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Abstract. Let R be a ring and R(M) be the lattice of radical submodules

of an R-module M . Although the mapping ρ : R(R) → R(M) defined by

ρ(I) = rad(IM) is a lattice homomorphism, the mapping σ : R(M) → R(R)

defined by σ(N) = (N : M) is not necessarily so. In this paper, we examine

the properties of σ, in particular considering when it is a homomorphism. We

prove that a finitely generated R-module M is a multiplication module if and

only if σ is a homomorphism. In particular, a finitely generated module M

over a domain R is a faithful multiplication module if and only if σ is an

isomorphism.
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1. Introduction

Throughout this paper all rings are commutative with identity and all modules

are unitary. Let R be a ring. For a submodule N of an R-module M , (N : M) is

the ideal {r ∈ R | rM ⊆ N} of R. As usual, M is called faithful when (0 : M) = 0.

Let M be an R-module and LR(M) denote the lattice of submodules of M with

respect to the following definitions:

N ∨ L = N + L and N ∧ L = N ∩ L,

for all submodules N and L of M . In particular, we shall denote the lattice LR(R)

by L(R). Now consider the mapping λ : L(R)→ LR(M) given by λ(I) = IM , and

the mapping µ : LR(M) → L(R) given by µ(N) = (N : M). It is easily seen that

λ(I ∨J) = λ(I)∨λ(J) and µ(N ∧L) = µ(N)∧µ(L). An R-module M is called a λ-

module (resp. µ-module) if λ(I∧J) = λ(I)∧λ(J) (resp. µ(N+L) = µ(N)+µ(L)).

In other words, λ (resp. µ) is a lattice homomorphism. These notions have been

introduced by P. F. Smith in [16]; he studied conditions under which λ and µ are

homomorphisms and, in particular, isomorphisms. By [16, Lemmas 1.3 and 1.4],

λ is an isomorphism if and only if µ is an isomorphism and in this case λ and µ

are inverses of each other. The module M is called multiplication whenever λ is
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a surjection, i.e., for every submodule N of M there exists an ideal I of R such

that N = IM . In this case, we can take I = (N : M) (see for example [2,4]). It

is shown that if M is a faithful multiplication R-module, then the mapping λ is a

homomorphism [16, Theorem 2.12]. In particular, λ is an isomorphism if and only

if M is a finitely generated faithful multiplication module.

A proper submodule N of M is called a prime submodule if for r ∈ R, m ∈M ,

rm ∈ N implies that r ∈ (N : M) or m ∈ N . Prime submodules have been

introduced by J. Dauns in [3], and then this class of submodules has been extensively

studied by several authors (see, for example, [4,7,13]). For a proper submodule N of

an R-module M the radical of N , denoted by radN , is the intersection of all prime

submodules of M containing N or, in case there are no such prime submodules,

radN is M (see, for example, [5,8,9,10,11,14]). A submodule N of M is called a

radical submodule if radN = N . For an ideal I of a ring R, we assume throughout

that
√
I denotes the radical of I. It is easily seen that the set of radical submodules

of M with the following operations

N ∨ L = rad(N + L) and N ∧ L = N ∩ L

forms a lattice. We denote this lattice byR(M). In generalR(M) is not a sublattice

of LR(M). For example, let K be a field and R = K[X,Y ] the polynomial ring in

indeterminates X,Y . Moreover, let I = (X) and J = (X − Y 2). It is easily seen

that I, J ∈ R(R), but I + J /∈ R(R) since
√
I + J =

√
(X,Y 2) = (X,Y ).

Now consider the mappings ρ : R(R) → R(M) defined by ρ(I) = rad(λ(I)) =

rad(IM) and σ : R(M)→ R(R) defined by σ(N) = µ(N) = (N : M). It is shown

that ρ is always a homomorphism, but σ is not so (see Example 2.3). We say that

an R-module M is a σ-module if σ is a homomorphism. In this article, we show

that several properties of λ and µ remain valid for ρ and σ. In Theorem 2.11, it is

proved that a finitely generated R-module M is a σ-module if and only if M is a

multiplication module and so if and only if M is a µ-module. It is also proved that

the property of being a σ-module is a local property for finitely generated modules

(Corollary 2.19).

