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1. Introduction

In [10], Exel first considered partial group actions in the context of operator

algebras, and studied C∗-algebras generated by partial isometries on a Hilbert

space. In [6], Caenepeel and Janssen introduced partial Hopf actions regarded

as a generalization of partial group actions, who was motivated by an attempt to

generalize the notion of partial Galois extensions of commutative rings (see [8]), and

also introduced the concept of partial smash products, which is an unital subalgebra

of the usual smash products. In [12], Lomp developed the theory of partial Hopf

actions, and extended the well-known results of Hopf algebras concerning smash

products, such as the Blattner-Montgomery and Cohen-Montgomery theorems in

[13]. Recently, the authors in [3, 9] gave the Morita context between the invariant

subalgebra and the partial smash product.

Let H be a finite-dimensional Hopf algebra over a field k and A a partial H-

module algebra. Then, the partial smash product A#H is a ring extension of A,

which is familiar as the partial skew group ring A ∗G for the partial group action.

In [11], the authors proved the Maschke-type theorem for the partial skew group

rings. So, we naturally have the following question.

Does the Maschke-type theorem for the partial smash product A#H hold?
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In this note we give a positive answer to this question by using a new method

which is not just a generalization of the proof of the classical result in [7].

We always work over a fixed field k. Unless otherwise specified, linearity, modules

and ⊗ are all meant over k. And we freely use the Hopf algebras terminology

introduced in [13]. For a coalgebra C, we write its comultiplication ∆(c) = c1⊗ c2,

for any c ∈ C, in which we omit the summation symbols for convenience.

A partial action of the Hopf algebra H on the algebra A is a linear map α :

H ⊗A→ A, denoted by α(h⊗ a) = h · a, for any a, b ∈ A, h, g ∈ H, such that

(P1) h · (ab) = (h1 · a)(h2 · b),
(P2) 1H · a = a,

(P3) h · (g · a) = (h1 · 1A)((h2g) · a).

We will also call A a partial H-module algebra. It is easy to see every action is

also a partial action.

Given a Hopf algebra H and a partial H-module algebra A, one can form the

partial smash product A#H which is the unital subalgebra of A ⊗ H defined as

follows: put an algebra structure in A⊗H with the product

(a⊗ h)(b⊗ k) = a(h1 · b)⊗ h2k.

The partial smash product is given by

A#H = (A⊗H)(1A ⊗ 1H)

that is, the subalgebra A#H is spanned by the elements of the form {a(h1 ·1A)⊗h2,

for any a ∈ A, h ∈ H}. One can easily verify that the multiplication of partial

smash product satisfies

(a#h)(b#k) = a(h1 · a)#h2k. (1)

For a partial H-module algebra A and its enveloping action B given in [4], a

special case which will be useful for further results is the case when θ(A) is an ideal

of H-module algebra B, where the map θ : A→ B is a monomorphism of algebras.

The authors in [4, Proposition 4] gave the sufficient and necessary condition, that

is, for any h, g ∈ H, a ∈ A,

h · (g · a) = ((h1g) · a)(h2 · 1A), (2)

for the element θ(1A) to be a central idempotent in B. In our note we always

assume that A is an ideal of B, since the map θ : A → B is a monomorphism of

algebras. So, 1A becomes a central idempotent in B.

Throughout this note we suppose that H is always a finite dimensional Hopf

algebra.



MASCHKE-TYPE THEOREM FOR PARTIAL SMASH PRODUCTS 51

2. Central trace functions and invariants

Similar to the partial group action in [11], we can define the invariants for a

partial H-module algebra A as follows:

AH = {a ∈ A | h · a = (h · 1A)a, for any h ∈ H}.

Note that AH is a subalgebra of A with identity 1A. Define the trace map

t̂A : A→ AH , t̂A(a) = t · a,

where 0 6= t ∈
∫ l
H

(the space of left integrals in H).

It is clear that t̂A is a right AH -linear map. But we hope that it is an AH -

bimodule map.

According to the references [1, 5], we know that lazy 1-cocycles are related with

(co)homology and extensions.

A lazy 1-cocycle is a map ` ∈ Hom(H,A) which is convolution invertible and

satisfies

`(h1)⊗ h2 = `(h2)⊗ h1,

for any h ∈ H, where A is a left H-module algebra. In particular, the unit of

Hom(H,A), the map h 7→ ε(h)1A, is a lazy 1- cocycle. If H acts globally on A then

the unit is equal to the map `(h) = h · 1A.

