R \oplus R$, and I be a non-zero radical ideal of R. Then $0 \oplus I$ is a non-zero radical submodule of F by [14, Lemma 2.1]. Hence, $\rho(J) = J \oplus J \neq 0 \oplus I$ for each radical ideal J of R, i.e., ρ is not an epimorphism.

(2) We know that an R-module M is a multiplication module if and only if the mapping λ is an epimorphism. However for every multiplication module, ρ is an epimorphism but the converse is not true in general. Primeless modules are the simplest examples for this case. Let M be a primeless R-module. Then $\mathcal{R}(M) = \{M\}$ and we have $\rho(I) = \operatorname{rad}(IM) = M$ for all (radical) ideals I of R. Hence ρ is an epimorphism but M need not be a multiplication module. For example, let $R = \mathbb{Z}$, p be a prime integer and let M be the primeless \mathbb{Z} -module $\mathbb{Z}(p^{\infty}) \oplus \mathbb{Z}_p$, where \mathbb{Z}_p denotes the cyclic group of order p. Thus ρ is an epimorphism while, by [13, Example 3.7], M is not a multiplication R-module. Also it is clear that in this case ρ is not a monomorphism.

Theorem 3.8. Let R be a ring and M an R-module. Consider the following statements:

- (1) The mapping $\rho: \mathcal{R}(R) \to \mathcal{R}(M)$ is an isomorphism.
- (2) The mapping $\sigma : \mathcal{R}(M) \to \mathcal{R}(R)$ is an isomorphism.
- (3) The mapping $\lambda : \mathcal{L}(R) \to \mathcal{L}_R(M)$ is an isomorphism.
- (4) The mapping $\mu: \mathcal{L}_R(M) \to \mathcal{L}(R)$ is an isomorphism.
- (5) M is a multiplication module such that I = (IM : M) for every ideal I of R.
- (6) M is a faithful multiplication module.

Then (1) and (2) are equivalent. In particular, if R is an integral domain and M a primeful R-module, then all the above statements are equivalent.

Proof. (1) \Leftrightarrow (2) By Theorem 3.2 and Theorem 3.3, ρ is a bijection if and only if σ is a bijection. Using [16, Lemma 1.2], we conclude that ρ is an isomorphism if and only if σ is an isomorphism.

- $(2)\Rightarrow (6)$ Let σ be an isomorphism. Then M is a σ -module and hence a multiplication module by Theorem 2.11. Also by Theorem 3.3 $(4)\Rightarrow (3)$, we have $\sqrt{(0:M)}=(\operatorname{rad}(\sqrt{(0:M)}M):M)=(\operatorname{rad}(0:M)M):M)=(\operatorname{rad}(0:M)=0$ (1:M)=0 which implies that (0:M)=0, i.e., M is faithful.
- $(6) \Rightarrow (1)$ Let M be a faithful multiplication R-module. Let N be a radical submodule of M. Then N = IM for some ideal I of R and we have $\rho(\sqrt{I}) = \operatorname{rad}(\sqrt{I}M) = \operatorname{rad}(IM) = \operatorname{rad} N = N$. Also, let I and J be radical ideals of R and $\rho(I) = \rho(J)$. Then, by [4, Theorem 2.12], $IM = \sqrt{I}M = \operatorname{rad}(IM) = \operatorname{rad}(JM) = \sqrt{J}M = JM$. Since M is a multiplication primeful module, by [10, Proposition 3.8], it is finitely generated and hence by [4, Theorem 3.1], I = J. Therefore ρ is an isomorphism.
 - (3) (6) are equivalent by [16, Theorem 4.3 and Corollary 4.5].

Lemma 3.9. Let M be a simple R-module. Then

- (1) $r \in (0:M)$ if and only if $r^2 \in (0:M)$.
- (2) 0 is a prime submodule of M and hence rad 0 = 0.

Proof. Straightforward.

Proposition 3.10. Let R be a ring and let M be a semisimple R-module. If ρ is a monomorphism, then R is von Neumann regular.

Proof. Let $M = \underset{i \in I}{\oplus} M_i$ for some non-empty family of simple R-modules M_i $(i \in I)$ and $0 \neq r \in R$. For each $i \in I$ let $P_i = (0 : M_i)$. Then, using Lemma 3.9, $\rho(Rr) = \operatorname{rad}(Rr(\underset{j \in J}{\oplus} M_j)) = \operatorname{rad}(\underset{j \in J}{\oplus} M_j) = \operatorname{rad}(Rr^2(\underset{j \in J}{\oplus} M_j)) = \rho(Rr^2)$, where $J \subseteq I$ such that $r \notin \underset{j \in J}{\cup} P_j$. Hence $Rr = Rr^2$ and therefore R is von Neumann regular.