An R-module M is said to be primeful if M = (0) or M 6= (0) and for each

prime ideal P of R containing (0 : M), there exists a prime submodule N of M

such that (N : M) = P . For example, finitely generated modules and projective

modules over integral domains are primeful (see [10, Theorem 2.2 and Corollary

4.3]). If M is a primeful faithful R-module, then ρ is an injection and hence σ is a

surjection (Corollary 3.6). If M is a primeful module over a domain R, then ρ is an

isomorphism if and only if σ is an isomorphism if and only if λ is an isomorphism if
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and only if µ is an isomorphism if and only if M is a faithful multiplication module

(Theorem 3.8).

2. The mapping σ

We begin with some properties of radical of submodules which are frequently

used in the rest of paper.

Lemma 2.1. (See [8, Proposition 2]) Let N and L be submodules of an R-module

M . Then

(1) N ⊆ radN ,

(2) rad(radN) = radN ,

(3) rad(N ∩ L) ⊆ radN ∩ radL,

(4) rad(N + L) = rad(radN + radL),

(5) rad(IM) = rad(
√
IM),

(6)
√

(N : M) ⊆ (radN : M).

In [16], it is seen that λ is not a homomorphism in general. In contrast, ρ is a

homomorphism because of the following:

ρ(I ∨ J) = ρ(
√
I + J) = rad(

√
I + JM) = rad((I + J)M)

= rad(IM + JM) = rad(rad(IM) + rad(JM))

= rad(IM) ∨ rad(JM) = ρ(I) ∨ ρ(J).

Using [9, Corollary 2 to Proposition 1], we have

rad((I ∩ J)M) ⊆ rad(IM) ∩ rad(JM) = rad(IJM) ⊆ rad((I ∩ J)M).

Therefore,

ρ(I ∧ J) = ρ(I ∩ J) = rad((I ∩ J)M) = rad(IM) ∩ rad(JM) = ρ(I) ∧ ρ(J).

Here, it is worth noting that σ is well-defined. In fact,
√

(radN : M) ⊆ (rad(radN) :

M) = (radN : M). Also clearly (radN : M) ⊆
√

(radN : M). Thus
√

(radN : M) =

(radN : M). Therefore if N is a radical submodule, then
√

(N : M) = (N : M).

This means that (N : M) is a radical ideal and so σ is well-defined.

Recall that M is a σ-module in case the mapping σ is a homomorphism.

Lemma 2.2. Let R be a ring and M an R-module. Then M is a σ-module if and

only if (rad(N + L) : M) =
√

(N : M) + (L : M) for all radical submodules N and

L of M .
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Proof. It is clear that σ(N ∧L) = (N ∩L : M) = (N : M)∩(L : M) = σ(N)∧σ(L)

for all radical submodules N and L of M . Thus σ is a homomorphism if and only

if σ(N ∨L) = σ(N)∨ σ(L) if and only if (rad(N +L) : M) =
√

(N : M) + (L : M)

for all radical submodules N and L of M . �

Let M be an R-module and N a proper submodule of M . Let

EM (N) = {rx : r ∈ R and x ∈M such that rnx ∈ N for some n ∈ N}.

The envelop submodule of N in M is defined to be the submodule of M generated by

EM (N). An R-module M is said to satisfy the radical formula if radN = REM (N),

for each submodule N of M . Now by using the above lemma, we give an example

which shows σ need not be a homomorphism.

Example 2.3. Let R = Z and M = Z ⊕ Z. Let N = Z(2, 0) and L = Z(0, 2). It

is easily seen that EM (Z(2, 0)) = Z(2, 0) and EM (Z(0, 2)) = Z(0, 2). Since, by [5,

Corollary 12], M satisfies the radical formula, we have radZ(2, 0) = Z(2, 0) and

radZ(0, 2) = Z(0, 2). Thus N and L are radical submodules of M . Also clearly

(N : M) = (L : M) = 0. Hence
√

(N : M) + (L : M) = 0. On the other hand, let

r ∈ (N + L : M). Then r(1, 0) ∈ N + L = Z(2, 0) + Z(0, 2) and hence there exist

r1, r2 ∈ R such that r(1, 0) = (r, 0) = r1(2, 0) + r2(0, 2) = (2r1, 2r2). Thus r = 2r1.