For a partial H-module algebra A, if for any h ∈ H, the condition of lazy 1-

cocycles (forgetting about the condition of being convolution invertible) holds:

h1 · 1A ⊗ h2 = h2 · 1A ⊗ h1, (3)

then, it is easy to check that H · 1A is in C(A) (the center of the algebra A), that

is, for any h ∈ H, a ∈ A,

(h · 1A)a = (h1 · 1A)ε(h2)a = (h1 · 1A)(h2S(h3) · a)

= (h1 · 1A)(h2 · (S(h3) · a)) = h1 · (S(h2) · a)
(2)
= (h1S(h3) · a)(h2 · 1A)

(3)
= (h1S(h2) · a)(h3 · 1A)

= a(h · 1A).

In what follows, we call the partial H-module algebra A satisfying the equality

(3) a strong partial H-module algebra.

Remark.

(1) The invariant subalgebra AH as above in this case becomes

AH = {a ∈ A | h · a = (h · 1A)a = a(h · 1A), for any h ∈ H}, see [3,

Definition 5].
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(2) If H is cocommutative as coalgebra, then A is a strong partial H-module

algebra automatically.

In particular, for the partial group action, we know that it is a strong

partial H-module algebra obviously.

(3) Let B be an H-module algebra. Then B is a trivial strong partial H-module

algebra.

Before the next lemma we recall the definition of trace map for H-module alge-

bras: let H be a finite-dimensional Hopf algebra acting on an algebra B with action

“ . ” and choose 0 6= t ∈
∫ l
H

. Then the map t̂B : B → BH given by t̂B(b) = t . b is

a BH -bimodule map. We call t̂B a (left) trace function for H on B. From [2] we

know that if B is an H-module algebra, the surjectivity of t̂B onto BH is equivalent

to the existence of an element b ∈ B with t̂B(b) = 1B .

In what follows, we discuss the surjectivity of trace map for a partial H-module

algebra A, and throughout the rest of this section we always assume that for a

partial H-module algebra A,

AH = {a ∈ A | h · a = (h · 1A)a = a(h · 1A), for any h ∈ H}.

Lemma 2.1. (1) t̂A : A→ AH is an AH-bimodule map with values in AH .

Let (B, θ) be an enveloping action of a partial H-module algebra A. Then

(2) t̂A(a) = t̂B(a)1A, for any a ∈ A;

(3) t̂B(B) = t̂B(A).

Proof. (1) For any a ∈ A, c ∈ AH , we have

ct̂A(a) = c(t · a) = c(t1 · 1A)(t2 · a)

= (t1 · c)(t2 · a) = t · (ca) = t̂A(ca),

t̂A(a)c = (t · a)c = (t1 · a)(t2 · 1A)c

= (t1 · a)(t2 · c) = t · (ac) = t̂A(ac).

(2) It is obvious from [4, Proposition 1].

(3) We only show that t̂B(B) ⊆ t̂B(A), the opposite is obvious. Assume that

there exists an element x ∈ B such that t̂B(x) = b ∈ t̂B(B), where the element x is

of the form Σihi . ai, for a finite number of elements hi ∈ H, ai ∈ A. Then

b = t̂B(x) = t . (Σihi . ai) = Σ(thi) . ai ∈ t̂B(A),

so t̂B(B) = t̂B(A). �

Proposition 2.2. (1) t̂A is onto AH if and only if there exists an element

a ∈ A such that t̂A(a) = 1A.
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(2) Assume that (B, θ) is an enveloping action of a partial H-module algebra

A. If t̂B is onto BH , then t̂A is onto AH .

Proof. (1) Let there exist an element a ∈ A such that t̂A(a) = 1A. Then, for

any c ∈ AH , c = c1A = ct̂A(a) = t̂A(ca), that is, t̂A is onto AH . Conversely, it is

straightforward.

(2) If there is an element b ∈ B with t̂B(b) = 1B , then, by Lemma 2.1, there exists

an element a ∈ A such that t̂B(a) = 1B . So, the fact that h·a = 1A(h.a) = (h.a)1A

implies t̂A(a) = t̂B(a)1A = 1A. According to the above conclusion, we know that

t̂A is onto AH . �

3. Maschke-type theorem for partial smash products

In this section, we assume that A is a strong partial H-module algebra, and

give the Maschke-type theorem for partial smash product by using a kind of new

method.

