MODULES WITH FINITELY MANY SUBMODULES

Gabriel Picavet and Martine Picavet-L'Hermitte

Received: 2 July 2015; Revised: 8 August 2015 Communicated by Sait Halıcıoğlu

ABSTRACT. We characterize ring extensions $R \subset S$ having FCP (FIP), where S is the idealization of some R-module. As a by-product we exhibit characterizations of the modules that have finitely many submodules. Our tools are minimal ring morphisms, while Artinian conditions on rings are ubiquitous.

Mathematics Subject Classification (2010): 13B02, 13E10, 13B30, 13F10 Keywords: Idealization, Δ_0 -extension, SPIR, minimal ring extension, ramified, subintegral extension, FIP, FCP extension, Artinian ring

1. Introduction and notation

All rings R considered are commutative, nonzero and unital; all morphisms of rings are unital. Let $R \subseteq S$ be a (ring) extension. The set of all R-subalgebras of S is denoted by [R, S]. The extension $R \subseteq S$ is said to have FIP (for the "finitely many intermediate algebras property") if [R, S] is finite. A chain of R-subalgebras of S is a set of elements of [R, S] that are pairwise comparable with respect to inclusion. We say that the extension $R \subseteq S$ has FCP (for the "finite chain property") if each chain of R-subalgebras of S is finite. It is clear that each extension that satisfies FIP must also satisfy FCP. If the extension $R \subseteq S$ has FIP (FCP), we will sometimes say that $R \subseteq S$ is an FIP (FCP) extension. Our main tool are the minimal (ring) extensions, a concept introduced by Ferrand-Olivier [10]. Recall that an extension $R \subset S$ is called *minimal* if $[R,S] = \{R,S\}$. The key connection between the above ideas is that if $R \subseteq S$ has FCP, then any maximal (necessarily finite) chain $R = R_0 \subset R_1 \subset \cdots \subset R_{n-1} \subset R_n = S$, of *R*-subalgebras of *S*, with *length* $n < \infty$, results from juxtaposing n minimal extensions $R_i \subset R_{i+1}, 0 \leq i \leq n-1$. The length of [R, S], denoted by $\ell[R, S]$, is the supremum of the lengths of chains of *R*-subalgebras of *S*. In particular, if $\ell[R, S] = r$, for some integer *r*, there exists a maximal chain $R = R_0 \subset R_1 \subset \cdots \subset R_{r-1} \subset R_r = S$ of R-subalgebras of S with length r. Against the general trend, we characterized arbitrary FCP and FIP extensions in [8], a joint paper by D. E. Dobbs and ourselves whereas most of papers on the subject are concerned with extensions of integral domains. Note that

other papers by D. E. Dobbs [6], and D. E. Dobbs with P.-J. Cahen, T. G. Lucas [5], J. Shapiro [9], B. Mullins and ourselves [7] also went against the same trend. It is worth noticing here that FCP extensions of integral domains are (ignoring fields) extensions of overrings as a quick look at [5, Theorems 4.1,4.4] shows because FCP extensions are composites of finitely many minimal extensions.

The seminal work on FIP and FCP by R. Gilmer is settled for *R*-subalgebras of K (also called overrings of R), where R is a domain and K its quotient field. In particular, [12, Theorem 2.14] shows that $R \subseteq S$ has FCP for each overring S of R only if R/C is an Artinian ring, where $C = (R : \overline{R})$ is the conductor of R in its integral closure. This necessary Artinian condition is not surprisingly present in all our results.

This paper is concerned with R-modules M over a ring R and ring extensions $R \subseteq R(+)M$, where R(+)M is the idealization of M. The main results are as follows. Proposition 2.2 shows that $R \subseteq R(+)M$ has FCP if and only if the length of the R-module M is finite, while Proposition 2.4 says that $R \subseteq R(+)M$ has FIP if and only if M has finitely many R-submodules. This leads us to characterize R-modules having finitely many R-submodules in Corollary 2.7. An R-module M, with C := (0 : M), has finitely many submodules if and only if the three following conditions are satisfied: M is finitely generated, R/C has finitely many ideals and M_P is cyclic for any prime ideal P of R containing C such that R/P is infinite. Then Theorem 2.13 gives a structure theorem for these modules that are faithful.

Let R be a ring. As usual, $\operatorname{Spec}(R)$ (resp. $\operatorname{Max}(R)$) denotes the set of all prime ideals (resp. maximal ideals) of R. If I is an ideal of R, we set $\operatorname{V}_R(I) := \{P \in$ $\operatorname{Spec}(R) \mid I \subseteq P\}$. If $R \subseteq S$ is a ring extension and $P \in \operatorname{Spec}(R)$, then S_P is the localization $S_{R\setminus P}$ and (R : S) is the conductor of $R \subseteq S$. If E is an R-module, $\operatorname{L}_R(E)$ is its length. We will shorten finitely generated module to f.g. module. Recall that a *special principal ideal ring* (SPIR) is a principal ideal ring R with a unique nonzero prime ideal M = Rt, such that M is nilpotent of index p > 0. Hence a SPIR is not a field. Each nonzero element of a SPIR is of the form ut^k for some unit u and some *unique* integer k < p. Finally, as usual, \subset denotes proper inclusion and |X| denotes the cardinality of a set X.