This shows that (N + L : M) ⊆ 2Z. The reverse inclusion is obvious, and thus

(N + L : M) = 2Z. Hence, by [7, Proposition 2], N + L is a prime submodule of

M and so rad(N + L) = N + L. Thus we have (rad(N + L) : M) = 2Z 6= (0) =√
(N : M) + (L : M).

Corollary 2.4. Every finitely generated µ-module is a σ-module.

Proof. Let M be a finitely generated µ-module over a ring R. By [12, Theorem

4.4],

(rad(N + L) : M) =
√

(N + L : M) =
√

(N : M) + (L : M),

for all radical submodules N and L of M . Thus M is a σ-module by Lemma 2.2. �

In Theorem 2.11, we will show that a finitely generated module is a σ-module

if and only if M is a µ-module. Note that this fact is not true in general. See the

following example.

Example 2.5. Let M = Z(p∞), the Prüfer p-group. Since M is a primeless Z-

module, by [13, Proposition 1.7] M ′ = M ⊕M is a primeless Z-module. Hence M ′

is a σ-module, whereas it is not a µ-module by [16, Corollary 3.3].
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Theorem 2.6. Let M be a σ-module over a ring R and let L, N be submodules of

M .

(1) If M = rad(N + L) (or in particular M = N + L), then there exists a ∈ R
such that aM ⊆ radN and (1− a)M ⊆ radL.

(2) If M is a finitely generated module such that M = N +L, then there exists

a ∈ R such that aM ⊆ N and (1− a)M ⊆ L.

Proof. (1) By Lemma 2.2, R = (M : M) = (rad(N + L) : M) = (rad(radN +

radL) : M) =
√

(radN : M) + (radL : M). Thus R = (radN : M) + (radL : M).

Now the desired result is clear.

(2) Since M = N +L = rad(N +L), by (1) we have R = (radN : M) + (radL :

M). SinceM is finitely generated, by [12, Theorem 4.4], R =
√

(N : M)+
√

(L : M)

and hence R = (N : M) + (L : M). Now, clearly the result follows. �

Using the previous theorem we are able to show that there is no integral domain,

say R, such that any R-module is a σ-module. We will show that this statement is

also true for each arbitrary ring (see Corollary 2.13).

Corollary 2.7. Let R be an integral domain and P a non-zero prime ideal. Then

the R-module M = P ⊕ P is not a σ-module.

Proof. Suppose that M = P ⊕ P is a σ-module. By Theorem 2.6 (1), there

exists a ∈ R such that a(P ⊕ P ) ⊆ rad(P ⊕ 0) = radP ⊕ rad 0 = P ⊕ 0 and

(1 − a)(P ⊕ P ) ⊆ rad(0 ⊕ P ) = rad 0 ⊕ radP = 0 ⊕ P , so that aP = 0 and

(1− a)P = 0 giving P = 0, a contradiction. �

Corollary 2.8. Let M be a σ-module over a ring R. Then

(1) For each maximal ideal P of R either M = PM or there exist m ∈M and

p ∈ P such that (1− p)M ⊆ rad(Rm).

(2) If M is a finitely generated module, then for each maximal ideal P of R

there exist m ∈M and p ∈ P such that (1− p)M ⊆ Rm.

Proof. Let P be a maximal ideal of R such that M 6= PM . We know that M/PM

is a non-zero semisimple module and hence contains a maximal submodule. Assume

that L be a maximal submodule of M such that PM ⊆ L and m ∈M \ L.

(1) By Theorem 2.6 (1), there exists an element p ∈ R such that pM ⊆ L and

(1− p)M ⊆ rad(Rm). If p /∈ P , then R = P +Rp and hence M = PM + pM ⊆ L,

a contradiction. Thus p ∈ P , as required.

(2) By [16, Corollary 3.4]. �
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Lemma 2.9. (See [4, Theorem 1.2]) Let R be a ring. Then an R-module M is a

multiplication module if and only if for each maximal ideal P of R either

(1) for each m ∈M there exists p ∈ P such that (1− p)m = 0, or

(2) there exist x ∈M and q ∈ P such that (1− q)M ⊆ Rx.

Lemma 2.10. (See [16, Corollary 2.11]) Let R be any ring. Then an R-module M

is a finitely generated multiplication module if and only if for each maximal ideal

P of R there exist m ∈M , p ∈ P such that (1− p)M ⊆ Rm.

