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ABSTRACT. In this paper we introduce and investigate 2-absorbing, n-absorbing,
(n, k)-absorbing, weakly 2-absorbing, weakly n-absorbing and weakly (n, k)-
absorbing elements in a lattice module M. Some characterizations of 2-
absorbing and weakly 2-absorbing elements of M are obtained. By counter
example it is shown that a weakly 2-absorbing element of M need not be 2-
absorbing. Finally we show that if N € M is a 2-absorbing element, then
rad(N) is a 2-absorbing element of M.
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1. Introduction

The concept of 2-absorbing and weakly 2-absorbing ideals in commutative rings
was introduced by A. Badawi in [4] and A. Badawi et. al. in [5] respectively as
a generalization of prime and weakly prime ideals. D. F. Anderson et. al. in [3]
generalized the concept of 2-absorbing ideals to m-absorbing ideals. A. Y. Darani
et. al. in [8] generalized the concept of 2-absorbing and weakly 2-absorbing ideals
to submodules of a module over a commutative ring. Further this concept was
extended to n-absorbing submodules by A. Y. Darani et. al. in [9]. In multiplicative
lattices, the study of 2-absorbing elements and weakly 2-absorbing elements was
done by C. Jayaram et. al. in [11] while the study of n-absorbing elements and
weakly n-absorbing elements was done by S. Ballal et. al. in [6]. Our aim is to
extend the notion of absorbing elements in a multiplicative lattice to a notion of
absorbing elements in lattice modules and study its properties.

A multiplicative lattice L is a complete lattice provided with commutative, as-
sociative and join distributive multiplication in which the largest element 1 acts as
a multiplicative identity. An element e € L is called meet principal if a A be =
((a : e) Ab)e for all a,b € L. An element e € L is called join principal if
(aevd):e=(b:e)Vaforall a,b € L. An element e € L is called principal
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if e is both meet principal and join principal. An element a € L is called com-
pact if for X C L, a < VX implies the existence of a finite number of elements
ai,as, - -+ a, in X such that a < a; VasV---Va,. The set of compact elements
of L will be denoted by L,. If each element of L is a join of compact elements of
L, then L is called a compactly generated lattice or simply a CG-lattice. L is said
to be a principally generated lattice or simply a PG-lattice if each element of L is
the join of principal elements of L. Throughout this paper L denotes a compactly
generated multiplicative lattice with 1 compact in which every finite product of
compact elements is compact.

An element a € L is said to be properif a < 1. A proper element p € L is called
a prime element if ab < p implies a < p or b < p where a,b € L and is called a
primary element if ab < p implies a < p or b” < p for some n € Z where a,b € L,.
A proper element p € L is called a weakly prime element if 0 # ab < p implies
a < porb< pwhere a,b € L and is called a weakly primary element if 0 # ab < p
implies a < p or b™ < p for some n € Z, where a,b € L,. A proper element q € L
is called p-primary if q is primary and p = ,/q is prime. A proper element q € L
is called p-weakly primary if q is weakly primary and p = ,/q is weakly prime. For
a,be€ L, (a:b)=Vv{zr € L|zb< a}. The radical of a € L is denoted by v/a and
is defined as V{z € L, | 2™ < a, for some n € Z;}. An element a € L is said to
be nilpotent if a™ = 0 for some n € Z;. A multiplicative lattice L is said to be a
reduced lattice if 0 € L is the only nilpotent element of L. The reader is referred to
[2] for general background and terminology in multiplicative lattices.

Let M be a complete lattice and L be a multiplicative lattice. Then M is called
L-module or module over L if there is a multiplication between elements of L and
M written as aB where a € L and B € M which satisfies the following properties:
(1) (Vag)A = Van A, (2) a(VA,) = Va A,, (3) (ab)A = a(bA), (4) 1A = A, (5)
0A :aOM, for ;11 a,aq,b € Eand A, jla € M where 1 is the supremum of L and
0 is the infimum of L. We denote by Ops and Iy, for the least element and the
greatest element of M, respectively. Elements of L will generally be denoted by
a,b,c, - - and elements of M will generally be denoted by A, B,C, - - -.

Let M be an L-module. For N e M anda € L, (N:a)=V{X e M | aX <
N}. For ABe M, (A:B)=V{r € L | zB < A}. An L-module M is called
a multiplication lattice module if for every element N € M there exists an element
a € L such that N = aly;. An element N € M is said to be proper if N < Iy;.
A proper element N € M is said to be prime if for a € L and X € M; aX < N
implies X < N or a < (N : Ip;). A proper element N € M is said to be weakly
prime if for a € L and X € M; Op # aX < N implies X < N or a < (N : Ty).
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If N € M is a prime element, then (N : I/) is a prime element in L. An element
N < Iy in M is said to be primary if for a € L and X € M; aX < N implies
X < Nora™ < (N:1Iy)for somen € Z;. An element N < I, in M is said to
be weakly primary if for a € L and X € M; Op # aX < N implies X < N or
a™ < (N : Ip) for some n € Zy. A proper element N € M is said to be p-primary
if N is primary and p = /N : Ijs is prime. A proper element N € M is said to
be p-weakly primary if N is weakly primary and p = /N : Ijs is weakly prime.
An element N € M is called a radical element if (N : Ipn;) = /(N : Ips) where

(N:Iy) =V{z € Ly | 2™ < (N : Ipy), for somen € Zy} = V{z € L, |
a"Ipyy < N, for somen € Zy}. An element N € M is called meet principal if
(bA(B:N))N=bNABforalbeL,Be M. An element N € M is called join
principal if bV (B: N) = ((bBNVB): N)forallbe L,B € M. An element N € M
is said to be principal if N is both meet principal and join principal. An element
N € M is called compactift N < VA, implies N < A, V Aq, V- -V A,, for some
finite subset {a1, g, -, an}. Thea set of compact elements of M is denoted by M,.
If each element of M is a join of compact elements of M, then M is called a CG-
lattice L-module. If (Op : Ipg) = 0, then M is called a faithful L-module. M is said
to be a PG-lattice L-module if each element of M is the join of principal elements
of M. For all the definitions in a lattice module and some other definitions, one
can refer [7].

