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Abstract. The coincidence of the set of all nilpotent elements of a ring with

its prime radical has a module analogue which occurs when the zero submodule

satisfies the radical formula. A ring R is 2-primal if the set of all nilpotent

elements of R coincides with its prime radical. This fact motivates our study

in this paper, namely; to compare 2-primal submodules and submodules that

satisfy the radical formula. A demonstration of the importance of 2-primal

modules in bridging the gap between modules over commutative rings and

modules over noncommutative rings is done and new examples of rings and

modules that satisfy the radical formula are also given.
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1. Introduction

Unless otherwise stated, all rings are unital, associative and not necessarily com-

mutative. The modules are left unital. The set of all positive integers is denoted

by N. First, we define key terms and fix notation which we later use in the sequel.

A proper ideal I of a ring R is prime (resp. completely prime) if for all ideals

A,B of R (resp. a, b ∈ R) AB ⊆ I (resp. ab ∈ I), implies A ⊆ I (resp. a ∈ I)

or B ⊆ I (resp. b ∈ I). Any completely prime ideal is prime but not conversely;

if R is commutative, there is no distinction between the two notions. We recall a

generalization of the above two ring theoretic “primes” to modules.

Definition 1.1. A proper submodule P of an R-module M for which RM 6⊆ P is

(1) completely prime (see [7]) if am ∈ P implies m ∈ P or aM ⊆ P , for all

a ∈ R and m ∈M ;

(2) prime (see [6]) if for all ideals A of R and submodules N of M , AN ⊆ P

implies N ⊆ P or AM ⊆ P .
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Any completely prime submodule is prime but not conversely in general. If R

is commutative, the two notions coincide. A simple module is always prime but it

need not be completely prime. Let P be a submodule of an R-module M and S a

subset of M such that S 6⊆ P . By (P : S) we denote the set {r ∈ R : rS ⊆ P}.
If P is a completely prime submodule of an R-module M , then (P : {m}) is a

completely prime ideal of R such that (P : {m}) = (P : M) for all m ∈M \ P , see

[7, Proposition 2.5]. On the other hand, if P is a prime submodule of an R-module

M , then (P : {m}) need not be a two sided ideal of R but (P : N) coincides

with (P : M) for all submodules N of M and it is a two sided prime ideal of

R. Evidently, notions of completely prime submodules and prime submodules are

distinct. A module is completely prime (resp. prime) if its zero submodule is a

completely prime (resp. prime) submodule.

The intersection of all completely prime (resp. prime) submodules of an R-

module M containing the submodule N is called the completely prime (resp. prime)

radical of N and is denoted by βco(N) (resp. β(N)). If N = 0, we call it the

completely prime (resp. prime) radical of M and write βco(M) (resp. β(M)) instead

of βco(0) (resp. β(0)). If M has no completely prime (resp. prime) submodules

containing a submodule N , we write βco(N) = M (resp. β(N) = M).

Definition 1.2. A proper submodule P of an R-module M for which RM 6⊆ P

is completely semiprime (resp. semiprime) if a2m ∈ P (resp. aRam ⊆ P ) implies

am ∈ P , for all a ∈ R and m ∈M .

A module is completely semiprime (resp. semiprime) if its zero submodule is

a completely semiprime (resp. semiprime) submodule. Any completely semiprime

submodule is semiprime. The converse does not hold, see [19, p. 45].

1.1. Submodules that satisfy the radical formula. For commutative rings,

the set of all nilpotent elements of a ring R coincides with the prime radical β(R)

of R which is the intersection of all prime ideals of R. In general, if I is an ideal of

a ring R and
√
I := {a ∈ R : an ∈ I for some n ∈ N},

then for any ideal I of a commutative ring R we have

√
I = β(I), (1)

where β(I) is the intersection of all prime ideals of R containing I. In [16], Mc-

Casland and Moore have extended this notion to modules over commutative rings
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by defining the radical formula of a submodule. The envelope EM (N) of a sub-

module N of an R-module M is the set

EM (N) := {rm : r ∈ R, m ∈M and rkm ∈ N for some k ∈ N}.

It is easy to show that if R is a commutative ring and M = RR, then
√

0 = EM (0).

Since EM (N) is in general not a submodule of M , we consider the submodule

〈EM (N)〉 of M generated by EM (N).

