
International Electronic Journal of Algebra

Volume 19 (2016) 132-144

ON INTEGRALITY AND GOING-DOWN INSIDE THE FIXED

RING OF A MONOID RING

David E. Dobbs and Jay Shapiro

Received: 6 July 2015; Revised 12 September 2015

Communicated by Sarah Glaz

Abstract. An example is given of a finitely generated abelian torsion-free

monoid S on which the group G with two elements acts via semigroup auto-

morphisms such that for any field K, when the given action is extended so

that G acts on the monoid ring K[X;S] via ring automorphisms that fix K

elementwise, the ring extension K[X;SG] ⊆ (K[X;S])G is not integral and

does not satisfy the going-down property.

Mathematics Subject Classification (2010): 13A50, 13B21, 13A15

Keywords: Commutative ring, ring extension, group action, fixed ring, in-

tegrality, going-down, semigroup, fixed semigroup, semigroup ring, INC, LO,

factor semigroup, maximal ideal, Krull dimension, orbit, locally finite

1. Introduction

All rings considered below are commutative with 1; all semigroups are abelian

and written additively. All actions of a group on a ring (resp., on a semigroup)

are assumed to be via ring automorphisms (resp., semigroup automorphisms). If a

group G acts on a ring A (resp., on a semigroup S), then AG := {a ∈ A | g · a = a

for all g ∈ G} (resp., SG := {s ∈ S | g · s = s for all g ∈ G}), the fixed ring (resp.,

fixed semigroup) of the given action. Recall (cf. [8]) that an action of a group G

(on either a semigroup S or a ring A) is said to be locally finite if each G-orbit (of S

or A, as the case may be) is finite. Following [9, page 28], we let GD, INC, and LO

respectively denote the properties of going-down, incomparability, and lying-over

for ring extensions.

In this paragraph and the subsequent two paragraphs, we suppose that a group

G acts on a ring A. A well known result (cf. [1, Exercise 12, page 68]) states that if

G is finite, then the ring extension AG ⊆ A is integral. It was noted by Northcott

[10] that the usual proof of this result actually yields the same conclusion if one

assumes only that the action of G on A is locally finite. (Northcott’s terminology

for “locally finite” was “of finite character.”) Then, still assuming that the action of
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G on A is locally finite, Northcott went on to show in [10, Theorem 6] that AG ⊆ A
satisfies GD; and then [10, Theorem 8] established the more general fact that (if

the action is locally finite, then) the canonical map Spec(R) → Spec(RG) is open

in the Zariski topology.

Unaware of the existence of [10], the authors later gave a ring-theoretic proof in

[2, Corollary 2.16] that if G is finite, then AG ⊆ A satisfies universally GD (in the

sense that AG[{Xi}] ⊆ A[{Xi}] satisfies GD for each finite set {Xi} of algebraically

independent indeterminates over A), and in particular, AG ⊆ A satisfies GD. Later,

we gave a ring-theoretic proof in [3, Theorem 2.2] that if G is locally finite (on A),

then AG ⊆ A is an integral extension that satisfies universally GD. Nevertheless, it

is not always the case that AG ⊆ A satisfies GD. Indeed, in [4, Theorem 3.5], we

presented an example where AG ⊆ A does not satisfy GD, with G (∼= Z) necessarily

not being locally finite on A.

Much of [3] concerned the relationship between AG ⊆ A being an integral exten-

sion and G being locally finite on A. In particular, [3, Proposition 2.6] showed that

if A is a (commutative integral) domain, then AG ⊆ A is integral (if and) only if G

is locally finite on A. However, the “only if” assertion can fail if A is not a domain,

as [3, Example 2.5] gave a Boolean ring A and a denumerably generated group G

acting on A such that AG ⊆ A is integral while G is not locally finite on A. On the

other hand, it is not always the case that AG ⊆ A is integral. Indeed, two different

constructions for examples were given in [3, Example 2.14] where AG ⊆ A fails to

satisfy the INC property (which, of course, does hold for all integral extensions).

In the same vein, [3, Example 2.16] gave an example where A is a Noetherian do-

main (such as a polynomial ring in finitely many variables over a PID), G ∼= Z and

AG ⊆ A fails to satisfy the LO property (which, of course, does hold for all integral

extensions). In view of the above background, it seems reasonable to suspect that

if a finite group G acts on a ring A that is “somewhat like” the polynomial ring in

finitely many variables over a field, then any ring extension that is “closely related

to” AG ⊆ A should be integral and satisfy GD.