Theorem 2.11. Let R be any ring and M a finitely generated R-module. Then

the following are equivalent.

(1) M is a σ-module.

(2) M is a multiplication module.

(3) M is a µ-module.

Proof. (1) ⇒ (2) Let M be a σ-module. Then by Corollary 2.8 and Lemma 2.10,

M is a multiplication module.

(2) ⇒ (1) Let M be a multiplication R-module. Since M is finitely generated,

by [15, Exercise 9.23],
√

(IM : M) =
√
I + (0 : M) (∗) for all ideals I of R. Now,

let N and L be submodules of M . Consider the finitely generated R-module M/L

and the ideal (N : M) instead of M and I, in (∗), respectively. Then√
(N : M) + (L : M) =

√
(N : M) + (0 : M/L)

=
√

((N : M)(M/L) : M/L)

=
√

(((N : M)M + L)/L : M/L)

=
√

((N : M)M + L : M)

=
√

(N + L : M) = (rad(N + L) : M).

Thus M is a σ-module.

(2) ⇔ (3) follows from [16, Theorem 3.8]. �

Corollary 2.12. Let M be a finitely generated R-module. Then the following

statements are equivalent.

(1) (N + L : M) = (N : M) + (L : M) for all submodules N and L of M .

(2) (rad(N +L) : M) =
√

(N : M) + (L : M) for all radical submodules N and

L of M .

Proof. It is clear, by Theorem 2.11 and definitions of a σ-module and a µ-module.

�
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Corollary 2.13. Let R be any (non-zero) ring and let M be a non-zero finitely

generated R-module. Then the R-module M ⊕M is not a σ-module.

Proof. Use Theorem 2.11 and [16, Corollary 3.3]. �

Corollary 2.14. Let M be an R-module. Then the following statements are equiv-

alent.

(1) Every finitely generated submodule of M is a σ-module.

(2) Every finitely generated submodule of M is a µ-module.

(3) R = (Rx : Ry) + (Ry : Rx) for all elements x, y ∈M .

Proof. (1) ⇒ (3) Let x, y ∈M . Then

R = (rad(Rx+Ry) : Rx+Ry) =
√

(Rx : Rx+Ry) + (Ry : Rx+Ry)

=
√

(Rx : Ry) + (Ry : Rx).

Thus R = (Rx : Ry) + (Ry : Rx).

(3) ⇒ (2) is obtained from [16, Corollary 3.9].

(2) ⇒ (1) Clear by Theorem 2.11. �

A ring R is called arithmetical if I ∩ (J +K) = (I ∩ J) + (I ∩K) for any ideals

I, J and K of R.

Corollary 2.15. Let R be a ring. Then the following statements are equivalent.

(1) R is an arithmetical ring.

(2) Every finitely generated ideal of R is a σ-module.

Proof. By Corollary 2.14 and [6, Exercise 18, p. 150]. �

Remark 2.16. Let R be a domain with the field of fractions K. A non-zero ideal

I of R is called invertible provided I−1I = R where I−1 = {k ∈ K : kI ⊆ R}.
The domain R is called Prüfer when every non-zero finitely generated ideal of R

is invertible. By [6, Theorem 6.6 and Exercise 18, p 150], a domain R is Prüfer

if and only if R is arithmetical. Thus, by Corollary 2.15, a domain R is Prüfer if

and only if every finitely generated ideal of R is a σ-module. Using this fact, we

conclude that a submodule of a σ-module need not be a σ-module.

Corollary 2.17. Let M be a module over a local ring R. Then the following are

equivalent.

(1) M is a chain module.

(2) Every finitely generated submodule of M is a σ-module.
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(3) Every finitely generated submodule of M is cyclic.

In particular, if R is a local domain, then R is a valuation domain if and only if

every finitely generated ideal of R is a σ-module.

Proof. The result follows by combining [16, Proposition 3.15] and Theorem 2.11.

�

In the following RS and MS denote the ring of fractions and the module of

fractions, respectively.

Lemma 2.18. Let R be a ring and M be a finitely generated µ-module (σ-module)

over R. Also, let S be a multiplicatively closed subset of R. Then MS is a µ-module

(σ-module) over RS.

Proof. Let M be a µ-module over R. Let NS and LS be submodules of MS . Then

(NS + LS : MS) = ((N + L)S : MS) = ((N + L) : M))S

= ((N : M) + (L : M))S = (N : M)S + (L : M)S

= (NS : MS) + (LS : MS).