We say that a submodule N of an R-module M satisfies the radical formula if

〈EM (N)〉 = β(N). (2)

A module satisfies the radical formula if every submodule of M satisfies the rad-

ical formula. If every R-module satisfies the radical formula, then R is also said

to satisfy the radical formula. In literature, there has been an intensive study of

modules that satisfy the radical formula, see [1,2,9,12,13,17,18] among others. Un-

like commutative rings for which
√
I = β(I) for any ideal I, not all modules over

commutative rings satisfy the radical formula.

1.2. 2-primal submodules. A not necessarily commutative ring R for which
√

0 = β(R) is called a 2-primal ring. This condition forces
√

0 to be an ideal

of R. It follows from [5, Proposition 2.1] that a ring R is 2-primal if and only

if βco(R) = β(R), where βco(R) denotes the completely prime radical of R. We

remind the reader that βco(R) is the intersection of all completely prime ideals of

R and it is called also the generalized nil radical. Similarly, if I is any ideal of R,

then the symbol βco(I) stands for the intersection of all completely prime ideals of

R containing I. That intersection is called the completely prime radical of I. The

2-primal rings were studied by many authors (see, for example, [5,10,14,15]). An

ideal I of a ring R is called 2-primal if

βco(R/I) = β(R/I). (3)

In [8], a generalization of 2-primal rings was done to modules. A submodule N

of an R-module M is 2-primal if

βco(M/N) = β(M/N). (4)

A module is 2-primal if its zero submodule is 2-primal, i.e., if βco(M) = β(M).

Any module over a commutative ring is 2-primal and a projective module over a 2-

primal ring is 2-primal [8, Theorem 2.1]. As 2-primal rings bridge the gap between

commutative rings and noncommutative rings, 2-primal modules also bridge the
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gap between modules over commutative rings and modules over noncommutative

rings.

1.3. Questions to investigate. Since a ring R is 2-primal if and only if
√

0 =

β(R) = βco(R), it is natural to ask whether a module M is also 2-primal if and

only if 〈EM (0)〉 = β(M) = βco(M). The answer is no, all submodules of modules

defined over commutative rings are 2-primal but they need not satisfy the radical

formula, i.e., it is possible that 〈EM (0)〉 6= β(M) for a 2-primal module M . Against

this background, we pose the following questions which form the basis of our study

in this paper:

(1) What is (are) the condition(s) for a module to be 2-primal if and only if

〈EM (0)〉 = β(M)?

(2) When does a 2-primal submodule satisfy the radical formula?

(3) When does a submodule that satisfies the radical formula become 2-primal?

(4) Whenever an ideal I of a ring R is 2-primal, the set
√
I is an ideal of R;

when does the set EM (N) become a submodule of M for a given submodule

N of M?

(5) Can we get modules over noncommutative rings which satisfy the radical

formula?

(6) Can we get noncommutative rings which satisfy the radical formula?

Note that, if N is a 2-primal submodule of M , EM (N) is not necessarily a

submodule of M . Take for instance modules over a commutative ring, where each

submodule is 2-primal.

In Corollary 2.21, we give a necessary and sufficient condition for a module to

be 2-primal if and only if 〈EM (0)〉 = β(M). In Propositions 2.7 and 2.9 which have

Lemmas 2.13 and 2.12 respectively as special cases, we give situations for which

2-primal submodules satisfy the radical formula. Using these lemmas we are able

to obtain modules and rings that satisfy the radical formula (see Theorems 2.18

and 2.15, respectively). In Corollaries 2.3 and 2.5 we give conditions on modules

M and their submodules N for the equality EM (N) = 〈EM (N)〉.

2. Main results

Lemma 2.1. If N is a submodule of an R-module M , then

〈EM (N)〉 ⊆ βco(N).

Proof. Let m ∈ EM (N). Then m = rn for some r ∈ R and n ∈ M . Moreover,

there exists k ∈ N such that rkn ∈ N . So, rkn ∈ βco(N). Since βco(N) is a
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completely semiprime submodule of M , we have m = rn ∈ βco(N). Thus EM (N) ⊆
βco(N) and finally 〈EM (N)〉 ⊆ βco(N). �

Proposition 2.2. If N is a completely semiprime submodule of an R-module M ,

then

EM (N) = N.