Lemma 3.1. In partial smash product A#H: for any a ∈ A, h ∈ H,

a#h = (1A#h2)(S−1(h1) · a#1H). (4)

Proof. For any a ∈ A, h ∈ H, we have

a#h = a(h1 · 1A)#h2 = ((h2S
−1(h1)) · a)(h3 · 1A)#h4

(2)
= h2 · (S−1(h1) · a)#h3 = (h2 · 1A)(h3 · (S−1(h1) · a))#h4

= (h2 · 1A#h3)(S−1(h1) · a#1H)

= (1A#h2)(S−1(h1) · a#1H). �

Lemma 3.2. Let V be a left A#H-module, W a submodule of V and t̂A(1A) be

invertible in A. Assume that λ : V →W is a projection as A-modules. Then, there

is also a projection from V to W as A#H-modules.

Proof. Assume that λ : V →W be the projection as A-modules. Define the map

λ̃ : V →W by λ̃(v) = u(1A#S(x1))λ((1A#x2)v),

where u = (t̂A(1A))−1, S(x) = t, as in Section 2, t̂A(1A) = t · 1A, 0 6= t ∈
∫ l
H
, x ∈∫ r

H
.
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We show that λ̃ is a projection as A#H-module. First we check that λ̃ is A#H-

linear. Since S is bijective, we can choose a#S(h) ∈ A#H:

u−1(a#S(h))λ̃(v)

= u−1(a#S(h))u(1A#S(x1))λ((1A#x2)v)

= (t · 1A#1H)(a(S(h2) · 1A)#S(h1))u(1A#S(x1))λ((1A#x2)v)

= ((t · 1A)a(S(h2) · 1A)#S(h1))u(1A#S(x1))λ((1A#x2)v)

= (a(S(h2) · 1A)(t · 1A)#S(h1))u(1A#S(x1))λ((1A#x2)v)

= (a(S(h3) · 1A)(S(h2)t · 1A)#S(h1))u(1A#S(x1))λ((1A#x2)v)

= (a(S(h4) · 1A)(S(h3) · 1A)(S(h2)t · 1A)#S(h1))u(1A#S(x1))λ((1A#x2)v)
(2)
= (a(S(h3) · 1A)(S(h2) · (t · 1A))#S(h1))u(1A#S(x1))λ((1A#x2)v)

= (a(S(h2) · 1A)#S(h1))(t · 1A#1H)u(1A#S(x1))λ((1A#x2)v)

= (a#S(h))(1A#S(x1))λ((1A#x2)v)
(1)
= (a(S(h2) · 1A)#S(x1h1))λ((1A#x2)v)
(4)
= (1A#S(x1h1))(S−1(S(x2h2)) · (a(S(h3) · 1A))#1H)λ((1A#x3)v)

= (1A#S(x1h1))(x2h2 · (a(S(h3) · 1A))#1H)λ((1A#x3)v)

= (1A#S(x1h1))λ((x2h2 · (a(S(h3) · 1A))#x3)v)

= (1A#S(x1h1))λ((x2h2 · a)(x3h3 · (S(h4) · 1A))#x4)v)

= (1A#S(x1h1))λ(((x2h2 · a)(x3h3S(h4) · 1A)#x4)v)

= (1A#S(x1h1))λ(((x2h2 · a)(x3 · 1A)#x4)v)

= (1A#S(x1h1))λ((x2h2 · a#x3)v). (5)

Since x is a right integral in H, we have

x1h1 ⊗ x2h2 ⊗ x3 = ((∆⊗ id)∆(xh1))(1H ⊗ 1H ⊗ S(h2))

= ((∆⊗ id)∆(x))(1H ⊗ 1H ⊗ S(h))

= x1 ⊗ x2 ⊗ x3S(h).