According to [11], a proper element ¢ € L is said to be a 2-absorbing element
if for every a,b,c € L; abc < q implies either ab < q or be < g or ca < g and
a proper element ¢ € L is said to be a weakly 2-absorbing element if for every
a,b,c € L; 0 # abc < ¢ implies either ab < ¢q or be < g or ca < g. Obviously a
prime element of L is a 1-absorbing element and a weakly prime element of L is a
weakly 1-absorbing element. According to [6], a proper element of ¢ € L is said to
be a n-absorbing element if for every ai,a9,- -+, an,any1 € L; a1as - - - apapi1 < ¢
implies there are n of als whose product is less than or equal to ¢, that is, a; < ¢
for some i (1 < ¢ < (n+ 1)) where @; is the element a1 - - - @;—1a;41 * * * GpAnt1
and a proper element of ¢ € L is said to be a weakly n-absorbing element if for
every ai,ag,- -« an,an+1 € L; 0 # ajas - - - apant1 < g implies there are n of
a}s whose product is less than or equal to ¢. In this paper we introduce and
investigate 2-absorbing, n-absorbing, (n, k)-absorbing, weakly 2-absorbing, weakly
n-absorbing and weakly (n, k)-absorbing elements in a lattice module M. We give
characterization for 2-absorbing and weakly 2-absorbing elements of M. By counter
example we show that a weakly 2-absorbing element of M need not be 2-absorbing.

We establish a condition for a weakly 2-absorbing element of M to be a 2-absorbing
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element. Finally we show if N € M is a 2-absorbing element then rad(N) is a 2-
absorbing element of M.

This paper is motivated by [8] and [9]. Many of the results obtained in this
paper are versions of results in [8] and [9]. It should be mentioned that there is a
significant difference between our results and the already existing ones presented in
[8] and [9], as principal elements of M are used in these proofs. We have generalized
the important results of a multiplication module over a commutative ring obtained
in [10] to a multiplication lattice module M over a multiplicative lattice L, using

the principal elements so as to establish the results of rad(N).

2. Absorbing elements in M

In this section we introduce and study absorbing elements of an L-module M.

We begin with the following definitions.

Definition 2.1. A proper element N of an L-module M is said to be 2-absorbing
if for every a,b € L and @ € M; ab@ < N implies either ab < (N : Ijy) or a@Q < N
or b@Q < N.

Obviously a prime element of an L-module M is a 2-absorbing element. Also a

prime element of M can be thought of as a 1-absorbing element.

Definition 2.2. A proper element N of an L-module M is said to be weakly
2-absorbing if for every a,b € L and Q € M; Oy # ab@Q < N implies either
ab < (N :1Ip) oraQ < N or bQ < N.

Definition 2.3. Let n € Z,. A proper element N of an L-module M is said to be
n-absorbing if for every ay,a9, - -,a, € L and Q € M; aqas - - - a,Q < N implies
either ajas - - a, < (N : Ipf) or there are (n-1) of a}s whose product with @ is less
than or equal to N, that is, either ajas -+ -a, < (N : Ip) or a;Q < N for some

i (1 <4 < n) where a; is the element ay - - - a;—1a;41 - - ap.

Definition 2.4. Let n € Z,. A proper element N of an L-module M is said to be
weakly n-absorbing if for every ay, as, -+, a, € Land Q € M; Oy # ayas--a,Q < N
implies either ajag - - - an, < (N : Ipf) or there are (n-1) of a}s whose product with
Q is less than or equal to N, that is, either ajag - - - a, < (N : Ipy) or a;QQ < N for

some i (1 < i< n) where a; is the element a; - - - a;—1a;41 - - - ap.

Definition 2.5. Let n,k € Z; where n > k. A proper element N of an L-
module M is said to be (n, k)-absorbing if for every ai,as,- -, a, € L and Q € M;

ajaz - - - a,Q < N implies either there are k of the a}s whose product is less than
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or equal to (N : Ips) or there are (k — 1) of the a}s whose product with @ is less
than or equal to N.

Definition 2.6. Let n,k € Z where n > k. A proper element N of an L-module
M is said to be weakly (n, k)-absorbing if for every aq,as, -, a, € L and Q € M,
On # aiag - - a,Q < N implies either there are k of the a}s whose product is less
than or equal to (N : Ips) or there are (k — 1) of the a}s whose product with @ is

less than or equal to N.
Now we give the characterization of a 2-absorbing element of M.

Theorem 2.7. Let M be a CG-lattice L-module and N be a proper element M.

Then the following statements are equivalent:

(1) N is a 2-absorbing element of M.

(2) for every a,b € L and Q € M such that N < Q; abQ < N implies either
ab < (N : Ipp) ora@Q < N orb@Q < N.

(3) for every a,b € L such that ab £ (N : Ipr); either (N : ab) = (N : a) or
(N :ab) = (N :b).

(4) for any elements r;s € L., K € M,; if rsK < N then either rs < (N :
Ing) orrK < N or sK < N.

Proof. (1) = (2) It is obvious.

(2) = (3) Suppose (2) holds. Let K € M be such that K < (N : ab) and ab £
(N : Ip) for a,b € L. Then abK < N. Clearly ab(K V N) = (abK) V (abN) < N.
Let U = KV N. Nowas N < U, abU < N and ab £ (N : Ip); by (2) it follows
that either aU < N or bU < N which implies either a K < N or bK < N and so
either K < (N :a) or K < (N :b). Hence we have either (N : ab) < (N : a) or
(N :ab) < (N :b). Obviously (N :a) < (N :ab) and (N :b) < (N : ab). Thus
either (N : ab) = (N :a) or (N :ab) = (N :b).