How can one convert the above suspicion into a conjecture? We begin with the

group G with only two elements and an arbitrary field K. The ring A is taken to

be the semigroup ring K[X;S] over a suitably chosen finitely generated (abelian)

torsion-free cancellative monoid S that G acts on. (The “torsion-free cancellative”

condition ensures that the semigroup ring K[X;S] is a domain [7, Theorem 8.1].

As recalled below, the action of G on S extends to an action of G on K[X;S] that

fixes K elementwise.) For the ring extension that is “closely related to” AG ⊆ A

(that is, to (K[X;S])G ⊆ K[X;S]), we take K[X;SG] ⊆ (K[X;S])G. The purpose
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of this article is to refute the above suspicion/conjecture by constructing a suitable

S and an action of G on that S so that K[X;SG] ⊆ (K[X;S])G is not integral and

does not satisfy GD.

We can proceed more generally, at least at first. Let R be a ring, let G be a

group, and let S be a semigroup that G acts on (via semigroup automorphisms).

Then this action can be extended (uniquely) to an action of G on the semigroup ring

A := R[X;S] (via ring automorphisms) as follows: g ·
∑n
i=1 riX

si =
∑n
i=1 riX

g·si

if g ∈ G, each ri ∈ R and each si ∈ S. It is easy to check that R[X;SG] ⊆
(R[X;S])G in general. In the brief Section 2, Proposition 2.1 (b) characterizes

when R[X;SG] = (R[X;S])G. Such a result is desirable as it indicates which sorts

of data R,G, S should be avoided if one wishes to construct an example where

R[X;SG] ⊆ (R[X;S])G is not integral and does not satisfy GD. Then Sections 3

and 4 are devoted to the construction and verification of the desired example. To

facilitate communication, we fix notation in those two sections. As permitted by

Proposition 2.1 (b), we do fix R as an arbitrary field K and we do fix G to be the

group with only two elements. After defining the suitable monoid S, we devote the

rest of Section 3 to proving the “is not integral” assertion. The (harder) proof of

the “does not satisfy GD” assertion is carried out in Section 4, where we find it

necessary to study the behavior of the semigroup ring (over K) of a suitable factor

semigroup of S.

As usual, ⊂ denotes proper inclusion and |B| denotes the cardinal number of

a set B. If a group G acts on a semigroup S and s ∈ S, we denote the G-orbit

of s by OG(s); we will omit the subscript G if there is no danger of confusion.

Also, for an element f of a semigroup ring R[X;S], the support of f , denoted by

supp(f), is the (finite) set of elements s ∈ S such that the coefficient of Xs in f is

nonzero. For background facts and notation for semigroup rings, we follow [7]. For

any unexplained ring-theoretic material, see [6], [9].

2. When the semigroup ring of the fixed semigroup is the fixed ring

In this brief section, we again consider the canonical action of a group on a semi-

group ring that is induced by a given action of that group on the ambient semigroup.

Proposition 2.1 (b) determines when the fixed ring is simply the semigroup ring of

the fixed semigroup. This result will help us focus the construction in the later

sections of a suitable group and semigroup ring such that the ring extension in

question is neither integral nor going-down.
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Proposition 2.1. Let G be a group and S a semigroup such that G acts on S (via

semigroup automorphisms). Let R be a ring and let the given action be extended

canonically so that G acts on the semigroup ring R[X;S] (via ring automorphisms,

with each element of R being fixed by each element of G). Then:

(a) For f ∈ R[X;S], the following conditions are equivalent:

(1) f ∈ (R[X;S])G;

(2) There exist finitely many finite G-orbits of S, say A1, . . . , An, and

elements r1, . . . , rn ∈ R such that f can be written in the form f =

f1 + f2 + · · ·+ fn where each fi = ri(
∑
s∈Ai

Xs).

(b) R[X;SG] = (R[X;S])G if and only if each G-orbit of S is either infinite or

a singleton set.

Proof. (a) (2) ⇒ (1) Suppose (2). To prove (1), it suffices to show that if g ∈
G, then g · fi = fi for each i. In fact, since g permutes Ai, we have g · fi =

ri(
∑
s∈Ai

Xg·s) = ri(
∑
s∈Ai

Xs) = fi.