There are four types of minimal extension, but we only need ramified minimal extensions.

Theorem 1.1. [10, Théorème 2.2], [16, Theorem 3.3] Let $R \subset T$ be a ring extension and M := (R : T). Then $R \subset T$ is a **ramified** minimal extension if and only if $M \in Max(R)$ and there exists $M' \in Max(T)$ such that ${M'}^2 \subseteq M \subset M'$, [T/M : R/M] = 2 (resp. $L_R(M'/M)$ = 1), and the natural map $R/M \rightarrow T/M'$ is an isomorphism.

Definition 1.2. An integral extension $f : R \hookrightarrow S$ is termed *subintegral* if all its residual extensions are isomorphisms and ^{*a*} f is bijective [18].

A minimal morphism is ramified if and only if it is subintegral.

According to J. A. Huckaba and I. J. Papick [14], an extension $R \subseteq S$ is termed a Δ_0 -extension provided each R-submodule of S containing R is an element of [R, S]. We recall here for later use an unpublished result of the Gilbert's dissertation.

Proposition 1.3. [11, Proposition 4.12] Let $R \subseteq S$ be a ring extension with conductor I and such that S = R + Rt for some $t \in S$. Then the R-modules R/I and S/R are isomorphic. Moreover, each of the R-modules between R and S is a ring (and so there is a bijection from [R, S] to the set of ideals of R/I).

We will use the following result. If R_1, \ldots, R_n are finitely many rings, the ring $R_1 \times \cdots \times R_n$ localized at the prime ideal $P_1 \times R_2 \times \cdots \times R_n$ is isomorphic to $(R_1)_{P_1}$ for $P_1 \in \text{Spec}(R_1)$. This rule works for any prime ideal of the product.

Rings which have finitely many ideals are characterized by D. D. Anderson and S. Chun [1], a result that will be often used.

Proposition 1.4. [1, Corollary 2.4] A commutative ring R has only finitely many ideals if and only if R is a finite direct product of finite local rings, SPIRs, and fields, and these are the localizations of R at its maximal ideals.

Note that if (R, M) is a local Artinian ring, then R is finite if and only if R/M is finite, since $M^n = 0$ for some integer n. If (R, M) is an Artinian local ring, we denote by n(R) the nilpotency index of M.

From now on, a ring R with finitely many ideals is termed an FMIR.

2. Idealizations which are FCP or FIP extensions

Let M be an R-module. We consider the ring extension $R \subseteq R(+)M$, where R(+)M is the idealization of M in R.

Recall that $R(+)M := \{(r,m) \mid (r,m) \in R \times M\}$ is a commutative ring whose operations are defined as follows:

(r,m) + (s,n) = (r+s,m+n) and (r,m)(s,n) = (rs,rn+sm)

Then (1,0) is the unit of R(+)M, and $R \subseteq R(+)M$ is a ring morphism defining R(+)M as an *R*-module, so that we can identify any $r \in R$ with (r,0). The following lemma will be useful for all this section.

Lemma 2.1. Let M be an R-module, then $R \subseteq R(+)M$ is a subintegral extension with conductor (0:M).

Proof. If $(r, m) \in R(+)M$, then $(r, m)^2 = 2r(r, m) - r^2(1, 0)$ shows that R(+)M is integral over R. Moreover, by [13, Theorem 25.1(3)], $\operatorname{Spec}(R(+)M) = \{P(+)M \mid P \in \operatorname{Spec}(R)\}$ implies that $R \subseteq R(+)M$ is subintegral.

Set S := R(+)M and let $x \in (R : S)$. Then, we have $(x, 0)(0, m) = (0, xm) \in R$ for any $m \in M$, so that $x \in (0 : M)$. Conversely, any $x \in (0 : M)$ gives $x(r,m) = (xr,0) \in R$ for any $(r,m) \in R(+)M$, which implies $x \in (R : S)$. So, we get (R : S) = (0 : M).

Proposition 2.2. Let M be an R-module, then $R \subseteq R(+)M$ has FCP if and only if $L_R(M) < \infty$ and, if and only if R/(0:M) is Artinian and M is f.g. over R.

Proof. Set S := R(+)M. Since $R \subseteq S$ is integral, $R \subseteq S$ has FCP if and only if $L_R(S/R) < \infty$ by [8, Theorem 4.2]. By the same reference, this condition is equivalent to $R/(0:M) \cong R/(R:S)$ is Artinian and $R \subseteq S$ is module finite. Finally, note that $S/R \cong M$; and that S is f.g over R if (and only if) S/R is f.g. over R.

For a submodule N of an R-module M, we denote by $[\![N, M]\!]$ the set of all submodules of M containing N and set $[\![M]\!] := [\![0, M]\!]$. Recall that M is called *uniserial* if $[\![M]\!]$ is linearly ordered.

Proposition 2.3. (Dobbs) Let M be an R-module, then $R \subseteq R(+)M$ is a Δ_0 -extension because $[R, R(+)M] = \{R(+)N \mid N \in \llbracket M \rrbracket\}$.