(3) = (4) Suppose (3) holds. Let rsK < N and rs £ (N : Iy) for r,s € Ly,
K € M,. Then by (3) we have either (N :rs) = (N :r)or (N :rs)= (N :s). So
as K < (N :rs) we have either K < (N :r) or K < (IV : s). Thus either rK < N
or sk < N.

(4) = (1) Suppose (4) holds. Let abX < N, aX £ N and bX £ N for a,b €
L, X € M. As L and M are compactly generated, there exist r,s € L, and Y, Y’ €
M, such that r < a,s <b, Y < X,Y' < X, rY £ N and sY' £ N. Then rs < ab.
Now r,s € Ly, (Y VY') € M, such that rs(Y VY”) < abX < N,7(Y VY’) & N and
s(YVY') £ N . Soby (4) rs < (N : Ips) which implies ab < (N : Is). Therefore
N is a 2-absorbing element of M. ([l
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A similar characterization of a weakly 2-absorbing element of M is as follows.

Theorem 2.8. Let M be a CG-lattice L-module and N be a proper element of M.

Then the following statements are equivalent:

(1) N is a weakly 2-absorbing element of M.

(2) For every a,b € L and Q € M such that N < Q; Oy # ab@Q < N
implies either ab < (N : Ips) or a@Q < N or b@Q < N.

(3) For every a,b € L such that ab & (N : Ip); either (N : ab) = (Op : ab)
or (N :ab) = (N :a) or (N :ab) = (N :b).

(4) For every r,s € Ly, K € M,; if Oy # rsK < N then either rs < (N :
Ing) orrK < N or sK < N.

Proof. (1) = (2) It is obvious.

(2) = (3) Suppose (2) holds. Let K € M be such that K < (N : ab) and
ab & (N : Ip) for a,b € L. Then abK < N. If abK = Oy, then K < (O : ab). If
abK # Oypr, then Oy # ab(KVN) = (abK)V (abN) < N. Let U = KV N. Now as
N <U,Oum # abU < N and ab £ (N : Ip); by (2) it follows that either aU < N
or bU < N which implies either a K < N or bK < N and so either K < (N : a)
or K < (N :b). Hence we have either (N : ab) < (Ops : ab) or (N : ab) < (N : a)
or (N :ab) < (N :b). Obviously (Op : ab) < (N : ab), (N :a) < (N : ab) and
(N :b) < (N :ab). Thus either (N : ab) = (Op = ab) or (N : ab) = (N : a) or
(N :ab) = (N :b).

(3) = (4) Suppose (3) holds. Let Oy # rsK < N and rs £ (N : Ip) for r,s €
L., K € M,. Then by (3) we have either (N : rs) = (N :r) or (N :7s) = (N :s) or
(N :rs) = (Op :7s). Since K < (N :rs) it follows that either K < (Opy @ rs) or
K< (N:r)or K< (N:s). As K < (Oypf :rs) gives rsK = Oy, a contradiction,
we must have either K < (N :r) or K < (N : s) which implies either rK < N or
sK < N.

(4) = (1) Suppose (4) holds. Let Oy # abX < N, aX &« N and bX ¢ N
for a,b € L, X € M. As L and M are compactly generated, there exist r,s € L,
and VY’ € M, such that » < a,s < b, YV < X, Y < X, rY' £ N, sY' &
N and Opy # rsY’. Then rs < ab. Now r,s € L,, (Y VY’) € M, such that
Om #rs(Y VY') < abX < N,r(Y VY') £ N and s(Y VY') £« N . So by (4)
rs < (N : Ips) which implies ab < (N : Ipr). Therefore N is a weakly 2-absorbing
element of M. O

~— ~—

In the next theorem, we show that the meet and join of a family of ascending

chain of 2-absorbing elements of M are again 2-absorbing.
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Theorem 2.9. Let {N; | i € Z1} be a (ascending or descending) chain of 2-
absorbing elements of an L-module M. Then

(1) i€/2+Ni is a 2-absorbing element of M.

(2) iE\£+Ni is a 2-absorbing element of M if In; is compact.

Proof. Let Ny < Ny < --- < N; < --- be an ascending chain of 2-absorbing
elements of M.
(1) Clearly, (A N;) # In. Let abQ < (A N;) and aQ £ (A N;) fora,be L,
€L €Ly €L
Q € M. Then a@ £ N; for some j € Zy but ab@ < N; which implies ab < (N; :
In) or b@Q < Nj as Nj is a 2-absorbing element. Now let N; # N;. Then as {N;} is
a chain we have either N; < Nj or N; < N;. If N; < N; then as NN; is a 2-absorbing
element, abQ < N; and a@ % N; we have either ab < (N; : Ips) or bQ < N;. If
N; < N; then either ab < (N; : Ing) < (N; : Ing) or bQ < N; < N;. Thus either
b A (N;:In)=1[( A N;): I bQQ < A N; which that A N; i
a ieZ+( M) [(ieZ+ ) : Ipf] or bQ L N ich proves tha Y is
a 2-absorbing element of M.
(2) Since Iy is compact, (V. N;) # Inr. Let abQ < (V. N;)andaQ £ (V. N;)
€74 €Ly i€Z 4
for a,b € L, Q € M. Then as {N;} is a chain we have abQ < N; for some j € Z,
but a@ £ N; which implies either ablpy < N; < (. \2 N;) or b@Q < N; < (. \2 N;)
1€L4 ASY/RR

as IV; is a 2-absorbing element and thus \2 N; is a 2-absorbing element of M. [
1€24
The “weakly” version of above Theorem 2.9 is as follows.

Theorem 2.10. Let {N; | i € Z1} be a (ascending or descending) chain of weakly

2-absorbing elements of an L-module M. Then
1) /% N; is a weakly 2-absorbing element of M.
1€L4
(2) \2 N; is a weakly 2-absorbing element of M if Iy is compact.
1€L4

Proof. The proof is similar to the proof of Theorem 2.9 and hence omitted. (]

Theorem 2.11. If a proper element N of an L-module M is a 2-absorbing element
then (N : d) is a 2-absorbing element of M for every d € L.