(1) ⇒ (2) Suppose (1); that is, f ∈ (R[X;S])G. Without loss of generality,

f 6= 0. Write f =
∑
rζX

ζ (where, as usual, rζ ∈ R for all ζ ∈ S and only

finitely many rζ are nonzero). We claim that if s ∈ supp(f), then O(s) ⊆ supp(f).

Indeed, since f ∈ (R[X;S])G, f =
∑
rζX

ζ =
∑
ζ rζX

g·ζ for all g ∈ G. Thus,∑
ζ rg−1·ζX

ζ =
∑
t rtX

g·t = f for all g ∈ G. It follows that if ζ ∈ S, then

rζ = rg−1·ζ for all g ∈ G, and so rζ = rh·ζ for all h ∈ G. Hence, since rs 6= 0, we

have rh·s 6= 0 for all h ∈ G, which proves the above claim. In particular, if s ∈
supp(f), then O(s) is finite.

Once again, let s ∈ supp(f). Write O(s) = {s1, . . . , sm}. Consider h1 :=

rs1X
s1 +rs2X

s2 + · · ·+rsmX
sm (recalling that each rsi ∈ R). As was shown above,

rsi = rsj for all 1 ≤ i, j ≤ m. Then h1 = rs
∑
t∈O(s)X

t is the desired summand f1.

Now let h2 := f−f1. As in the proof that (2)⇒ (1), we see that f1 ∈ (R[X;S])G,

and so h2 ∈ (R[X;S])G. Moreover, s 6∈ supp(h2), and so supp(h2) ⊂ supp(f).

Therefore, by strong induction on the cardinality of supp(f), there exist finitely

many finite G-orbits of S, say A2, . . . , An, and elements ρ2, . . . , ρn ∈ R such that

h2 can be written in the form h2 = f2 + f2 + · · ·+ fn where fi = ρi(
∑
s∈Ai

Xs) for

each i ≥ 2. Then, with A1 := O(s), f = f1 +h2 can be written in the desired form.

(b) Recall that, in general, R[X;SG] ⊆ (R[X;S])G. Thus, our task is to prove

that (R[X;S])G ⊆ R[X;SG] if and only if each G-orbit of S is either infinite or

a singleton set. For the “if” assertion, suppose that each finite G-orbit of S is a

singleton set. Then, by (a), if f ∈ (R[X;S])G, it follows that there exist finitely

many singleton-set G-orbits of S, say A1 = O(s1), . . . , An = O(sn), and elements
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r1, . . . , rn ∈ R such that f = f1 + f2 + · · · + fn where each fi = ri(
∑
s∈Ai

Xs) =

riX
si . In other words, f =

∑
riX

si ∈ R[X;SG], as desired. Finally, to prove the

(contrapositive of) the “only if” assertion, it suffices to observe that if there exists

ζ ∈ S such that 1 < |O(ζ)| <∞, then
∑
t∈O(ζ)X

t is an element of (R[X;S])G that

is not in R[X;SG]. �

3. Integrality and some running notation

As riding notation for the rest of this article, we take K to be an arbitrary field,

G = {1, g} to be a certain group with two elements, and S to be a certain semigroup

on which G acts. After defining g and S and also identifying the elements of SG,

we will show in Proposition 3.2 that the ring extension K[X;SG] ⊆ (K[X;S])G is

not integral. (In the next section, it will be shown that this ring extension also

fails to satisfy GD.) This is to be contrasted with the fact (which is a consequence

of a well known result that was recalled in the Introduction) that the extension

(K[X;S])G ⊆ K[X;S] is integral.

The desired semigroup S will be constructed as a certain factor semigroup of

the following free abelian monoid. Let F be the free abelian monoid (written

additively) on a set of five distinct symbols, say {A,D1, D2, D3, D4}. (One can

view the elements of F as being those elements of the corresponding free abelian

group which, when viewed as integral linear combinations of A,D1, D2, D3, D4,

have only nonnegative coefficients.) Consider the semigroup automorphism g of F

that is determined by having g fix A, interchange D1 and D2, and also interchange