Proof. The equality $[R, R(+)M] = \{R(+)N \mid N \in \llbracket M \rrbracket\}$ was proved by D. E. Dobbs in [6, Remark 2.9] using the bijection $\llbracket M \rrbracket \to [R, R(+)M], N \mapsto R(+)N$. \Box

We say that an *R*-module *M* is an FMS module if *M* has finitely many *R*-submodules. An FMS *R*-module *M* is Noetherian and Artinian and R/(0:M) is a Noetherian and Artinian ring. We denote by $\nu_R(M)$ (or $\nu(M)$) the number of submodules of an FMS *R*-module *M*. Hence, $\nu(R)$ is the number of ideals of an FMIR *R*.

Proposition 2.4. Let M be an R-module, then $R \subseteq R(+)M$ has FIP if and only if M is an FMS module. In this case, $|[R, R(+)M]| = \nu(M)$.

Proof. Set S := R(+)M. By Proposition 2.3, it follows that $R \subseteq S$ has FIP if and only if M is an FMS module. In this case, $|[R, R(+)M]| = \nu(M)$.

We now intend to characterize FMS modules by using the previous proposition.

Theorem 2.5. An *R*-module *M* over a quasi-local ring (R, P) is an FMS module if and only if the next conditions (1) and (2) hold with C := (0 : M):

- (1) M is finitely generated, and cyclic when $|R/P| = \infty$.
- (2) R/C is an FMIR.

If M is an FMS R-module, (R, P) is quasi-local, $|R/P| = \infty$, and M = Refor some $e \in M$, then M is uniserial, $[M] = \{P^j e \mid j = 0, ..., m\}$, with $m := n(R/C) = \nu(R/C) - 1$ and |[R, R(+)M]| = m + 1.

Assume in addition that P = (0: M) and $|R/P| = \infty$. Then $R \subseteq R(+)M$ has FIP if and only if M is simple, if and only if $R \subseteq R(+)M$ is minimal ramified.

Proof. Note that R-submodules and R/C-submodules of M coincide.

Assume that M is an FMS module. We first prove (1). Then Proposition 2.4 shows that $R \subseteq R(+)M$ has FIP, whence has FCP. We deduce from Proposition 2.2 that M is f.g. and (R/C, P/C) is local Artinian. Assume that $|R/P| = \infty$. Denote by Re_1, \ldots, Re_n , with $e_i \in M$, the finitely many cyclic submodules of M. Then for any $m \in M$, there is some i such that $Rm = Re_i$, so that $M = \bigcup_{i=1}^n Re_i$. We can then suppose that $M = \bigcup_{i=1}^p Rf_i$, where $f_i \in \{e_1, \ldots, e_n\}$ and the Rf_i are incomparable. If p = 1, then M is cyclic. The case p = 2 cannot happen because a group cannot be the union of two proper incomparable subgroups. We now show that p > 2 leads to a contradiction. Let \mathcal{F} be a(n infinite) set of representatives of the non-zero elements of R/P. Then, each $\alpha \in \mathcal{F}$ is a unit of R. For each $\alpha \in \mathcal{F}$, set $m_\alpha := f_1 + \alpha f_2$. Obviously $m_\alpha \notin Rf_1 \cup Rf_2$. It follows that $m_\alpha \in Rf_i$, for some $i \neq 1, 2$. Let $\alpha, \beta \in \mathcal{F}, \alpha \neq \beta$. We claim that m_α and m_β are not in the same Rf_i . Deny, then $m_\alpha - m_\beta = (\alpha - \beta)f_2 \in Rf_i$ and $\alpha - \beta$ is a unit implies $f_2 \in Rf_i$, a contradiction. Therefore, M is cyclic and (1) is proved.

To prove (2), we consider two cases. If $|R/P| < \infty$, then $|R/C| < \infty$ (see the remark after Proposition 1.4), so that R/C is an FMIR.

Assume that $|R/P| = \infty$. It follows from (1) that M = Re for some $e \in M$, so that C = (0 : e). Set R' := R/C, P' := P/C and $I_N := (N :_R e)$ for $N \in \llbracket M \rrbracket$. Then, $I_N \in \llbracket C, R \rrbracket$ and is such that $N = I_N e$. Conversely, $I \in \llbracket C, R \rrbracket$ is such that $I = I_{Ie}$ with $Ie \in \llbracket M \rrbracket$, since $C \subseteq I$. We define a preserving order bijective map $\psi : \llbracket C, R \rrbracket \to \llbracket M \rrbracket$ by $I \mapsto Ie$. It follows that R' is an FMIR (either a field or a SPIR) and $\nu(M) = \nu(R/C)$. Then, (2) is proved.

Now, assume that (1) and (2) hold. There is no harm to suppose that C = 0and that R is an FMIR, so that (R, P) is local Artinian. If $|R/P| < \infty$, we get that $|M| < \infty$ and then M is an FMS module. Assume that $|R/P| = \infty$, and that M = Re is cyclic. The assertion is clear if M = 0. Assume $M \neq 0$. If P = 0, then M is a one-dimensional vector space over the field R, so that $\nu(M) = 2 = \nu(R)$. If $P \neq 0$, consider S := R(+)M = R + Rf, where f = (0, e). From Proposition 1.3 we deduce that $|\llbracket R, S \rrbracket| < \infty$, since R is an FMIR and also that there are bijective maps $\llbracket R \rrbracket \to \llbracket R, S \rrbracket$ and $\llbracket R, S \rrbracket \to \llbracket M \rrbracket$. In fact $\llbracket R, S \rrbracket = \{R(+)N \mid N \in \llbracket M \rrbracket\}$. By Proposition 2.3, M is an FMS module.