Now we use above equation to compute:

(5) = (1A#S(x1))λ((x2 · a#x3S(h))v)
(1)
= (1A#S(x1))λ(((1A#x2)(a#S(h)))v)

= u−1u(1A#S(x1))λ(((1A#x2)(a#S(h)))v)

= u−1λ̃((a#S(h))v),

so λ̃ is A#H-linear. From the above computation, we conclude that

(a#S(h))(1A#S(x1))⊗A (1A#x2) = (1A#S(x1))⊗A (1A#x2)(a#S(h)). (6)
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It remains to check that λ̃ is a projection. If w ∈W , then we have

λ̃(w) = u(1A#S(x1))(1A#x2)w = u(S(x2) · 1A#S(x1)x3)w
(3)
= u(S(x1) · 1A#S(x2)x3)w = u(S(x) · 1A#1H)w

= u(S(x) · 1A)w = u(t · 1A)w = w. �

According to Lemma 3.2, we get the following main result.

Theorem 3.3. Under the same assumptions as above. If A is semisimple Artinian,

then A#H is semisimple Artinian.

Remark. Since H is not a subalgebra of the partial smash product A#H, from

the proof of Lemma 3.2, we can see that we use a new method which is not just a

generalization of the proof of the classical result in [7] to prove the Maschke-type

theorem.

Note that an H-module algebra B is a trivial strong partial H-module algebra,

H is semisimple iff ε(t) 6= 0, where 0 6= t ∈
∫ l
H

, and t̂B(1B) = t . 1B = ε(t)1B is

invertible in B iff ε(t) 6= 0. So, in this case the semisimplity of H is equivalent to

the invertibility of t̂B(1B) in B. What’s more, the partial smash product A#H

become a partial skew group ring A ?α G in case of replacing H by kG. Therefore,

we have the following results.

Corollary 3.4. Let H be a finite-dimensional semisimple Hopf algebra, and B an

H-module algebra. If B is semisimple, then B#H is semisimple.

The above corollary is a generalization of Theorem 6 in [7].

Corollary 3.5. Let α be a partial action of a finite group G on a unital algebra R.

If R is semisimple and t̂R(1R) is invertible in R, then the partial skew group ring

R ?α G is semisimple.

The above corollary is a generalization of Corollary 3.3 in [11].

In what follows, we consider the separability of A#H under the condition that

t̂A(1A) is invertible in A.

Proposition 3.6. Assume that t̂A(1A) is invertible in A. Then A#H is separable

over A.

Proof. As in Section 2, let t̂A(1A) = t · 1A be invertible in A with the inverse u.

It is easy to prove u ∈ C(A). Moreover, for any h ∈ H,

h · u− (h · 1A)u = (h · u− (h · 1A)u)(t · 1A)u = (h · u)(t · 1A)u− (h · 1A)u

= (h1 · u)(h2t · 1A)u− (h · 1A)u = (h · (u(t · 1A)))u− (h · 1A)u

= (h · 1A)u− (h · 1A)u = 0
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shows u ∈ AH . Hence u ∈ C(A) ∩AH . Consider the element

w = (1A#t2)⊗A (u#S−1(t1)) ∈ A#H ⊗A A#H.

In the following, we will show that w is a separability idempotent for A#H.

Let µ : A#H ⊗A A#H → A#H denote the multiplication map. Then

µ(w) = (1A#t2)(u#S−1(t1)) = t2 · u#t3S
−1(t1)

= (t2 · 1A)u#t3S
−1(t1) = (t1 · 1A)u#t3S

−1(t2)

= (t · 1A)u#1H = 1A#1H .

As in Lemma 3.2, we choose S(x) = t, where 0 6= t ∈
∫ l
H
, x ∈

∫ r
H

, and choose

a#S(h) ∈ A#H,

(a#S(h))w = (a#S(h))(1A#t2)⊗A (u#S−1(t1))

= (a#S(h))(1A#S(x1))⊗A (u#x2)

= (a#S(h))(1A#S(x1))⊗A u(1A#x2)
(6)
= (1A#S(x1))⊗A u(1A#x2)(a#S(h))

= (1A#S(x1))⊗A (u#x2)(a#S(h))

= (1A#t2)⊗A (u#S−1(t1))(a#S(h))

= w(a#S(h)),

which shows that w is a separability idempotent. Hence A#H is separable over

A. �

Question. In [3], the authors defined the partial invariants AH = {a ∈ A | h · a =

(h · 1A)a = a(h · 1A), for any h ∈ H}, and gave the Morita context between

the invariant subalgebra AH and the partial smash product A#H. In our note,

we introduce the condition (3) of lazy 1-cocycles related with cohomology and

extensions in order to prove the Maschke-type theorem. We hope that this condition

in the future can be improved.
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