Thus MS is a µ-module. Also, if M is a finitely generated σ-module, then by

Theorem 2.11, MS is a σ-module. �

Now we prove that the property of being σ-module is a local property for finitely

generated modules. Let M be an R-module and P a prime ideal of R. We write

MP instead of MS when S = R \ P .

Theorem 2.19. Let R be a ring and M be a finitely generated R-module. Then

the following are equivalent.

(1) M is a σ-module.

(2) MP is a σ-module for all prime ideals P of R.

(3) Mm is a σ-module for all maximal ideals m of R.

Proof. (1) ⇒ (2) follows from Lemma 2.18.

(2) ⇒ (3) Clear.

(3) ⇒ (1) Let N and L be submodules of M . Since Mm is a finitely generated

σ-module over Rm, by Theorem 2.11, Mm is a µ-module. Thus for any maximal

ideal m of R, (Nm + Lm : Mm) = (Nm : Mm) + (Lm : Mm) and hence (N + L :

M)m = ((N : M) + (L : M))m. Now since “ = ” is a local property, we have

(N + L : M) = (N : M) + (L : M). Thus M is a finitely generated µ-module and

is a σ-module by Theorem 2.11. �
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Proposition 2.20. Every homomorphic image of a σ-module is a σ-module.

Proof. Let M and M ′ be R-modules and M a σ-module. Suppose that ϕ : M →
M ′ be an epimorphism. Then, Imϕ = M/K for some submodule K of M . Now it is

enough to show thatM = M/K is a σ-module. For any submoduleH ofM , we have

H = H/K for some submodule H of M with H ⊇ K. Clearly (H : M) = (H : M).

Now let N = N/K and L = L/K be submodules of M . Using [11, Corollary 1.3],

(rad(N + L) : M) =(rad(N + L) : M) = (rad(N + L) : M)

=
√

(N : M) + (L : M) =

√
(N : M) + (L : M).

Thus M is a σ-module. �

Corollary 2.21. Let R be a ring. Then every cyclic R-module M is a σ-module.

The converse is true when M is finitely generated and R is local.

Proof. Since R is a σ-module over R, it is clear that every cyclic R-module is also

a σ-module by Proposition 2.20. For the converse let R be a local ring with the

maximal ideal P , and M a non-zero finitely generated σ-module over R. Then by

[1, Corollary 2.5], M 6= PM . Now by Corollary 2.8, there exist p ∈ P and m ∈M
such that (1− p)M ⊆ Rm. Hence M = Rm. �

3. Surjectivity and injectivity of ρ and σ

Let R be a ring and let M be an R-module. Recall that ρ : R(R)→ R(M) is a

mapping defined by ρ(I) = rad(λ(I)) = rad(IM) for all radical ideals I of R and

σ : R(R)→ R(M) is a mapping defined by σ(N) = µ(N) = (N : M) for all radical

submodules N of M . Thus the surjectivity of λ implies the surjectivity of ρ and the

injectivity of µ implies the injectivity of σ. In this section, we will investigate the

conditions under which ρ and σ are injective or surjective. The following lemma

plays an important role in this way.

Lemma 3.1. The following holds for the mappings ρ and σ.

(1) σρσ = σ.

(2) ρσρ = ρ.

Proof. (1) Let N be a radical submodule of M . Then

σρσ(N) = σρ((N : M)) = σ(rad((N : M)M)) = (rad((N : M)M) : M).

We show that (rad((N : M)M) : M) = (N : M). Since N is a radical submodule,

(N : M)M ⊆ N implies that rad((N : M)M) ⊆ N . Thus (rad((N : M)M) : M) ⊆
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(N : M). On the other hand (N : M) ⊆ ((N : M)M : M) ⊆ (rad((N : M)M) : M)

which implies the desired equality. That is, σρσ(N) = σ(N).

(2) Let I be a radical ideal of R. Then

ρσρ(I) = ρσ(rad(IM)) = ρ((rad(IM) : M)) = rad((rad(IM) : M)M).