Assume that M is an FMS R-module, (R, P) is quasi-local, $|R/P| = \infty$, and M = Re for some $e \in M$. If R' is a SPIR, there is some $x \in P$, whose class $\bar{x} \in R'$ is such that $P' = R'\bar{x}$, $\bar{x}^m = 0$ and $\bar{x}^{m-1} \neq 0$, for m := n(R') > 1. It follows that $[\![C, R]\!] = \{P^j + C \mid j \in \{0, \ldots, m\}\}$ and $[\![M]\!] = \{P^j e \mid j \in \{0, \ldots, m\}\}$ (to see this, use the above bijection ψ). If R' is a field, then P = C gives m = 1. In both cases, M is uniserial, $m := n(R/C) = \nu(R/C) - 1$ and |[R, R(+)M]| = m + 1.

To end, assume that (R, P) is quasi-local with $|R/P| = \infty$. Let M be a simple Rmodule, with P = (0 : M). Then $[R, R(+)M] = \{R, R(+)M\}$ by Proposition 2.3. It follows that $R \subseteq R(+)M$ has FIP and is a minimal ramified extension since minimal subintegral. The converse is obvious.

Example 2.6. We give this example due to the referee showing that the condition $|R/P| = \infty$ in Theorem 2.5 is necessary in order to have M a simple module when M is an FMS module. Let R be a finite field, and let $M := R \bigoplus R$. Then, $R \subseteq R(+)M$ has FIP since M has only finitely many submodules and $(0:M) = \{0\} = P$, but M is not a simple R-module.

Corollary 2.7. Let M be an R-module and C := (0 : M). Then M is an FMS module if and only if the two following conditions hold:

M is f.g. and M_P is cyclic over R_P for all P ∈ V(C) such that |R/P| = ∞.
R/C is an FMIR.

In case (1), (2) both hold, set $\{P_1, \ldots, P_n\} = V(C)$ and suppose that each $|R/P_i| = \infty$. Then, for each *i*, there exist some $e_i \in M$, such that $M_{P_i} = R_{P_i}(e_i/1)$ and, *M* is generated by the e_1, \ldots, e_n .

Proof. If M is an FMS module, Proposition 2.4 shows that $R \subseteq R(+)M$ has FIP, and then has FCP. Hence, M is f.g. and R/C is Artinian by Proposition 2.2. Let $P \in V(C)$, then M_P is an FMS R_P -module, so that we can use Theorem 2.5. It follows that $R_P/C_P \cong (R/C)_P$ is an FMIR, and so is R/C, since $|V(C)| < \infty$, which gives (2). Moreover, for $P \in V(C)$ with $|R/P| = \infty$, Theorem 2.5 gives that M_P is cyclic and (1) holds.

Conversely, if (1) and (2) hold, they also hold for each M_P , where $P \in V(C)$. Theorem 2.5 gives that M_P is an FMS module for any $P \in V(C)$. To show that M is an FMS module, there is no harm to suppose that C = 0, so that R is Artinian, with $Max(R) = \{P_1, \ldots, P_n\}$. Now if N is a submodule of M, it is well known that $N = \bigcap_{i=1}^n \varphi_i^{-1}(N_{P_i})$, where $\varphi_i : M \to M_{P_i}$ is the natural map and thus M is an FMS module.

Now, assume that (1) and (2) hold and that $|R/P| = \infty$ for any $P \in V(C) = \{P_1, \ldots, P_n\}$. For each $j = 1, \ldots, n$, there is some $e_j \in M$ such that $M_{P_j} = R_{P_j}(e_j/1)$. Set $M' := Re_1 + \cdots + Re_n$. It is easy to show that $M'_{P_j} = M_{P_j}$ for $j = 1, \ldots, n$. Observe that V(C) = Supp(M), because M is f.g. ([2, Proposition 17, ch. II, p.133]). Now let $P \in \text{Max}(R) \setminus V(C)$. We get that $M'_P \subseteq M_P = 0$ and then M' = M.

Let N be a submodule of an R-module M. By Proposition 2.3, R(+)N is an R-subalgebra of R(+)M and then R(+)M is an (R(+)N)-algebra. Even if $R \subseteq R(+)M$ does not have FCP (resp. FIP), it may be that $R(+)N \subseteq R(+)M$ has FCP (resp. FIP).

Any (R(+)N)-subalgebra of R(+)M is an R-subalgebra of R(+)M, and then is of the form R(+)N', for some $N' \in [\![N, M]\!]$ since $R(+)N \subseteq R(+)N'$. Conversely, for any R-subalgebra N' of M containing N, R(+)N' is an (R(+)N)-subalgebra of R(+)M. In particular, $R(+)N \subseteq R(+)M$ is a minimal extension if and only if M/N is a simple module.

Proposition 2.8. Let N be a submodule of an R-module M. Then:

- (1) $R(+)N \subseteq R(+)M$ is a Δ_0 -extension.
- (2) $R(+)N \subseteq R(+)M$ has FCP if and only if $L_R(M/N) < \infty$. In this case, $\ell[R(+)N, R(+)M] = L_R(M/N).$
- (3) $R(+)N \subseteq R(+)M$ has FIP if and only if M/N is an FMS module. In this case, $|[R(+)N, R(+)M]| = \nu(M/N)$.