D3 and D4, with the definition of g then extended linearly to the other elements

of F . We next introduce (what turns out to be) a congruence relation ≡ on the

monoid F , as follows. If x, y ∈ F , then x ≡ y if and only if either x = y or we can

write

x = nA+ n1D1 + n2D2 + n3D3 + n4D4 and y = sA+ s1D1 + s2D2 + s3D3 + s4D4

where n = s > 0 and
∑
ni =

∑
si. It is clear that ≡ is an equivalence relation. It is

also easy to check that ≡ is a congruence relation on F . (In other words, if u1 ≡ v1
and u2 ≡ v2, then u1 + u2 ≡ v1 + v2.) The desired semigroup S is defined as the

factor semigroup S := F/ ≡. Note that S is a(n abelian) monoid. It is also easy to

check that if u ≡ v in R, then g(u) ≡ g(v). Consequently, the automorphism g of

F induces a semigroup automorphism of S, which we also denote by g. As g ◦ g is

the identity map, the group G := {1, g} has exactly two elements. (To verify the

preceding assertion, one must check that g : S → S is not the identity map, but

this is clear since D1 6≡ D2 (= g(D1)) in F .)
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Now that S and G have been defined, we next introduce some more riding

notation. Let a denote the ≡-equivalence class represented by A and, for 1 ≤ i ≤
4, let di denote the ≡-equivalence class represented by Di. Also, if s and t are

positive integers, let bs,t denote the ≡-equivalence class represented by any element

sA+ n1D1 + n2D2 + n3D3 + n4D4 where
∑
ni = t (for instance, sA+ tD1).

The next result collects some useful information. Its proof is straightforward (via

a somewhat tedious analysis of cases which ultimately depends on the definition of

≡) and is left to the reader. Lemma 3.1 (a) will often see tacit use below, Lemma

3.1 (b) will be used at once, and Lemma 3.1 (c) will lead naturally to a set of

identities listed in the proof of Proposition 4.1.

Lemma 3.1. (a) Each nonzero element of S can be expressed in one of the

following three ways: ma with m > 0; bs,t with s, t > 0; and
∑4
i=1midi

with each mi ≥ 0.

(b) The fixed semigroup SG is the set of elements

{ma, bs,t, l(d1 + d2) + k(d3 + d4)}, where m, l, k ≥ 0, and s, t > 0.

(c) For positive integers m, k, s, t and n, one has the following identities in

SG: ma + k(d1 + d2) = bm,2k = ma + k(d3 + d4), nbs,t = bns,nt, and

ma+ bs,t = bm+s,t.

Proposition 3.2. Let K, S and G be as above. Then K[X;SG] ⊂ (K[X;S])G

does not satisfy INC. In particular, this ring extension is not integral.

Proof. Since OG(d1) = {d1, d2} and d1 6= d2, it follows from Proposition 2.1

(b) that K[X;SG] ⊂ (K[X;S])G is a proper inclusion. The “In particular” as-

sertion follows from the fact that each integral extension satisfies INC (cf. [6,

Corollary 11.2], [9, Theorem 44]). Next, observe that if A ⊆ B ⊆ C are rings

such that B ⊆ C is an integral extension, then A ⊆ B satisfies INC if and only

if A ⊆ C satisfies INC. (Indeed, the “only if” assertion follows because the union

of a finite tower of INC extensions is an INC extension, while the “if” assertion

follows easily from the fact that any integral extension satisfies the LO and going-

up properties [9, Theorem 44].) We next apply this fact to the chain of rings

K[X;SG] ⊆ (K[X;S])G ⊆ K[X;S]. Note that sinceG is finite, an above-mentioned

result ensures that the extension (K[X;S])G ⊆ K[X;S] is integral. Hence, it suf-

fices to show that K[X;SG] ⊆ K[X;S] does not satisfy INC.

Let P denote the ideal of K[X;S] generated by set {Xa, Xd1 , Xd3}. It is clear

that {Xd2 + P,Xd4 + P} generates the factor ring K[X;S]/P as a K-algebra.
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Moreover, it is straightforward to check, using the definition of ≡, that the sub-

semigroup of S generated by the set {d2, d4} is a free abelian monoid on (this set of)

two elements. It follows easily (again by using the definition of ≡) that K[X;S]/P

is K-algebra isomorphic to the polynomial ring in two algebraically independent

indeterminates over K. Therefore, P is a prime ideal, but not a maximal ideal,

of K[X;S]. Pick a maximal ideal M of K[X;S] that (properly) contains P (for

instance, let M be the ideal of K[X;S] generated by {Xa, Xd1 , Xd2 , Xd3 , Xd4}).
Note that Q := P ∩ K[X;SG] contains Xa, Xbs,t (for all positive integers s and