Proof. Obviously, N ⊆ EM (N). If x ∈ EM (N), then x = rm and rkm ∈ N

for some r ∈ R, m ∈ M and k ∈ N. As N is completely semiprime we get

x = rm ∈ N . �

In [3, Proposition 2.1] Azizi and Nikseresht gave a class of modules M defined

over a commutative ring for which EM (N) is always a submodule of M . This class

consists of all modules M such that β(N) = N for every submodule N of M . In

Corollary 2.4 we give a more general and bigger class of modules M defined over a

not necessarily commutative ring for which EM (N) is a submodule of M for every

submodule N of M . The class of modules we provide is that of fully completely

semiprime modules. It is easy to check that the class of modules M defined over a

commutative ring for which β(N) = N for each submodule N of M is a class of fully

completely semiprime modules since in such a case semiprime is indistinguishable

from completely semiprime. We need Corollary 2.3 first.

Proposition 2.2 implies at once the following:

Corollary 2.3. For any completely semiprime submodule N of a module M , EM (N)

is a submodule of M .

Corollary 2.4. If all submodules of a module M are completely semiprime, then

EM (N) is a submodule of M for any submodule N of M .

Corollary 2.5. If M is a 2-primal module, then EM (β(M)) = β(M). In particu-

lar, EM (β(M)) is a submodule of M .

Proof. As M is 2-primal, we get β(M) = βco(M). Moreover, βco(M) is a com-

pletely semiprime submodule ofM so the assertion follows from Proposition 2.2. �

Corollary 2.6. If N is a 2-primal submodule of M , then

〈EM (N)〉/N ⊆ 〈EM (β(N))〉/N = β(N)/N.

In particular,

〈EM (0)〉 ⊆ 〈EM (β(M))〉 = β(M)

for any 2-primal module M .
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Proof. Suppose N is a 2-primal submodule of M . Since βco(M/N) is a completely

semiprime submodule of M/N and β(M/N) = βco(M/N), Proposition 2.2 implies

〈EM/N (β(M/N))〉 = β(M/N). But 〈EM/N (β(M/N))〉 = 〈EM (β(N))〉/N and

β(M/N) = β(N)/N . Hence, 〈EM (β(N))〉/N = β(N)/N . As N ⊆ β(N), we

get 〈EM (N)〉 ⊆ 〈EM (β(N))〉 and consequently 〈EM (N)〉/N ⊆ 〈EM (β(N))〉/N .

The second statement follows at once from the first one if we put N = (0). �

The next result is a direct consequence of Corollary 2.6.

Proposition 2.7. Any 2-primal submodule N of an R-module M for which β(N) =

N satisfies the radical formula.

Notice that for any 2-primal submodule N of an R-module M , the conditions:

β(N) = N , βco(N) = N , βco(M/N) = {0̄} and β(M/N) = {0̄} are equivalent.

Proposition 2.8. For any R-module M , the following statements hold:

(i) if R is commutative, then every prime submodule N of M satisfies the

radical formula;

(ii) a completely prime submodule of M satisfies the radical formula.

Proof. If R is commutative, then prime submodules are completely prime. If a

submodule N of M is completely prime, then it is 2-primal and prime. Hence

β(N) = N and the assertion follows directly from Proposition 2.7. �

Proposition 2.9. If M is a 2-primal R-module such that β(M) = β(R)M or

βco(M) = βco(R)M , then the zero submodule of M satisfies the radical formula.

Proof. Suppose that β(M) = β(R)M . If x ∈ β(M), then x =
∑n

i=1 aimi with

ai ∈ β(R) and mi ∈ M . Since β(R) is nil, each ai is nilpotent and aimi ∈ EM (0).

Hence, x ∈ 〈EM (0)〉. Since M is 2-primal, Corollary 2.6 implies 〈EM (0)〉 ⊆ β(M).

A similar proof works if we assume that βco(M) = βco(R)M . �

Example 2.10. Projective modules satisfy the equations: β(M) = β(R)M and

βco(M) = βco(R)M , see [4, Proposition 1.1.3].

Remark 2.11. If we consider a module M over a commutative ring, then 〈EM (0)〉 ⊆
β(M). We see in Corollary 2.6 that, this is still the case when M is 2-primal.