Proof. (1) By Proposition 2.3, $R \subseteq R(+)M$ is a Δ_0 -extension. Since an (R(+)N)-submodule S of R(+)M containing R is also an R-submodule of R(+)M, we get that S is a ring, so that $R(+)N \subseteq R(+)M$ is a Δ_0 -extension.

(2) By Lemma 2.1, $R \subseteq R(+)M$ is integral and so is $R(+)N \subseteq R(+)M$. Therefore, the following conditions are equivalent:

- $R(+)N \subseteq R(+)M$ has FCP

- there exists a finite chain of minimal finite extensions going from R(+)N to R(+)M ([8, Theorem 4.2(2)])

- there is a finite maximal chain of *R*-submodules of *M* going from *N* to *M* - $L_R(M/N) < \infty$. In this case, $\ell[R(+)N, R(+)M] = L_R(M/N)$, the supremum of the lengths of chains of submodules of M containing N.

(3) The following conditions are equivalent:

- $R(+)N \subseteq R(+)M$ has FIP

- there are finitely many (R(+)N)-subalgebras of R(+)M
- there are finitely many R-subalgebras of R(+)M containing R(+)N
- there are finitely many $R\mbox{-submodules}$ of M containing N
- M/N is an FMS module.

In this case, |[R(+)N, R(+)M]| is also the number of *R*-submodules of *M* containing *N*, which is also $\nu(M/N)$.

We consider now the special case where M is an ideal I of R.

Proposition 2.9. Let I be an ideal of a ring R, S := R(+)R and T := R(+)I. Then:

- (1) $R \subseteq S$ has FCP if and only if $L_R(R) < \infty$ if and only if R is Artinian. In this case, $\ell[R, R(+)R] = L_R(R)$.
- (2) $R \subseteq T$ has FCP if and only if $L_R(I) < \infty$ if and only if I is finitely generated and R/(0:I) is Artinian. In this case, $\ell[R, R(+)I] = L_R(I)$.
- (3) $R \subseteq S$ has FIP if and only if R is an FMIR. In this case, $|[R, R(+)R]| = \nu(R)$.
- (4) $R \subseteq T$ has FIP if and only if $\llbracket I \rrbracket$ is finite. In this case, $|[R, R(+)I]| = \nu(I)$.

Proof. Propositions 2.2 and 2.8 with M equal to R or I give most of the results because taking N = 0 gives $R(+)0 \cong R$.

Proposition 2.10. Any f.g. module over a ring R is an FMS module if and only if R is a finite ring.

Proof. If R is finite, then $\llbracket M \rrbracket$ is finite for any f.g. R-module M. Conversely, let R be a ring such that any f.g. R-module is an FMS module. Set $S := R[X,Y]/(X^2, XY, Y^2) = R[x,y]$, where x and y are respectively the classes of X and Y in S. Then S is an R-module with basis $\{1, x, y\}$. For each $\alpha \in R$, set $S_{\alpha} := R(x + \alpha y)$, which is an R-submodule of S. If $\alpha, \beta \in R$, $\alpha \neq \beta$, then $S_{\alpha} \neq S_{\beta}$. Therefore, $|R| = \infty$ gives a contradiction and R is a finite ring.

Remark 2.11. If N is a submodule of an R-module M, Proposition 2.2 shows that $R \subseteq R(+)M$ has FCP if and only if $R \subseteq R(+)N$ and $R \subseteq R(+)(M/N)$ have FCP. This property does not hold for FIP. It is enough to consider a 2-dimensional vector space M over an infinite field, and a 1-dimensional subspace N because N and M/N are FMS modules, while M is not. **Example 2.12.** In the following examples, we mix properties of this section and [17, Section 3].

(1) Let k be a field, n > 1 an integer, E an n-dimensional k-vector space with basis $\{e_1,\ldots,e_n\}$ and set $R := k^n$. We can equip E with the structure of an Rmodule by the following law: for $(a_1, \ldots, a_n) \in R$ and $x = \sum_{i=1}^n x_i e_i, x_i \in k$, we set $(a_1, \ldots, a_n)x := \sum_{i=1}^n a_i x_i e_i$. Then E is generated over R by $\{e_1, \ldots, e_n\}$ and is faithful, while R is an FMIR. Finally, the prime (maximal) ideals of R are the ideals $P_i := \{(a_1, \ldots, a_n) \in R \mid a_i = 0\}$ for $i = 1, \ldots, n$, so that $R_{P_i} \cong k$. The canonical base $\{\varepsilon_1, \ldots, \varepsilon_n\}$ of R over k is such that each $\varepsilon_i \notin P_i$. We have $\varepsilon_i e_j = 0$ for each $i, j \in \{1, \ldots, n\}$ such that $i \neq j$, so that $e_j/1 = 0$ in R_{P_i} for $j \neq i$. It follows that $E_{P_i} = \sum_{j=1}^n R_{P_i}(e_j/1) = R_{P_i}(e_i/1)$ is cyclic over $R_{P_i} \cong k$. Then, whatever |k| may be, Corollary 2.7 gives that E is an FMS R-module. But, as soon as $|k| = \infty$ and $n \ge 2$, E is infinite. Since $E_{P_i} \cong k(e_i/1)$ is one-dimensional over k, E_{P_i} has only two R_{P_i} -submodules. Set $F := \prod_{i=1}^n E_{P_i}$ and consider the canonical injective morphism of R-modules $\varphi: E \to F$ and the projections $\varphi_i: F \to E_{P_i}$. Any *R*-submodule *N* of *F* is of the form $N' := \prod_{i=1}^{n} N_i$, where $N_i = \varphi_i(N)$, because $N \subseteq N' \subseteq \sum_{i=1}^{n} \varepsilon_i N$. Now φ is a k-isomorphism because $\text{Dim}_k(E) = \text{Dim}_k(F)$, whence an *R*-isomorphism. It follows that $\nu_R(E) = 2^n$.