Proof. Let d,a,b € L and Q € M. Assume that ab@ < (N : d), aQ % (N : d) and
bQ £ (N :d). As ab(dQ) < N, a(dQ) £ N, b(dQ) £ N and N € M is 2 absorbing
we get ably; < N which implies d(ablp) < N. It follows that ab < ((V : d) : Ins)
and hence (N : d) is a 2-absorbing element of M. O

The following theorem shows that if an element in M (or L) is 2-absorbing then

its corresponding element in L (or M) is also 2-absorbing.
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Theorem 2.12. Let M be a faithful multiplication PG-lattice L-module with Iy

compact where L is also a PG-lattice. Then the following statements are equivalent:

(1) N is a 2-absorbing element of M.
(2) (N :1Ip) is a 2-absorbing element of L.
(3) N = qlpy for some 2-absorbing element q € L.

Proof. (1) = (2) Assume that N is a 2-absorbing element of M. Let abc <
(N : In) such that ab £ (N : Ip) and be £ (N : In) for a,b,c € L. Then as
ac(blnr) < N, a(bly) & N, ¢(bIy) & N and N is a 2-absorbing element we have
ac < (N : Ips) which implies (N : Ips) is a 2-absorbing element of L.

(2) = (1) Assume that (N : Ips) is a 2-absorbing element of L. Let ab@QQ < N
for a,b € L, Q € M. Since M is a multiplication lattice L-module, Q = qIps for
some g € L. Then as abg < (N : Ips) and (N : Ips) is a 2-absorbing element we
have either ab < (N : Ips) or bg < (N : Ips) or ag < (N : Ipy) which implies either
ab < (N :1Ip) or b@Q < N or a@ < N and hence N € M is a 2-absorbing element.

(2) = (3) Assume that (N : Ip/) is a 2-absorbing element of L. Then obviously
(3) holds since in a multiplication lattice L-module M we have N = (N : Ip;)Ipy.

<
<

(3) = (2) Assume that N = qlp; for some 2-absorbing element ¢ € L. Also
N = (N : Ipy)Ip since M is a multiplication lattice L-module. It follows that
qInge = (N 2 In)Ipg. As Iy is compact, (2) holds by Theorem 5 of [7]. O

In view of above Theorem 2.12 we give the following corollary without proof.

Corollary 2.13. If a proper element N of an L-module M is 2-absorbing, then
(N : Ip) is a 2-absorbing element of L. The converse holds if M is a multiplication

lattice L-module.

The above Corollary 2.13 is true for “weakly” version provided M is faithful as

shown below.

Theorem 2.14. If a proper element N of a faithful L-module M is weakly 2-
absorbing, then (N : Inr) is a weakly 2-absorbing element of L. The converse holds

if M is a multiplication lattice L-module.

Proof. Assume that N is a weakly 2-absorbing element of M. Let 0 # abc < (N :
In) such that ab £ (N : Ipy) and be £ (N : In) for a,b,c € L. If acblyr = Op
then as M is faithful we have abec < (O : Ip) = 0; a contradiction. Now as
N is a weakly 2-absorbing element with Oy # ac(blpy) < N, a(bly) £ N and
c(bIy) £ N we have ac < (N : Ips) which implies (N : Ipy) is a 2-absorbing

element of L. Conversely assume that (N : Ips) is a weakly 2-absorbing element of
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L and M is a multiplication lattice L-module. Let Op; # ab@ < N for a,b € L,
@ € M. Since M is a multiplication lattice L-module, @ = ql;; for some ¢ € L.
If abg = 0, then abQ = Oy, a contradiction. Now as 0 # abg < (N : Ip) and
since (N : Ips) is a weakly 2-absorbing element we have either ab < (N : Ij;) or
bg < (N : Ip) or ag < (N : Ipy) which implies either ab < (N : Ips) or bQ < N or
a@ < N and hence N is a 2-absorbing element of M. O

Result similar to Theorem 2.12 for a weakly 2-absorbing element of M is as

follows.

Theorem 2.15. Let M be a faithful multiplication PG-lattice L-module with Ins

compact where L is also PG-lattice. Then the following statements are equivalent:

(1) N is a weakly 2-absorbing element of M.
(2) (N :In) is a weakly 2-absorbing element of L.
(3) N =qly for some weakly 2-absorbing element q € L.

Proof. The proof is similar to the proof of Theorem 2.12 and hence omitted. [

Thus a proper element N of a multiplication lattice L-module M is a 2-absorbing
element if and only if (IV : Ips) is a 2-absorbing element of L and a proper element
N of a faithful multiplication lattice L-module M is a weakly 2-absorbing element

if and only if (IV : Is) is a weakly 2-absorbing element of L.

Theorem 2.16. If a proper element N of an L-module M is prime, then N is
a (2,1)-absorbing element. The converse holds if M is a multiplication lattice L-

module.

Proof. Assume that N € M is prime. Let ab@Q < N for a,b € L, Q € M. Then
< (N : Iy) or @ < N and we are
done. Conversely assume that N € M is (2, 1)-absorbing. Let a@Q < N for a € L,

as N is prime we have either a < (N : Ips) or b

@ € M. Since M is a multiplication lattice L-module, @) = gIp; for some g € L.
Then as a(qly) < N and N is (2,1)-absorbing we have either a < (N : Ip) or
q < (N : Ipr) which implies either a < (N : Ipns) or @ = gl < N and hence N is

prime. (I

Theorem 2.17. If a proper element N of an L-module M is weakly prime, then
N is a weakly (2,1)-absorbing element. The converse holds if M is a multiplication

lattice L-module.

Proof. The proof is similar to the proof of Theorem 2.16 and hence omitted. [
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Theorem 2.18. If a proper element N of an L-module M is 2-absorbing, then N
is a (3,2)-absorbing element. The converse holds if M is a multiplication lattice

L-module.