t), (Xd2 · Xd1 =) Xd1+d2 , and (Xd4 · Xd3 =) Xd3+d4 . Thus, by Lemma 3.1 (b),

Q contains {Xs : s ∈ SG}. Consequently, K[X;SG]/Q ∼= K, and so Q is a max-

imal ideal of K[X;SG]. Therefore, M ∩ K[X;SG] must also be Q. As P ⊂ M ,

K[X;SG] ⊆ K[X;S] does not satisfy INC, to complete the proof. �

Remark 3.3. Although one can easily check that the ambient semigroup S inherits

the “torsion-free” property from the additive structure of Z, S is not cancellative.

(To see this, observe, for instance, that a+d1 = a+d2 but d1 6= d2.) The semigroup

SG also fails to be cancellative, as a+ d1 + d2 = a+ d3 + d4 but d1 + d2 6= d3 + d4.

Hence, by [7, Theorem 8.1], neither K[X;S] nor its subring K[X;SG] is a domain.

In Section 4, it will be convenient to overcome the fact that d1 + d2 6= d3 + d4 by

introducing a factor semigroup H of SG which will turn out to be both cancellative

and torsion-free.

4. Going-down and more running notation

The symbols K,G and S retain the fixed meanings assigned to them in the

preceding section; the action of G on S and the induced action of G on K[X;S] also

remain as above. This section is devoted to proving that the extension K[X;SG] ⊂
(K[X;S])G does not satisfy GD. This proof will require us to define and study a

suitable factor semigroup of SG. That factor semigroup, denoted by H below, will

be defined via a suitable congruence relation on the monoid SG.

The desired congruence relation on SG can be introduced as follows. Let ∼ be

the smallest congruence relation on SG such that k(d1 + d2) ∼ k(d3 + d4) for any

positive integer k. By using Lemma 3.1 (b) and the definitions of ≡ and ∼, one

easily checks that ∼ is well defined. Indeed, if u and v are distinct elements of

SG with u 6= v, then u ∼ v if and only if u and v can be expressed as follows:

u = k(d1 + d2) + l(d3 + d4) and v = k′(d1 + d2) + l′(d3 + d4) for some nonnegative

integers k, l, k′ and l′ such that k + l = k′ + l′ (and either k 6= k′ or l 6= l′). Let

H denote the factor semigroup H := SG/ ≡. Note that H is a(n abelian) monoid.
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Now that ∼ and H have been defined, we next denote the ∼-equivalence class of

a by α, the ∼-equivalence class of bs,t by βs,t (for any positive integers s and t),

and the common ∼-equivalence class of d1 + d2 and d3 + d4 by δ. From now on,

the symbols H,α, βs,t and δ are added to our list of running notation. It is

important to observe that each nonzero element of H can be expressed in exactly

one of the following three ways (with the respective parameters m; s, t; and l being

uniquely determined in every case): mα with m > 0; βs,t (with s > 0 and t > 0);

lδ with l > 0.

The next result fulfills a promise that was made in Remark 3.3.

Proposition 4.1. The semigroup H is cancellative and torsion-free.

Proof. It will be convenient to refer to a nonzero element of H that is of the form

mα, βs,t, or lδ as being of type 1, type 2, or type 3, respectively. As noted above,

each nonzero element of H is of exactly one of these three types (with the associated

parameters being uniquely determined). It will be useful to collect the following

identities (where m, l, n, s, t are arbitrary positive integers):

mα+ lδ = βm,2l

nβs,t = βns,nt

βs,t + lδ = βs,t+2l and

mα+ βs,t = βm+s,t.

We will show first that H is torsion-free. This requires proving that if h1, h2 ∈ H
and n is a positive integer such that nh1 = nh2, then h1 = h2. The assertion is

clear if h1 or h2 is 0, and so we can assume that h1 and h2 are each nonzero. Note

that if 0 6= h ∈ H, then nh and h are of the same type. Since nh1 = nh2, it follows

that h1 and h2 must be of the same type. In view of the uniqueness of parameters

and the torsion-free property of the nonzero integers, the assertion follows easily

in each of three cases (bearing in mind that n(mα) = (nm)α, nβs,t = βns,nt, and

n(lδ) = (nl)δ).