By Proposition 2.4, $k^n \subseteq k^n(+)E$ has FIP, and $k \subseteq k^n$ has FIP by [4, Proposition 3, p. 29] (another proof follows from [7, Theorem III.5]). But, always in view of Proposition 2.4, if $|k| = \infty$ and $n \ge 2$, then $k \subseteq k(+)E$ has not FIP, so that $k \subseteq k^n(+)E$ has not FIP.

(1') We keep the context of (1). Set $\mathcal{R} := \prod_{i=1}^{n} (k/(0:e_i))$. Since $(0:e_i) = 0$ for each *i*, we get $\mathcal{R} = k^n$. Then $k \subset \mathcal{R}$ has FIP while $k \subseteq k(+)E$ has not FIP.

(2) Let k be an infinite field, n > 1 an integer and E an n-dimensional vector space over k. Let $u \in \text{End}(E)$ with minimal polynomial X^n . Then, $u^n = 0$ and $u^{n-1}(e_1) \neq 0$ for some $e_1 \in E$. If $e_i := u^{i-1}(e_1)$ for any $i \in \{1, \ldots, n\}$, an easy induction shows that $\{e_1, \ldots, e_n\}$ is a basis of E over k. Set R := k[u], then E is a faithful R-module with scalar multiplication defined by $P(u) \cdot x := P(u)(x)$, for $P(X) \in k[X]$ and $x \in E$. Since $R \cong k[X]/(X^n)$ is a SPIR and $E = R \cdot e_1$ because $e_i = u^{i-1} \cdot e_1$ for each i, then by Theorem 2.5, E is an FMS R-module and $R \subseteq R(+)E$ has FIP by Proposition 2.4.

(2') Let R be a ring, n > 1 an integer and I_1, \ldots, I_n ideals of R distinct from R, but not necessarily distinct, such that $\bigcap_{j=1}^n I_j = 0$. Such a family $\{I_1, \ldots, I_n\}$ of ideals of R is called a *separating family*, a reference to Algebraic Geometry where a finite family of morphisms $\{f_j : M \to M_j \mid j = 1, \ldots, n\}$ of R-modules is

called separating if $\bigcap_{j=1}^{n} \ker f_j = 0$. In [17, Section 3], we study the ring extension $R \subseteq \prod_{j=1}^{n} (R/I_j) =: \mathcal{R}$ associated to a separating family.

We keep the context of (2). Since $u^n = 0$, $u^{n-1}(e_1) \neq 0$ and $e_j = u^{j-1}(e_1)$ for any $j \in \{1, \ldots, n\}$, a short calculation gives $I_j := (0 :_R e_j) = Ru^{n-j+1}$. Then, $\bigcap_{j=1}^n I_j = 0$ because $I_1 = Ru^n = 0$ and $\{I_1, \ldots, I_n\}$ is a separating family such that $I_j \subset I_{j+1}$ for each $j \in \{1, \ldots, n-1\}$. Moreover, $R/I_j = R/Ru^{n-j+1} \cong k[X]/(X^{n-j+1})$. Set M := Ru, $\mathcal{R} := \prod_{i=1}^n (R/(0 : e_i))$ and $J_j := \bigcap_{k=1, k\neq j}^n I_k$. Then, $J_1 = I_2 \cong (X^{n-1})/(X^n)$ and $J_j = 0$ for each j > 1. Apply [17, Corollary 3.10]. We have $\sum_{j=1}^n J_j = I_2$, giving that $R/\sum_{j=1}^n J_j = R/I_2 \cong k[X]/(X^{n-1})$ is a SPIR and $|R/M| = \infty$, because $R/M \cong k$. Since $I_1 + J_1 = I_2 \cong (X^{n-1})/(X^n)$ and $I_j + J_j = I_j \cong (X^{n-j+1})/(X^n)$ for each j > 1, it is enough to take n > 3 to get that $R \subset \mathcal{R}$ has not FIP.

(3) Let $M = \sum_{i=1}^{n} Re_i$ be a faithful Artinian *R*-module and set $\mathcal{R} := \prod_{i=1}^{n} (R/(0 : e_i))$. Since *M* is faithful, we have (0 : M) = 0. Then, *R* is an Artinian ring in view of [15, Theorem 2, page 180] because *M* is a finitely generated Artinian module, and $R \subseteq R(+)M$ has FCP by Proposition 2.2. Since $(0 : M) = \bigcap_{i=1}^{n} (0 : e_i) = 0$, the family $\{(0 : e_i)\}_{i=1,...,n}$ is separating and $R \subseteq \mathcal{R}$ has FCP by [17, Proposition 3.1].