Proof. Assume that N € M is 2-absorbing. Let abcQ < N for a,b,ce L, Q € M.
Then by repeated use of the fact that N is 2-absorbing we get either ab < (N : Ijy)
or [a(cQ) < NJor [b(cQ) < N] which implies either ab < (N : Ips) or [ac < (N : Iyy)
or aQ < N or ¢ < N]or [be < (N : Iy) or bQ < N|. Tt follows that N
is (3,2)-absorbing. Conversely assume that N is a (3,2)-absorbing element of a
multiplication lattice L-module M. Let ab@ < N for a,b € L, Q € M. Since M is
a multiplication lattice L-module, Q = ¢I; for some g € L. Then as ab(qlp) < N
and N is (3, 2)-absorbing we have either [abIp; < N or bglys < N or aqlpy < N]or
[alpr < N or by < N or gIy < NJ which implies either [ably < N or bgly < N
or aqlpy < N)or [balyr < N or ¢blyr < N or agly < NJ. It follows that either
ab < (N : Ip) or b@Q < N or aQ < N and hence N is 2-absorbing. a

Theorem 2.19. If a proper element N of an L-module M is weakly 2-absorbing,
then N is a weakly (3,2)-absorbing element. The converse holds if M is a multi-

plication lattice L-module.
Proof. The proof is similar to the proof of Theorem 2.18 and hence omitted. [

Theorem 2.20. Let N be a proper element of an L-module M and n,k € Z, such
that n > k.
(1) If N is (n, k)-absorbing, then N is (k + 1,k)-absorbing.
(2) If N is (n, k)-absorbing, then N is (n,k")-absorbing for every positive inte-
ger k' > k.

Proof. (1) Assume that N € M is (n, k)-absorbing. Let ajag - - - a,Q < N where
a1,a2, - a, € L, Q@ € M. Since N is (n, k)-absorbing it follows that either the
product of any % of the a;s is less than or equal to (N : Ip) or there are (k —1) of
the als whose product with @ is less than or equal to N and hence N is (k+ 1, k)-
absorbing.

(2) Assume that N € M is (n, k)-absorbing. Let k¥’ € Z; such that ¥’ > k. Let
aras - - a,Q < N where ay,as, -+, a, € L, Q € M. Since N is (n, k)-absorbing, we
have either bbby < (N : Ipg) or c1ca -+ cx—1Q < N where these b}s and ¢s are
some of the a}s obtained on renaming. It follows that either bbiby - - by < (N : Ipg)
for any element b among a}s but other than b}s or ccica - - - ¢x—1Q < N for any
element ¢ among a;s but other than c}s and hence continuing the same argument

we get N is (n, k’)-absorbing. a
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Theorem 2.21. Let N be a proper element of an L-module M and n,k € Z, such
that n > k.
(1) If N is weakly (n, k)-absorbing, then N is weakly (k + 1, k)-absorbing.
(2) If N is weakly (n, k)-absorbing, then N is weakly (n,k')-absorbing for every
positive integer k' > k.

Proof. The proof is similar to the proof of Theorem 2.20 and hence omitted. [
Corollary 2.13 for an n-absorbing element of an L-module M is as follows.

Theorem 2.22. Let n € Z,. If a proper element N of an L-module M is n-
absorbing, then (N : Ipf) is an n-absorbing element of L. The converse holds if M

is a multiplication lattice L-module.

Proof. Let N be an n-absorbing element of M and let @; = aq - - - a;—1a41 -+ - an
where ¢ (1 < i < n)and ay,---,a, € L. Assume that ay - - - apant1 < (N : Ip)
and @;an41 % (N : Ip) for every ¢ (1 < i < n). Then as N is n-absorbing,
ai - ap(ans1ly) < N and Gianp1Iy £ N we have ay - - - a, < (N : Ipg) which
implies (N : Ips) is an n-absorbing element of L. Conversely assume that (N : Iy)
is an n-absorbing element of L and M is a multiplication lattice L-module. Let
a1 ---a,@Q < N for ay,---,a, € L, Q € M. Since M is a multiplication lattice
L-module, @ = gl for some ¢ € L. Then as a1 - - - apq < (N : Ips) and since
(N : Ip) is an n-absorbing element we have either a; - - - a, < (N : Ips) or there
exist (n — 1) of a}s whose product with ¢ is less than or equal to (N : Ip;) which
implies either a; - - - a, < (N : Ips) or there exist (n — 1) of als whose product
with gy = @ is less than or equal to IV and hence N is an n-absorbing element of
M. ([l

Lemma 2.23. Let m,n € Z. If a proper element N of an L-module M is n-

absorbing then N is an m-absorbing element of M for all m > n.

Proof. Let m,n € Z, be such that m > n. Let 212, Q = &1 Xpn(Tni12m@Q) <
N for xq, -,z € L, Q € M. Then as N is n-absorbing, we have either z; -- -z, <
(N:Ipy)oray xi—1Tig1 Tp(Tpt1 - m@) < N for some i (1 < i < n) which
implies either ©1 -+ @y - Ty, < (N : Ipg) or (1 Tj—1%ig1 - TpTpg1 - Ty )Q < N

for some ¢ (1 < ¢ < m) and thus N is an m-absorbing element of M. O
In view of above Lemma 2.23, we have the following definition.

Definition 2.24. If a proper element N is an n-absorbing element of M for some
n € Z, then we define w(N) = min{n € Z; | N is an n-absorbing element of M}

otherwise we write w(IN) = co. Moreover we define w(Ips) = 0.
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Thus for any element N € M we have w(N) € Z4 U {0,00} with w(N) = 1 if
and only if N is a prime element of M and w(N) = 0 if and only if N = I;. So

w(N) measures in some sense how far ‘N’ is from being a prime element of M.