The semisimplicity of M in Proposition 3.10 is necessary. For example, if F is a free R-module, then ρ is a monomorphism, but R need not be a von Neumann regular ring.

An R-module M is said to be local if it has the largest proper submodule. Note that an R module M can have a unique maximal submodule without being local. For example, let p be a prime integer. Then the \mathbb{Z} -module $\mathbb{Q} \oplus \mathbb{Z}/p\mathbb{Z}$ have the

unique maximal submodule $\mathbb{Q} \oplus 0$, but it is not local because of $0 \oplus \mathbb{Z}/p\mathbb{Z} \nsubseteq \mathbb{Q} \oplus 0$. The following proposition may be compared with [16, Proposition 3.12].

Proposition 3.11. Let R be a domain which is not a field, and M a non-zero injective local R-module. Then

- (1) The homomorphism ρ is neither a monomorphism nor an epimorphism.
- (2) The mapping σ is a homomorphism which is neither a monomorphism nor an epimorphism.

Proof. Since R is a domain and M is injective, M is divisible. Thus IM = M, for all non-zero ideal I of R and (N:M) = 0 for all proper submodule N of M.

- (1) Let $0 \neq r \in R$ be a non-unit. Then $\rho(\sqrt{Rr}) = \operatorname{rad}(\sqrt{Rr}M) = \operatorname{rad}M = M = \rho(R)$. Hence ρ is not a monomorphism. Clearly every maximal ideal of R is non-zero and hence divisibility of M implies that M = PM for all maximal ideals P of R. Thus M is not finitely generated and therefore it is not simple. Now let Q be a non-zero proper submodule of M. Then, $\operatorname{rad} Q$ is non-zero and contained in M properly. Hence, we have $\operatorname{rad} Q \neq \rho(q) = M$ for any ideal q of R, and thus ρ is not an epimorphism.
- (2) Let M be a local R-module and N, L be proper submodules of M. Then $\mathrm{rad}(N+L)\neq M$ and hence $(\mathrm{rad}(N+L):M)=0=\sqrt{(N:M)+(L:M)}$. Thus σ is a homomorphism. The last part follows from (1) and Theorem 3.2 and Theorem 3.3.

Acknowledgment. We would like to thank the referee for a careful reading of our article and valuable comments.

References

- M. F. Atiyah and I. G. Macdonald, Introduction to Commutative Algebra, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, 1969.
- [2] A. Barnard, Multiplication modules, J. Algebra, 71(1) (1981), 174-178.
- [3] J. Dauns, Prime submodules, J. Reine Angew. Math., 298 (1978), 156-181.
- [4] Z. A. El-Bast and P. F. Smith, Multiplication modules, Comm. Algebra, 16(4) (1988), 755-779.
- [5] J. Jenkins and P. F. Smith, On the prime radical of a module over a commutative ring, Comm. Algebra, 20(12) (1992), 3593-3602.
- [6] M. D. Larsen and P. J. McCarthy, Multiplicative Theory of Ideals, Pure and Applied Mathematics, 43, Academic Press, New York-London, 1971.

- [7] C.-P. Lu, Prime submodules of modules, Comment. Math. Univ. St. Paul., 33(1) (1984), 61-69.
- [8] C.-P. Lu, M-Radicals of submodules in modules, Math. Japon., 34(2) (1989), 211-219.
- [9] C.-P. Lu, M-Radicals of submodules in modules, II, Math. Japon., 35(5) (1990), 991-1001.
- [10] C.-P. Lu, A module whose prime spectrum has the surjective natural map, Houston J. Math., 33(1) (2007), 125-143.
- [11] R. L. McCasland and M. E. Moore, On radicals of submodules, Comm. Algebra, 19(5) (1991), 1327-1341.
- [12] R. L. McCasland and M. E. Moore, *Prime submodules*, Comm. Algebra, 20(6) (1992), 1803-1817.
- [13] R. L. McCasland, M. E. Moore and P. F. Smith, On the spectrum of a module over a commutative ring, Comm. Algebra, 25(1) (1997), 79-103.
- [14] D. Pusat-Yılmaz and P. F. Smith, Radicals of submodules of free modules, Comm. Algebra, 27(5) (1999), 2253-2266.
- [15] R. Y. Sharp, Steps in Commutative Algebra, Second edition, London Math. Soc. Student Texts, 51, Cambridge Univ. Press, Cambridge, 2000.
- [16] P. F. Smith, Mappings between module lattices, Int. Electron. J. Algebra, 15 (2014), 173-195.

Hosein Fazaeli Moghimi and Javad Bagheri Harehdashti

Department of Mathematics

University of Birjand

Birjand, Iran

e-mails: hfazaeli@birjand.ac.ir (H. F. Moghimi)

 $J_bagheri@birjand.ac.ir$ (J. B. Harehdashti)