Propositions 2.7 and 2.9 and Corollary 2.5 still hold if we replace “N 2-primal”

(resp. “M 2-primal”) by “R is commutative”. This highlights (together with the

results obtained in [8]) the importance of 2-primal submodules in bridging the gap

between modules over commutative rings and modules over noncommutative rings.
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According to Lee and Zhou in [11], an R-module M is reduced if for all a ∈ R
and every m ∈M , am = 0 implies Rm ∩ aM = 0. An R-module is reduced in this

sense if and only if for all a ∈ R and every m ∈ M , a2m = 0 implies aRm = 0

if and only if for all a ∈ R and every m ∈ M , am = 0 implies aRm = 0 and

a2m = 0 implies am = 0, see [19, p.25–26]. This implies that any reduced module

in the sense of Lee and Zhou is completely semiprime. A module M is symmetric

if abm = 0 implies bam = 0 for a, b ∈ R and m ∈ M . An R-module M is IFP

(i.e., it has the insertion-of-factor-property) if whenever am = 0 for a ∈ R and

m ∈M , we have aRm = 0. An R-module M is semi-symmetric if for all a ∈ R and

every m ∈M , a2m = 0 implies (a)2m = 0 where (a) is the ideal of R generated by

a ∈ R. A submodule N of an R-module M is Lee-Zhou completely semiprime (resp.

symmetric, IFP, semi-symmetric) if in the definition of reduced (resp. symmetric,

IFP, semi-symmetric) we have N in the place of “0” and “∈” or “⊆” (whatever is

appropriate) in the place of “=”. For a detailed account of the origin of symmetric

modules, IFP modules and semi-symmetric modules together with their examples,

see [8].

The following chart of implications is used in the proof of Lemmas 2.12 and 2.13;

it follows from [8, Theorems 2.2 and 2.3]. For any submodule P of an R-module

M ,

R commutative 2-primal.

⇓ ⇑
Lee-Zhou ⇒ symmetric ⇒ IFP ⇒ semi-symmetric

completely semiprime

Chart 1

Lemma 2.12. For an R-module M , any one of the following statements implies

that the zero submodule of M satisfies the radical formula:

(1) M is 2-primal and free,

(2) M is semi-symmetric and free,

(3) M is semi-symmetric and projective,

(4) M is IFP and projective,

(5) M is IFP and free,

(6) M is symmetric and projective,

(7) M is symmetric and free,

(8) M is reduced and projective,
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(9) M is reduced and free,

(10) R is commutative and M is projective,

(11) R is commutative and M is free.

Proof. From the chart of implications above it follows that any of the following

implies that M is 2-primal: R is commutative, M is reduced, M is IFP, M is

symmetric and M is semi-symmetric. Secondly, every free module is projective.

The rest follows from Proposition 2.9 and Example 2.10. �

Lemma 2.12 recovers [9, Corollary 8] which says that a zero submodule of a

projective module over a commutative ring satisfies the radical formula.

Lemma 2.13. If a submodule N of a module M is completely semiprime (in the

sense of Lee-Zhou), IFP, symmetric or semi-symmetric such that β(N) = N , then

N satisfies the radical formula.

Proof. This follows from Proposition 2.7 and the fact that Lee-Zhou completely

semiprime, IFP, symmetric or semi-symmetric submodules are 2-primal. �

The following lemma was proved by McCasland and Moore in [16]. Note that,

although they were working with modules over commutative rings, the proof they

used still works even when the modules are not defined over a commutative ring.

Lemma 2.14. [16, Theorem 1.5] Let φ : M → M ′ be an R-module epimorphism

and let N be a submodule of M such that N ⊇ Ker φ.

(i) If β(N) = 〈EM (N)〉, then β(φ(N)) = 〈E(φ(N))〉;
(ii) If N ′ is a submodule of M ′ and β(N ′) = 〈E(N ′)〉, then β(φ−1(N ′)) =

〈E(φ−1(N ′))〉.

Theorem 2.15. If the R-module M is any one of the modules given in Lemma

2.12 or it is 2-primal and projective, then M satisfies the radical formula.