Theorem 2.25. If a proper element N of an L-module M is p-primary such that
p"Iy < N where n € Zy, then N is an n-absorbing element of M. Moreover,
w(N) < n.

Proof. Let a; - - - a,Q < N with @,Q £ N for every i (1 < ¢ < n) where @; is
the element a1 - - - a;—1a;41 - - an and ay, - -+, a, € L, Q@ € M. As N is p-primary,
a;(@;Q) < N and @,Q £ N, we have a; < /N : Ipy = p for every i (1 < i < n)
which implies a; - - - a,, < p”. It follows that a; - - - a,, < (N : Ips) and thus N is an

n-absorbing element of M. The “moreover” statement is clear. O

Corollary 2.26. Let a proper element N of an L-module M be p-primary. Then
N is 2-absorbing if and only if p*Iny < N.

Proof. Let a p-primary element N € M be 2-absorbing. Then by Corollary 2.13
(N : Ip) is a 2-absorbing element of L which implies (v/N : Ipf)? < (N : Ip) by
Lemma 2(iii) of [11] and thus p?I); < N. The converse part is clear by Theorem
2.25. (]

We define a classical prime element of an L-module M as follows.

Definition 2.27. A proper element N € M is said to be classical prime if for
each element K € M and elements a,b € L; abK < N implies either aK < N or
bK < N.

Theorem 2.28. Let N be a proper element of an L-module M. Then N is
prime implies N is classical prime implies N is 2-absorbing implies N is weakly

2-absorbing.

Proof. Assume that N € M is prime. Let abK < N for a,b € L, K € M. Then
as N is prime we have either a < (N : Ipy) < (N : K) or bK < N which implies
either a K < N or bK < N and thus N is classical prime. Now let N be classical
prime and let abK < N for a,b € L, K € M. Then as N is classical prime we have
either aK < N or bK < N and thus N is 2-absorbing. Last implication is obvious

since every 2-absorbing element is weakly 2-absorbing. (I

From the above Theorem 2.28, it is clear that every 2-absorbing element is weakly

2-absorbing. But the converse is not true as shown in the following example.
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Example 2.29. Let R = Z and M = 7Z/(30Z). Then M is a module over Z.
Suppose that L(R) is the set of all ideals of R and L(M) is the set of all submodules
of M. Then L(M) is a lattice module over L(R). Obviously N = {30Z} being
the zero element of L(M) is weakly 2-absorbing. However N is not a 2-absorbing
element of L(M) since (2)(3)(5+30Z) C N and (2)(3) € (N : M), (2)(5+30Z) ¢
N, (3)(5+30Z) ¢ N.

The following theorem shows that under particular condition a weakly 2-absorbing

element of an L-module M is 2-absorbing.

Theorem 2.30. If a weakly 2-absorbing element N of an L-module M is such that
(N : Ip)2N # Oy, then N is a 2-absorbing element.

Proof. Assume that (N : I;)2N # Oy Let abQ < N for a,b € L, Q € M. If
ab@ # Oy, then as N is weakly 2-absorbing we get either ab < (N : Ip) or a@Q < N
or b@Q) < N and we are done. So let ab@) = Oy;. First assume that abN # Ojp;. Then
abNg # Oy for some Ng < N in M. As Oy # ab(Q V Ng) < N and N is weakly
2-absorbing we have either ab < (N : Ipf) or a(Q V Ny) < N or b(Q V Ny) < N
which implies either ab < (N : Ipy) or a@ < N or bQ < N and we are done. Hence
we may assume that abN = Oy, If a(N : In)Q # Opy, then arg@Q # Oy for
some 19 < (N : Ipg) in L. Since Ops # arg@ < a(bV ro)Q < N and N is weakly
2-absorbing we have either a(bVrg) < (N : Ipr) or aQ < N or (bVro)Q < N which
implies either ab < (N : Ipy) or a@ < N or b@Q < N and we are done. So we can
assume that a(N : In;)Q = Oyp,. Likewise we can assume that b(N : Ip)Q = Opy.
As (N : Ip)2N # Oy, there exist ag,bg < (N : Ip) and Xo < N with agboXo #
Onr. If abgXo # Opy then Opp # aboXo < a(bVb)(QV Xy) < N. As N is weakly 2-
absorbing we get either a(bVbg) < (N : Ipr) or a(QV Xo) < N or (bVby)(QV Xp) <
N which implies either ab < (N : Ips) or a@ < N or b@Q < N and we are done. So
we can assume that abgXo = Oyy. Likewise we can assume that agbg@) = Ops and
apbXo = Ops. Then as Opp # agboXo < (aV ag)(bV bo)(QV Xg) < N and N is
weakly 2-absorbing we get either (aVag)(bVbg) < (N : Ipf) or (aVao)(QVXy) <K N
or (bVbo)(QV Xp) < N which implies either ab < (N : Ips) or a@Q < N or b@Q < N
and thus N is a 2-absorbing element. O

We define a nilpotent element of an L-module M in the following manner.

Definition 2.31. A proper element N of an L-module M is said to be nilpotent if
(N : I]u)kN = Oy for some k € Z+.

The consequences of Theorem 2.30 are presented in the form of following corol-

laries.
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Corollary 2.32. If a proper element N of an L-module M is weakly 2-absorbing
but not 2-absorbing, then N is a nilpotent element of M.

Proof. The proof is obvious. O

Corollary 2.33. If a proper element N of an L-module M is weakly 2-absorbing
but not 2-absorbing, then (N : I3f)2N = Oyy.

Proof. As (N : Iy)3 < (N : Iy)?, we have (N : I3y)3N < (N : Ip)>N = Oy by
Theorem 2.30 and hence (N : Ip7)3N = Oyy. O

Corollary 2.34. If a proper element N of an L-module M is weakly 2-absorbing
but not 2-absorbing, then (N : Ing)*N = Oy for every n > 3.