Thus ρσρ(I) = rad((rad(IM) : M)M). Now, (rad(IM) : M)M ⊆ rad(IM),

implies that rad((rad(IM) : M)M) ⊆ rad(IM). On the other hand IM ⊆ rad(IM)

implies that I ⊆ (rad(IM) : M) and hence IM ⊆ (rad(IM) : M)M which gives

rad(IM) ⊆ rad((rad(IM) : M)M). Thus rad((rad(IM) : M)M) = rad(IM), that

is ρσρ(I) = ρ(I). �

Theorem 3.2. With the above notation, the following statements are equivalent.

(1) ρ is a surjection.

(2) ρσ = 1.

(3) N = rad((N : M)M) for every radical submodule N of M .

(4) σ is an injection.

Proof. (1)⇒ (2) Let N ∈ R(M). Since ρ is a surjection, then there exists an ideal

I of R such that ρ(I) = N . Thus ρσ(N) = ρσρ(I) = ρ(I) = N .

(4) ⇒ (2) Since σρσ = σ, we have σρσ(N) = σ(N) for N ∈ R(M). Since σ is

injective, we get ρσ(N) = N . Thus ρσ = 1.

(2)⇔ (3), (2)⇒ (4) and (2)⇒ (1) are clear. �

Theorem 3.3. Let M be an R-module. Then the following statements are equiva-

lent.

(1) ρ is an injection.

(2) σρ = 1.

(3) I = (rad(IM) : M) for every radical ideal I of R.

(4) σ is a surjection.

Proof. Similar to the proof of the previous theorem. �

Corollary 3.4. Let M be an R-module. Then the mapping ρ is a bijection if and

only if σ is a bijection. In this case ρ and σ are inverses of each other.

Corollary 3.5. If ρ is an injection, then
√

(0 : M) = (rad 0 : M).

Proof. By (3) of Theorem 3.3 and (5) of Lemma 2.1,
√

(0 : M) = (rad(
√

(0 : M)M) :

M) = (rad((0 : M)M) : M) = (rad 0 : M). �
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Let M be a nonzero finitely generated R-module and I a radical ideal of R.

Then, by [10, Proposition 5.3], (rad(IM) : M) =
√
IM : M . Also (IM : M) = I

if and only if (0 : M) ⊆ I, by [10, Proposition 3.1]. Thus, using Theorem 3.3,

(1)⇔ (3), we have the following result.

Corollary 3.6. Let R be a ring and M be a primeful faithful R-module. Then ρ

is an injection and hence σ is a surjection.

In the following example, we show that the mapping ρ may be a monomorphism

(resp. an epimorphism) but not an epimorphism (resp. a monomorphism).

Example 3.7. (1) Every free R-module F is a primeful module. Indeed, for every

prime ideal p of R, (pF : F ) = p. Thus, by Corollary 3.6, ρ is a monomorphism.

Now, let 0 ∈ R(R), F = R⊕R, and I be a non-zero radical ideal of R. Then 0⊕I is

a non-zero radical submodule of F by [14, Lemma 2.1]. Hence, ρ(J) = J⊕J 6= 0⊕I
for each radical ideal J of R, i.e., ρ is not an epimorphism.

(2) We know that an R-module M is a multiplication module if and only if

the mapping λ is an epimorphism. However for every multiplication module, ρ

is an epimorphism but the converse is not true in general. Primeless modules

are the simplest examples for this case. Let M be a primeless R-module. Then

R(M) = {M} and we have ρ(I) = rad(IM) = M for all (radical) ideals I of R.

Hence ρ is an epimorphism but M need not be a multiplication module. For example,

let R = Z, p be a prime integer and let M be the primeless Z-module Z(p∞)⊕ Zp,

where Zp denotes the cyclic group of order p. Thus ρ is an epimorphism while, by

[13, Example 3.7], M is not a multiplication R-module. Also it is clear that in this

case ρ is not a monomorphism.

Theorem 3.8. Let R be a ring and M an R-module. Consider the following

statements:

(1) The mapping ρ : R(R)→ R(M) is an isomorphism.

(2) The mapping σ : R(M)→ R(R) is an isomorphism.

(3) The mapping λ : L(R)→ LR(M) is an isomorphism.

(4) The mapping µ : LR(M)→ L(R) is an isomorphism.

(5) M is a multiplication module such that I = (IM : M) for every ideal I of

R.

(6) M is a faithful multiplication module.