Examples (1') and (2') show that for a finitely generated R-module $M = \sum_{i=1}^{n} Re_i$ such that $\{(0:e_1),\ldots,(0:e_n)\}$ is a separating family, we may have only one of the two extensions $R \subseteq R(+)M$ and $R \subseteq \prod_{i=1}^{n} (R/(0:e_i))$ which has FIP, and not the other one.

(4) Let k be an infinite field, n > 1 an integer and E an n-dimensional vector space over k. Let $u \in End(E)$ with minimal polynomial $\pi_u(X) := \prod_{i=1}^s P_i^{\alpha_i}(X)$, with each $P_i(X) \in k[X]$ of degree 1, $P_i(X) \neq P_j(X)$ for $i \neq j$, and such that $n = \sum_{i=1}^s \alpha_i$. For each i, set $E_i := \ker(P_i^{\alpha_i}(u))$. The "Lemme des noyaux" [4, Proposition 3, ch. VII, p. 30] gives that $E = \bigoplus_{i=1}^s E_i$ (*), with $\alpha_i = \dim_k(E_i)$. If R := k[u], then E is a faithful R-module for the scalar multiplication defined by $P(u) \cdot x := P(u)(x)$, for $P(X) \in k[X]$ and $x \in E$. Since $R \cong k[X]/(\pi_u(X))$ is an Artinian FMIR, to conclude that E is an FMS module over R by applying Corollary 2.7, we need only to show that E_M is cyclic for each $M \in Max(R) =$ $\{M_1, \ldots, M_s\}$ where $M_i := P_i(u)R$. We next prove that $E_{M_i} \cong (E_i)_{M_i}$ as R_{M_i} modules. Let $x \in E_j$ for some $j \neq i$, then $P_j^{\alpha_j}(u)(x) = 0$ and $P_j^{\alpha_j}(u)$ is a unit in R_{M_i} since $P_j(X) \notin (P_i(X))$. It follows that x/1 = 0 in E_{M_i} , so that each $(E_i)_{M_i}$ by (*). Now, we are reduced to (2) with $P_i^{\alpha_i}(u) = 0$ in $(E_i)_{M_i}$, so that each $(E_i)_{M_i}$ is cyclic over R_{M_i} and Corollary 2.7 holds. **Theorem 2.13.** A faithful *R*-module *M* is an *FMS* module if and only if the two following conditions are satisfied:

- (1) R is an FMIR which is a direct product of two rings $R' \times R''$, where $|R'| < \infty$ and $|R''/P| = \infty$ for any $P \in \text{Spec}(R'')$.
- (2) M is the direct product of a finite R'-module and a rank one projective R"-module.

Proof. If M is an FMS module, R is an FMIR and M is f.g. over R by Corollary 2.7. Then by Proposition 1.4, $R = \prod_{i=1}^{n} R_i$, a product of local rings that are either finite, or a SPIR, or a field. Let R' be the ring product of the R_i that are finite and R''the product of the others. Then $|R'| < \infty$ and a SPIR factor (R_i, P_i) of R'' is such that $|R_i/P_i| = \infty$ because R_i is local Artinian. When R_i is an infinite field, take $P_i = 0$. So, (1) holds with $R = R' \times R''$.

Set $M' := R'M = \{(r', 0)m \mid r' \in R', m \in M\}$ and $M'' := R''M = \{(0, r'')m \mid r'' \in R'', m \in M\}$. By [3, Remarque 3, ch.II, p.32], we get $M = M' \bigoplus M'' \cong M' \times M''$, R'M'' = R''M' = 0 and $(0:_{R''}M'') = 0$. Clearly, $|M'| < \infty$ since M' is f.g. over the finite ring R'. In the same way, M'' is f.g. over R''. Now an R''-submodule N of M'' gives an R-submodule of M by the one-to-one function $N \mapsto M' \times N$. It follows that M'' is an FMS R''-module. Therefore, we can assume that R is an FMIR with $|R/P| = \infty$ for each $P \in \operatorname{Spec}(R) = \{P_1, \ldots, P_n\}$. By Corollary 2.7, M is generated over R by some $e_1, \ldots, e_n \in M$ such that $M_{P_i} = R_{P_i}(e_i/1)$ for each i. Actually, $e_i/1$ is free over R_{P_i} : suppose that $(a/t)(e_i/1) = 0$ for $a \in R$ and $t \in R \setminus P_i$. There is some $s_i \in R \setminus P_i$ such that $s_i a e_i = 0$. Moreover, $e_j/1 \in M_{P_i} = R_{P_i}(e_i/1)$ for $j \neq i$ gives that $e_j/1 = (b_j/t_j)(e_i/1)$, for some $b_j \in R$, $t_j \in R \setminus P_i$ for each $j \neq i$. This allows us to pick up some $s_j \in R \setminus P_i$ such that $s_j a e_j = 0$. Setting $s := s_1 \cdots s_n$, we get $sa e_k = 0$ for each $k \in \{1, \ldots, n\}$. Since M is faithful, sa = 0, so that a/t = 0. By [2, Théorème 2, ch.II, p.141], M is a rank one projective R-module and (2) follows.