Proof. The proof is obvious. O

Corollary 2.35. If a proper element N of a multiplication lattice L-module M is
weakly 2-absorbing but not 2-absorbing, then (N : Inf)2Ipr = Oy

Proof. Since M is a multiplication lattice L-module, we have N = (N : Ips)I5. By
Theorem 2.30, we have (N : Ip;)2N = Oy which implies (N : Ip)2Iy = Oy O

Corollary 2.36. If a proper element N of a faithful multiplication lattice L-module
M is weakly 2-absorbing but not 2-absorbing, then (N : Ip;) < V0 and hence
VN :Tpr = /0. Moreover, if L is a reduced lattice then (N : Ip;) = 0.

Proof. The proof is obvious. O

Corollary 2.37. Let L be a reduced lattice. If Oy < N < Ipg is a weakly 2-
absorbing element of a faithful multiplication lattice L-module M, then N is a

2-absorbing element of M.

Proof. The proof is obvious. O

3. rad(N) as a 2-absorbing element of M

In this section, we prove rad(N) is a 2-absorbing element of an L-module M if
N € M is a 2-absorbing element. We begin with defining the radical of an element
of a lattice module. In view of the definition of the M-radical of a submodule of
an R-module M in [12], the definition of the radical of an element of an L-module

M is as follows.

Definition 3.1. Let N be a proper element of an L-module M. Then the radical
of N is denoted as rad(N) and is defined as the element A{P € M | P is a prime
element and N < P}. If N £ P for any prime P € M, then we write rad(N) = Iy;.
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Before proving rad(N) is a 2-absorbing element of M, we prove the results

required to show that rad(aly) = v/alp as proved in an R-module M in [10].

Lemma 3.2. Let L be a PG-lattice and M be a faithful multiplication PG-lattice
L-module. Then A (aoIn) =( A ao)Ipy where {aq € L |a € A}.
aeA ae

Proof. Clearly (aé\Aaa)IM < aé\A(aaIM). Let X < aé\A(aaIM) where X € M.
We may suppose that X is a principal element. Assume that ((aé\Aaa)IM : X) #£ L
Then there exists a maximal element ¢ € L such that ((aé\Aaa)I M X)<q As
M is a multiplication lattice L-module and ¢ € L is maximal, by Theorem 4 of [7],
two cases arise:

Case 1. For principal element X € M, there exists a principal element r € L
with r £ ¢ such that X = Op. Then r < (Op : X) < ((aé\Aaa)IM :X)<q
which is a contradiction.

Case 2. There exists a principal element ¥ € M and a principal element
b € L with b £ ¢ such that bI)y < Y. Then bX <Y, bX < b[aé\A(aaIM)] <
aé\A(aabIM) < aé\A(aaY) and (Op : )by < (Op Y)Y = Oy since Y is meet
principal. As M is faithful it follows that b(Ops : Y) = 0. Since Y is meet principal,
X : Y)Y =bX AY =0bX. Let s = (bX :Y) then sY = bX < Oéé\A(aaY). So
s=0bX:Y)=(sY:Y) < [aé\A(aaY) Y= A (alY :Y)= A [aa V(Op : Y)]

aEA ael
since Y is join principal. Therefore bs < b] /\A[aa V(Op:Y)]] < /\A[b[aa V(O
[e1S ac

= : = o < o < o
b*X =b(bX) = bsY < (€2 Y < Qg IIM . Hence b < G, I : X <

which implies b < /g = ¢; a contradiction.
Thus the assumption that (( /\Aaa)I M X) # 1 is absurd and so we must have
(¢S
((aé\Aaa)IM : X) = 1 which implies X < (aé\Aaa)IM. It follows that aé\A(aO‘IM) <

A ag)Ia and h A (o) = (A ag)la. O
(aeAa)Man enceaeA(a M) (aeAa)M

Lemma 3.3. Let L be a PG-lattice and M be a faithful multiplication PG-lattice
L-module with Ip; compact. If a proper element q € L is a prime element, then

qlInr is a prime element of M.

Proof. As I is compact and ¢ € L is proper by Theorem 5 of [7] we have ¢l #
Ing. Let aX < gly and a £ (qlyr 2 Ing) for a € L,X € M. Then a £ ¢q. We
may suppose that X is a principal element. Assume that ((¢Ipr) : X) # 1. Then
there exists a maximal element m € L such that ((¢/p) : X) < m. As M is a
multiplication lattice L-module and m € L is maximal, by Theorem 4 of [7], two

cases arise:
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Case 1. For principal element X € M, there exists a principal element r € L
with 7 £ m such that 7X = Op. Then r < (Opr : X) < ((qfa) : X) < m which is
a contradiction.

Case 2. There exists a principal element Y € M and a principal element b € L
with b € m such that bIp; < Y. Then bX <Y, baX < bglys = q(bly) < qY and
(Op : Y)bIny < (Opp 2 Y)Y = Oy since Y is meet principal. As M is faithful
it follows that b(Ops : Y) = 0. Since Y is meet principal, (bX : Y)Y = bX. Let

= (bX :Y) then sY = bX and so asY = abX < ¢Y. Since Y is meet principal,
abX = (abX : Y)Y = ¢Y where ¢ = (abX :Y). Since ¢Y = abX < ¢Y and Y is
join principal we have ¢V (Opr : Y) = (Y :Y) < (¢YV : V) =qV (Opn : Y). So
bc < bg < ¢. On the other hand since Y is join principal, ¢ = (abX : Y) = (asY :
Y)=asV (Opy :Y) and so abs < absVb(Opr 1Y) =blasV (Op :Y)) =be < q. If
b < g, then b < ¢ < ((¢fp) : X) < m which contradicts b £ m and so b £ ¢. Now as
abs < ¢,a £ q,b & q and ¢ is prime, we have s < ¢. Hence bX = sY < ¢V < (¢In)
which implies b < ((¢Iar) : X) < m; a contradiction.