It remains to show thatH is cancellative. This requires proving that if e, f, h ∈ H
are such that h+e = h+f , then e = f . Without loss of generality, h 6= 0. It follows

easily from the above identities (together with evident facts such as βs,t + βs′,t′ =

βs+s′,t+t′) that h+e 6= h if e 6= 0. Thus, without loss of generality, both e and f are

nonzero. We now proceed with a somewhat tedious but straightforward analysis of

three cases.

Case 1: h is of type 3. Write h = lδ (with l > 0). It follows from the second

and third of the displayed identities that if one of e or f is also of type 3, then both
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e and f are of type 3, in which case one sees (by the cancellative property of the

nonzero integers) that e = f . Similarly, if both e and f are of type 1, then we can

use the first of the displayed identities to conclude that e = f . Suppose next that

one of e and f is of type 1 and the other is of type 2, say with e = mα and f = βs,t;

then βm,2l = h+ e = h+ f = βs,t+2l, whence 2l = t+ 2l and t = 0, a contradiction.

In the remaining subcase, both e and f are of type 2; write e = βs,t and f = βs′,t′ .

Then βs,t+2l = h+e = h+f = βs′,t′+2l, whence s = s′ and t+2l = t′+2l, so t = t′

and e = f , which completes the proof for Case 1.

Case 2: h is of type 1. Write h = mα (with m > 0). It follows from the first

and fourth of the displayed identities that if one of e or f is also of type 1, then

both e and f are of type 1, in which case one sees (by the cancellative property of

the nonzero integers) that e = f . Similarly, if both e and f are of type 3, then it

follows easily from the first displayed identity that e = f . Suppose next that one

of e and f is of type 2 and the other is of type 3, say with e = βs,t and f = kδ;

then βm+s,t = h+ e = h+ f = βm,2k, whence m+ s = m (and t = 2k), so s = 0, a

contradiction. In the remaining subcase, both e and f are of type 2; write e = βs,t

and f = βs′,t′ . Then βm+s,t = h + e = h + f = βm+s′,t′ , whence m + s = m + s′

and t = t′, so s = s′ and e = f , which completes the proof for Case 2.

Case 3: h is of type 2. Write h = βs,t. If e and f are of the same type as

each other, then an analysis of the three resulting subcases (that uses the above

identities and elementary properties of the integers) easily leads to e = f . Three

subcases remain. In the first of these, one of e and f is of type 1 and the other

is of type 3; without loss of generality, write e = mα and f = lδ. Then βm+s,t =

h + e = h + f = βs,t+2l, whence m + s = s (and t = t + 2l), so m = 0 (= l),

a contradiction. In the penultimate subcase, one of e and f is of type 1 and the

other is of type 2; without loss of generality, write e = mα and f = βs′,t′ . Then

βm+s,t = h + e = h + f = βs+s′,t+t′ , whence (m + s = s + s′ and) t = t + t′, so

t′ = 0, a contradiction. In the final subcase, one of e and f is of type 3 and the

other is of type 2; without loss of generality, write e = lδ and f = βs′,t′ . Then

βs,t+2l = h + e = h + f = βs+s′,t+t′ , whence s = s + s′ (and t + 2l = t + t′), so

s′ = 0, a contradiction. This completes the proof. �

Corollary 4.2. Let K,S,G and H be as above. Then (Xd1+d2−Xd3+d4)K[X;SG]

is a prime ideal of K[X;SG].

Proof. For each p ∈ SG, let [p] denote the ∼-equivalence class of p in H. Then the

assignment Xp 7→ X [p] induces a (unique) surjective K-algebra homomorphism,

say f , from the semigroup ring K[X;SG] (on)to the monoid ring K[X;H]. As we
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showed in Proposition 4.1 that H is cancellative and torsion-free, it follows from

[7, Theorem 8.1] that K[X;H] is an integral domain. Therefore, ker(f) is a prime

ideal of K[X;SG]. It therefore suffices to prove that ker(f) is the ideal of K[X;SG]

that is generated by Xd1+d2 −Xd3+d4 .