Conversely, assume that (1) and (2) hold and keep the above notation with $R = R' \times R'', |R'| < \infty, |R''/P| = \infty$ for any $P \in \operatorname{Spec}(R'')$ and $M = M' \times M''$, where M' is a finite R'-module and M'' is a rank one projective R''-module. Then, from [2, Théorème 2, ch. II, p. 141], we deduce that M'' is f.g. over R'', with M''_P cyclic for each maximal ideal P of R''. Since M' is also f.g. over R' because finite, M is f.g. over R. For each $N \in \operatorname{Max}(R)$ such that $|R/N| = \infty$, there exists $P \in \operatorname{Max}(R'')$ such that $N = R' \times P$ and in this case $M_N \cong M''_P$ as R_N -modules. Indeed, consider the R_N -linear isomorphism $u : M_N \cong (M' \times M'')_{R' \times P} \to M''_P$ defined by u((m', m'')/(s, t)) = m''/t, using the ring isomorphism $R_N \cong R''_P$. It

follows that M_N is cyclic over R_N . By Corollary 2.7, we can conclude that M is an FMS module.

Remark 2.14. (1) For the proof of Theorem 2.13, it was convenient to suppose that M is a faithful R-module. However, one should note that Theorem 2.13 can be used to characterize when an arbitrary (not necessarily faithful) module is FMS. In fact, an R-module M is FMS (as an R-module) if and only if M is an FMS module over the ring R/(0:M).

(2) The rings R' and R'' in the statement of Theorem 2.13 are necessarily each FMIRs. In fact, if A and B are rings, then $A \times B$ is an FMIR if and only if both A and B are FMIRs.

Acknowledgments. The authors wish to thank the anonymous referees for making valuable suggestions for the improvement of this paper.

References

- D. D. Anderson and S. Chun, Commutative rings with finitely generated monoids of fractional ideals, J. Algebra, 320(7) (2008), 3006–3021.
- [2] N. Bourbaki, Algèbre Commutative, Chs. 1 and 2, Hermann, Paris, 1961.
- [3] N. Bourbaki, Algèbre, Chs. 1–3, Hermann, Paris, 1970.
- [4] N. Bourbaki, Algèbre, Chs. 4–7, Masson, Paris, 1981.
- [5] P.-J. Cahen, D. E. Dobbs and T. G. Lucas, *Characterizing minimal ring ex*tensions, Rocky Mountain J. Math., 41(4) (2011), 1081–1125.
- [6] D. E. Dobbs, Every commutative ring has a minimal ring extension, Comm. Algebra, 34(10) (2006), 3875–3881.
- [7] D. E. Dobbs, B. Mullins, G. Picavet and M. Picavet-L'Hermitte, On the FIP property for extensions of commutative rings, Comm. Algebra, 33(9) (2005), 3091–3119.
- [8] D. E. Dobbs, G. Picavet and M. Picavet-L'Hermitte, Characterizing the ring extensions that satisfy FIP or FCP, J. Algebra, 371 (2012), 391–429.
- D. E. Dobbs and J. Shapiro, A classification of the minimal ring extensions of certain commutative rings, J. Algebra, 308 (2007), 800–821.
- [10] D. Ferrand and J.-P. Olivier, Homomorphisms minimaux d'anneaux, J. Algebra, 16 (1970), 461–471.
- [11] M. S. Gilbert, Extensions of Commutative Rings with Linearly Ordered Intermediate Rings, Ph. D. Dissertation, University of Tennessee, Knoxville, 1996.
- [12] R. Gilmer, Some finiteness conditions on the set of overrings of an integral domain, Proc. Amer. Math. Soc., 131(8) (2003), 2337–2346.

- [13] J. A. Huckaba, Commutative Rings with Zero Divisors, Monographs and Textbooks in Pure and Applied Mathematics, 117, Marcel Dekker, Inc., New York, 1988.
- [14] J. A. Huckaba and I. J. Papick, A note on a class of extensions, Rend. Circ. Mat. Palermo, 38 (1989), 430–436.
- [15] D. G. Northcott, Lessons on Rings, Modules and Multiplicities, Cambridge University Press, London, 1968.
- [16] G. Picavet and M. Picavet-L'Hermitte, About minimal morphisms, Multiplicative Ideal Theory in Commutative Algebra, Springer-Verlag, New York, 2006, 369–386.
- [17] G. Picavet and M. Picavet-L'Hermitte, *FIP and FCP products of ring morphisms*, submitted.
- [18] R. G. Swan, On seminormality, J. Algebra, 67 (1980), 210-229.

Gabriel Picavet and Martine Picavet-L'Hermitte

Université Blaise Pascal

Laboratoire de Mathématiques UMR 6620 CNRS

Les Cézeaux, 24 Avenue des Landais, BP 80026

63177 Aubière Cedex, France

e-mails: Gabriel.Picavet@math.univ-bpclermont.fr, picavet.gm@wanadoo.fr (G. Picavet)

Martine.Picavet@math.univ-bpclermont.fr, picavet.gm@wanadoo.fr (M. Picavet-L'Hermitte)