Then (1) and (2) are equivalent. In particular, if R is an integral domain and M

a primeful R-module, then all the above statements are equivalent.
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Proof. (1)⇔ (2) By Theorem 3.2 and Theorem 3.3, ρ is a bijection if and only if

σ is a bijection. Using [16, Lemma 1.2], we conclude that ρ is an isomorphism if

and only if σ is an isomorphism.

(2) ⇒ (6) Let σ be an isomorphism. Then M is a σ-module and hence a mul-

tiplication module by Theorem 2.11. Also by Theorem 3.3 (4) ⇒ (3), we have√
(0 : M) = (rad(

√
(0 : M)M) : M) = (rad((0 : M)M) : M) = (rad 0 : M) =

(rad(0M) : M) = 0. Hence
√

(0 : M) = 0 which implies that (0 : M) = 0, i.e., M

is faithful.

(6) ⇒ (1) Let M be a faithful multiplication R-module. Let N be a radical

submodule of M . Then N = IM for some ideal I of R and we have ρ(
√
I) =

rad(
√
IM) = rad(IM) = radN = N . Also, let I and J be radical ideals of R and

ρ(I) = ρ(J). Then, by [4, Theorem 2.12], IM =
√
IM = rad(IM) = rad(JM) =

√
JM = JM . Since M is a multiplication primeful module, by [10, Proposition

3.8], it is finitely generated and hence by [4, Theorem 3.1], I = J . Therefore ρ is

an isomorphism.

(3)− (6) are equivalent by [16, Theorem 4.3 and Corollary 4.5]. �

Lemma 3.9. Let M be a simple R-module. Then

(1) r ∈ (0 : M) if and only if r2 ∈ (0 : M).

(2) 0 is a prime submodule of M and hence rad 0 = 0.

Proof. Straightforward. �

Proposition 3.10. Let R be a ring and let M be a semisimple R-module. If ρ is

a monomorphism, then R is von Neumann regular.

Proof. Let M = ⊕
i∈I
Mi for some non-empty family of simple R-modules Mi (i ∈ I)

and 0 6= r ∈ R. For each i ∈ I let Pi = (0 : Mi). Then, using Lemma 3.9,

ρ(Rr) = rad(Rr( ⊕
j∈J

Mj)) = rad( ⊕
j∈J

Mj) = rad(Rr2( ⊕
j∈J

Mj)) = ρ(Rr2), where

J ⊆ I such that r /∈ ∪
j∈J

Pj . Hence Rr = Rr2 and therefore R is von Neumann

regular. �

The semisimplicity of M in Proposition 3.10 is necessary. For example, if F is

a free R-module, then ρ is a monomorphism, but R need not be a von Neumann

regular ring.

An R-module M is said to be local if it has the largest proper submodule. Note

that an R module M can have a unique maximal submodule without being local.

For example, let p be a prime integer. Then the Z-module Q ⊕ Z/pZ have the
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unique maximal submodule Q⊕ 0, but it is not local because of 0⊕Z/pZ * Q⊕ 0.

The following proposition may be compared with [16, Proposition 3.12].

Proposition 3.11. Let R be a domain which is not a field, and M a non-zero

injective local R-module. Then

(1) The homomorphism ρ is neither a monomorphism nor an epimorphism.

(2) The mapping σ is a homomorphism which is neither a monomorphism nor

an epimorphism.

Proof. Since R is a domain and M is injective, M is divisible. Thus IM = M , for

all non-zero ideal I of R and (N : M) = 0 for all proper submodule N of M .

(1) Let 0 6= r ∈ R be a non-unit. Then ρ(
√
Rr) = rad(

√
RrM) = radM =

M = ρ(R). Hence ρ is not a monomorphism. Clearly every maximal ideal of R is

non-zero and hence divisibility of M implies that M = PM for all maximal ideals

P of R. Thus M is not finitely generated and therefore it is not simple. Now let Q

be a non-zero proper submodule of M . Then, radQ is non-zero and contained in

M properly. Hence, we have radQ 6= ρ(q) = M for any ideal q of R, and thus ρ is

not an epimorphism.

(2) Let M be a local R-module and N , L be proper submodules of M . Then

rad(N +L) 6= M and hence (rad(N +L) : M) = 0 =
√

(N : M) + (L : M). Thus σ

is a homomorphism. The last part follows from (1) and Theorem 3.2 and Theorem

3.3. �
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