Of course, Y := Xd1+d2 − Xd3+d4 ∈ ker(f), because d1 + d2 ∼ d3 + d4. Now,

it follows from the proof of the second assertion in [7, Corollary 7.3] that ker(f)

is the set of all finite sums of elements of the form rXu − rXv where r ∈ K and

u ∼ v in SG. Thus, it suffices to prove that if u ∼ v in SG with u 6= v, then Y

divides Xu −Xv in K[X;SG]. By the earlier description of the binary relation ∼,

we can write u = k(d1 + d2) + l(d3 + d4) and v = k′(d1 + d2) + l′(d3 + d4) for some

nonnegative integers k, l, k′ and l′ such that N := k + l = k′ + l′. Hence, Xu −Xv

can be written as

Xk(d1+d2) · {X l(d3+d4) −X l(d1+d2)}+ {X(k+l)(d1+d2) −Xk′(d1+d2)+l
′(d3+d4)}.

The first of the displayed summands is divisible by Y , since X l(d3+d4)−X l(d1+d2) =

(Xd3+d4)l − (Xd1+d2)l is divisible by Xd3+d4 −Xd1+d2 = −Y (for all nonnegative

integers l). Hence, it suffices to prove that the second of the displayed summands

is divisible by Y . Now, that second summand can be expressed as the sum Z1 +Z2,

where

Z1 := X(k+l)(d1+d2) −X(k′+l′)(d3+d4) = (Xd1+d2)k+l − (Xd3+d4)k
′+l′ =

(Xd1+d2)N − (Xd3+d4)N is divisible by Y ; and

Z2 = X(k′+l′)(d3+d4)−Xk′(d1+d2)+l
′(d3+d4) = X l′(d3+d4) · {Xk′(d3+d4)−Xk′(d1+d2)},

which is also divisible by Y . It follows that Xu − Xv is divisible by Y , which

completes the proof. �

We now complete the verification of the promised example.

Theorem 4.3. Let K, S and G be as above. Then the ring extension K[X;SG] ⊂
(K[X;S])G does not satisfy going-down.

Proof. Recall that Proposition 2.1 (b) ensures that K[X;SG] ⊂ (K[X;S])G is a

proper inclusion. Now, it is well known (and easy to prove) that if A ⊆ B ⊆ C are

rings such that both A ⊆ B and B ⊆ C satisfy GD, then A ⊆ C also satisfies GD.

We next apply this fact to the chain of rings K[X;SG] ⊆ (K[X;S])G ⊆ K[X;S].

Note that since G is finite, (K[X;S])G ⊆ K[X;S] does satisfy GD [3, Theorem 2.2]

(cf. also [10], [2]). Therefore, it will suffice to show that K[X;SG] ⊂ K[X;S] does

not satisfy GD.
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Consider the ring A := K[X1, X2, X3, X4], where the Xi are commuting alge-

braically independent indeterminates overK, and the element Y := X1X2−X3X4 ∈
A. It is well known that the ring B := A/Y A is a domain, in fact, a Krull domain,

as a consequence of [5, Proposition 14.5 (a)]. Since A is a UFD, it follows that

Y is a prime element of A, and so Y A is a prime ideal of A. Since A is an affine

domain (in fact, a Cohen-Macaulay ring), it is a (universally) catenarian domain

of Krull dimension 4 (cf. [9, Theorem 151], [11, Corollaire 2, page III-24]); and the

prime ideal Y A of A has height 1 (by, for instance, the Principal Ideal Theorem

[9, Theorem 142]). It follows that the factor ring B has Krull dimension 3. We

proceed to find a useful ring that is isomorphic to B.

Consider the ideal Q1 := (Xa, Xd1+d2 −Xd3+d4)K[X;S] of K[X;S]. We claim

that Q1 is a prime ideal of K[X;S]. As in the proof of Proposition 3.2, it is straight-

forward to check, using the definition of ≡, that the subsemigroup of S generated

by the set {d1, d2, d3, d4} is a free abelian monoid on (this set of) four elements.

It follows easily (again by using the definition of ≡) that K[X;S]/XaK[X;S] is

K-algebra isomorphic to K[X1, X2, X3, X4] (= A) via the K-algebra map induced

by sending the coset represented by Xdi to Xi. Under this map, the image of

Q1/X
aK[X;S] is the ideal generated by X1X2 − X3X4, that is, the ideal Y A.