Thus the assumption that ((¢lps) : X) # 1 is absurd and so we must have
((¢Inr) : X) = 1 which implies X < (¢fps). Therefore ¢l is a prime element of
M. O

Lemma 3.4. In an L-module M, if a proper element Q € M 1is prime such that
X < Q, then (Q : Ip) € L is prime such that vX : Iny < (Q : Ing) where X € M

is a proper element.

Proof. Obviously, (Q : Ips) € L is prime by Proposition 3.6 of [1]. Further, if
< VX Iy, then o™ < (X @ Ing) < (Q : Ip) for some n € Zy which implies
g(Q:IM)andso\/ IMé(QIM) O

Lemma 3.5. For every proper element N of an L-module M, (/N : Ing)Ip <

rad(N).

Proof. Let P € M be prime such that N < P. Then by Lemma 3.4, (P : Ip;) € L

is prime such that /N : Ipy < (P : Ips) which implies (/N : Inr)Iy < P. Thus

whenever P € M is prime such that N < P we have (/N : Iy;) Iy < P. It follows

that (v N : Ipy) Iy < rad(N). O

Theorem 3.6. Let L be a PG-lattice and M be a faithful multiplication PG-lattice
L-module with In; compact. Then rad(N) = \/aly for every proper element N =
aly of M where a = (N : Ipy) € L.

Proof. Let b = A{p € L | p is a prime element and a < p} = y/a. Then by
Lemma 3.2, bl = ( A p) Iy = A (pInr). Let p € L be prime

P 1S prime;a<p p is prime;a<p
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such that a < p. Also as p € L is a prime element by Lemma 3.3 we have ply; € M
is a prime element. Then N = aly; < pIp and so rad(N) < ply. It follows that

rad(N) < A _ (pIpr) = bIp; and hence rad(N) < +/alp;. But by Lemma
p is prime;a<p
3.5 we have \/alpy < rad(N). Therefore rad(N) = v/alp. O

Following corollary is an outcome of Corollary 2.35 and Theorem 3.6.

Corollary 3.7. Let L be a PG-lattice and M be a faithful multiplication PG-lattice
L-module with Ip; compact. If a proper element N of M is weakly 2-absorbing but
not 2-absorbing, then N < rad(Oy).

Proof. As Oy = (O 2 Ing)Ip = 01y, we have rad(Op) = /01y, by Theorem
3.6. By Corollary 2.35, we have (N : In;)3Ip; = Oy which implies (N : Ij)? <
(Oar = Ing) = 0 and hence (N : I;) < /0. Tt follows that N = (N : Ins)Iy <
VOIy = rad(Oyy). O

Lemma 3.8. In a multiplication lattice L-module M, the meet of each pair of

distinct prime elements of M is a 2-absorbing element.

Proof. Let N and K be any two distinct prime elements of M. Let ab@ < (NAK)
with a@ £ (N A K) and bQ & (N A K) for a,b € L, Q € M. Since M is a
multiplication lattice L-module, @ = ¢Iys for some ¢ € L. Clearly a@Q £ N and
bQ £ N lead us to a contradiction because N is prime and a(bQ) < (N AK) < N
gives alpy < N which implies galpy = a@Q < N. Similarly a@ € K and bQ £ K
lead us to a contradiction. So assume that a@ £ N and bQ £ K. Now a(bQ) <
(NAK) < K,bQ & K, K is prime gives a < (K : Iy) and b(aQ) < (NAK) < N,
a@ £ N, N is prime gives b < (N : Ips). Hence ab < (a Ab) < [(K : Ing) A (N :
Ing)] = [(N A K) : Ipy] which implies (N A K) is a 2-absorbing element of M. O

Now we are in a position to prove rad(N) is a 2-absorbing element of M which

is the main aim of this section.

Theorem 3.9. Let L be a PG-lattice and M be a faithful multiplication PG-lattice
L-module with Iy compact. If a proper element N € M is a 2-absorbing element,
then rad(N) is a 2-absorbing element of M.

Proof. By Corollary 2.13, (N : I/) is a 2-absorbing element of L. By Theorem 3
of [11], two cases arise:

Case 1. v/N : Iy = pis a prime element of L. Then by Lemma 3.3 and Theorem
3.6, we have rad(N) = (/N : Ipy)In; = ply is prime and hence rad(N) is a 2-

absorbing element of M.
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Case 2. /N : Ip; = py Aps where py, po are the only distinct prime elements of L
that are minimal over (N : Ips). Then by Lemma 3.3, p1Iy; and poIps are distinct
prime elements of M and are minimal over N. So by Theorem 3.6 and Lemma 3.2,
we have rad(N) = (v/N : Inf)In = (p1 Ap2)Ias = pilas A poly. Hence by Lemma
3.8, rad(N) is a 2-absorbing element of M. O

Theorem 3.10. Let L be a PG-lattice and M be a faithful multiplication PG-lattice
L-module with Ip; compact. If a proper element N € M is 2-absorbing, then one
of the following statement holds true:

(1) rad(N) = plys is a prime element of M such that p*Ip; < N.

(2) rad(N) = p1In A poInr and (pip2)Ing < N where p1Iy and poIny are the

only distinct prime elements of M that are minimal over N.

Proof. By Corollary 2.13, (N : I;) is a 2-absorbing element of L. Then by
Theorem 3 of [11], we have either /N : Ij; = p is a prime element of L such that
p? < (N : Ip) or /N : Iy = p1 Ape and pipe < (N : Ipr) where p; and po are the
only distinct prime elements of L that are minimal over (N : Ip;). By Theorem
3.6, Lemma 3.3 and Lemma 3.2, it follows that either rad(N) = pIp; is a prime
element of M such that p?Ip; < N or rad(N) = (p1 A p2)Iar = p1ly A pala and
(p1p2)Inm < N where piIy and polj, are the only distinct prime elements of M

that are minimal over N. O

Note that if IV is a 2-absorbing element of a faithful multiplication PG-lattice
L-module M with Ip; compact, then (v/N : Iyf)rad(N) < N < rad(N).
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