Proof. Let N be a submodule of M . For the modules given in Lemma 2.12, apply

Lemma 2.14(ii) and Lemma 2.12 by letting M ′ = M/N and N ′ = N . We know that

for a 2-primal and projective module β(M) = 〈EM (0)〉. When we apply Lemma

2.14(ii) by letting M ′ = M/N and N ′ = N , we get the desired result. �

An alternative proof can be given for the six (6) R-modules M in Lemma 2.12

which are free. Recall that every R-module M is the image of a free R-module.

This together with Lemma 2.14(i) shows that M satisfies the radical formula.
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Corollary 2.16. If R is a semisimple ring such that the R-module M is 2-primal,

then M satisfies the radical formula.

Proof. If R is semisimple, then the R-module M is projective. The rest follows

from Theorem 2.15. �

Corollary 2.17. If R is a semisimple and commutative ring, then the R-module

M satisfies the radical formula.

Proof. If R is semisimple and commutative, then M is 2-primal and projective

and it is sufficient to apply Theorem 2.15. �

A ring R is absolutely radical if for all R-modules M , we have β(N) = N for

each submodule N of M .

Theorem 2.18. If R is an absolutely radical ring such that each submodule N

of the R-module M is one of the following: Lee-Zhou completely semiprime, IFP,

symmetric or semi-symmetric, then R satisfies the radical formula.

Proof. Notice that R is an absolutely radical ring if and only if β(N) = N for each

submodule N of M . The rest follows from Lemma 2.13. �

Proposition 2.19. If a submodule N of an R-module M satisfies the radical for-

mula and βco(N) ⊆ 〈EM (N)〉, then N is 2-primal. On the other hand, if a sub-

module N of an R-module M is 2-primal and βco(N) ⊆ 〈EM (N)〉, then the zero

submodule of the R-module M/N satisfies the radical formula.

Proof. By hypothesis, βco(N) ⊆ 〈EM (N)〉 = β(N) and in general, β(N) ⊆
βco(N). It follows that βco(N) = β(N) such that βco(M/N) = βco(N)/N =

β(N)/N = β(M/N). For the second part, suppose β(M/N) = βco(M/N) and

βco(N) ⊆ 〈EM (N)〉. Then β(N)/N = βco(N)/N ⊆ 〈EM (N)〉/N . From Lemma

2.1, 〈EM (N)〉/N ⊆ βco(N)/N. This implies β(N)/N = 〈EM (N)〉/N , i.e., β(M/N) =

〈EM/N ({0̄})〉. �

Remark 2.20. The conditions: (1) βco(N) = N (which for example holds when N

is a completely prime submodule) and (2) 〈EM (N)〉 = M (which for example holds

when M is cyclic and R is nil or M is cyclic and its generator is contained in N)

always guarantee existence of the inclusion βco(N) ⊆ 〈EM (N)〉.
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Corollary 2.21. The necessary and sufficient condition for the zero submodule of

an R-module M to satisfy the radical formula if and only if M is 2-primal is

βco(M) ⊆ 〈EM (0)〉.1 (5)

Proof. It follows from Proposition 2.19. �

The following example shows that containment (5) in Corollary 2.21 does not

hold in general.

Example 2.22. Define R = Z[x], F = R ⊕ R, f = (2, x) ∈ F and P = 2R + Rx

(which is a maximal ideal of R). If N = Pf and M = F/N , then M is completely

semiprime and β(M) = Rf/N 6= 0, see [9, p. 3600]. This shows that 〈EM (0)〉 =

0 (see Proposition 2.2) and βco(M) 6= 0 since for modules over a commutative

ring, there is no distinction between completely prime (resp. completely semiprime)

submodules and prime (resp. semiprime) submodules.

All submodules of a module defined over a commutative ring are 2-primal but

they need not satisfy the radical formula. We do not know of an example of a

submodule which satisfies the radical formula but not 2-primal, although we suspect

these examples exist. The motivation of our suspicion is that, for any module M ,

β(M) ⊆ βco(M) and 〈EM (0)〉 ⊆ βco(M) and these inclusions are in general strict.

Hence, it is probably possible that β(M) = 〈EM (0)〉 6⊆ βco(M), in which case the

zero submodule of M satisfies the radical formula but not 2-primal. An affirmative

answer to any one of the following questions gives us the desired example(s).

Question 2.1. Is there a prime module M which is not completely prime and

EM (0) = 0?

Question 2.2. Can we get a completely semiprime module M which is not com-

pletely prime and β(M) = 0?
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