Consequently, standard homomorphism theorems yield K-algebra isomorphisms

K[X;S]/Q1
∼= (K[X;S]/XaK[X;S])/(Q1/X

aK[X;S]) ∼= A/Y A = B,

which we have seen is a domain. Therefore, Q1 is a prime ideal of K[X;S], thus

proving the above claim. The ideal Q1 will be one of the three prime ideals that

we will produce in data showing that K[X;SG] ⊂ (K[X;S])G does not satisfy

going-down.

By combining the second claim with Lemma 3.1 (b), P1 := Q1 ∩K[X;SG] is a

prime ideal of K[X;SG] which contains (Xa, Xd1+d2 − Xd3+d4)K[X;SG]. Recall

from Corollary 4.2 that P2 := (Xd1+d2 − Xd3+d4)K[X;SG] is a prime ideal of

K[X;SG]. Evidently, P2 ⊆ P1. In fact, P2 ⊂ P1, with Xa ∈ P1 \ P2, since (to use

notation from, and a result from the proof of, Corollary 4.2), f(Xa) = Xα 6= 0 ∈
K[X;H] ensures that Xa 6∈ ker(f) = P2. Thus (by the definition of the going-down

property), it suffices to prove that there cannot exist a prime ideal Q2 of K[X;S]

which is contained in Q1 and contracts to P2.

Suppose, on the contrary, that such a prime ideal Q2 does exist. Note first

that Xd1+d2 −Xd3+d4 ∈ P2 ⊆ Q2. Hence, if Q2 also contained Xa, we would have

Q2 = Q1, a contradiction. On the other hand, we know that Xa(Xdi−Xdj ) = 0 for

all 1 ≤ i, j ≤ 4, since a+di = b1,1 = dj . As Q2 is a prime ideal of K[X;S] and Xa 6∈
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Q2, it follows that Xdi−Xdj ∈ Q2 for all 1 ≤ i, j ≤ 4. Consequently, K[X;S]/Q2 =

K[Xa+Q2, X
d1 +Q2] is a K-algebra homomorphic image of a polynomial ring over

K in two (commuting algebraically independent) indeterminates. It follows that the

Krull dimension of K[X;S]/Q2 is at most 2. On the other hand, since Q2 ⊆ Q1,

there is obviously a surjective K-algebra homomorphism from K[X;S]/Q2 onto

K[X;S]/Q1. But the latter ring, as noted earlier, is K-algebra isomorphic to B,

which we have seen has Krull dimension 3. We have obtained an absurdity, where

there is a surjective ring homomorphism from a ring of Krull dimension at most 2

onto a ring of Krull dimension 3. This (desired) contradiction shows that no Q2

can exist with the above properties. The proof is complete. �

In closing, we give an example that illustrates that the above monoid S needed

to have a somewhat delicate construction in order to sustain the conclusions in

Proposition 3.2 and Theorem 4.3. Remark 4.4 gives an example where we consider

the above group G, a particular field K, and a new (to this article) finite monoid T

such that K[X;TG] ⊂ (K[X;T ])G is a proper ring extension which is integral and

satisfies GD.

Remark 4.4. Let G = {1, g} be the above group; specialize the ambient field to

K := F2, the field with two elements; and take the (additive abelian) monoid T to

be T := {0, x, y} in which every sum equals 0. It is easy to check that an action

of G on T (via semigroup automorphisms) can be defined by taking g · 0 := 0,

g · x := y and g · y := x (with 1 · z := z for each z ∈ T ). Note that TG = {0}.
Thus K[X;TG] = K[X; {0}] = KX0 ∼= K, and so K[X;TG] is a field. (It will

be convenient to identify this field with K.) It follows that (K[X;T ])G (which is

identified below) is a flat K[X;TG]-module, and so the ring extension K[X;TG] ⊆
(K[X;T ])G satisfies GD (cf. [9, Exercise 37, page 44]). In fact, this is a proper ring

extension, by Proposition 2.1 (b), since OG(x) = {x, y} is a finite non-singleton set.

Note that

(K[X;T ])G = KX0 +K(Xx +Xy) = {0, X0, Xx +Xy, X0 +Xx +Xy} = K[u],

where u := Xx+Xy satisfies u2 = X2x+X2y = 0 (and X0 +Xx+Xy = 1+u). As

(K[X;T ])G is generated as a K[X;TG]-algebra by an integral element, the extension

K[X;TG] ⊂ (K[X;T ])G must be integral. Finally, it is interesting to note that

(K[X;T ])G \K[X;TG] = {u, 1 + u}.
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