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1. Introduction

All rings considered in this paper are assumed to be commutative with identity

elements and all modules are unitary. We start by recalling a few definitions. An

R-module M is called P -flat if, for any (s, x) ∈ R ×M such that sx := 0, x ∈
(0 : s)M . If M is flat, then M is naturally P -flat. When R is a domain, M is

P -flat if and only if it is torsion-free. When R is an arithmetic ring, then any

P -flat module is flat (by [4, p. 236]). Also, every P -flat cyclic module is flat (by [4,

Proposition 1(2)]). P -flatness coincides with torsion-freeness in the sense of [12].

P -flat modules are also called (1, 1)-flatness in [14].

As in [3], an R-module M is called singly projective if, for any cyclic submodule

N of M , the inclusion map N →M factors through a free module F . Equivalently,

for any cyclic R-module N and any homomorphism f : N →M , f factors through

a finitely generated free R-module F see [11]. It is well known that every projective

module is singly projective and also every singly projective module is P -flat. The

following diagram of implications summarizes the relations between them:

M is projective =⇒ M is singly projective =⇒ M is P -flat.

But these are not generally reversible.
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In this paper, we are interested in rings over which every P -flat ideal is singly

projective. We call such ring an FSP -ring. In particular, any domain ([4, p. 236])

and any quasi-Frobenius ring ([1, Corollary 5.5]) are FSP -rings. See for instance

[1,4].

LetA andB be rings, J an ideal ofB and let f : A→ B be a ring homomorphism.

In [6], the amalgamation of A with B along J with respect to f is the sub-ring of

A×B defined by:

A ./f J := {(a, f(a) + j) | a ∈ A, j ∈ J}.

This construction is a generalization of the amalgamated duplication of a ring along

an ideal introduced and studied in [5,7,8].

Let A be a ring and E an A-module. The trivial ring extension of A by E (also

called the idealization of E over A) is the ring R := A ∝ E whose underlying

group is A × E with multiplication given by (a, e)(a′, e′) := (aa′, ae′ + a′e). For

the reader’s convenience, recall that if I is an ideal of A and E′ is a submodule of

E such that IE ⊆ E′, then J := I ∝ E′ is an ideal of R. However, prime (resp.

maximal) ideals of R have the form p ∝ E, where p is a prime (resp. maximal) ideal

of A [2, Theorem 3.2]. Suitable background on commutative trivial ring extensions

is [2,9,10].

The purpose of this paper is to give some simple methods in order to con-

struct FSP -rings. For this, we investigate the stability of the FSP -property under

localization and homomorphic image, and its transfer to various contexts of con-

structions such as direct products, amalgamation of rings A ./f J , and trivial

ring extensions. Our results generate original examples which enrich the current

literature with new families of rings satisfying the FSP -property.

2. Main results

Let R be a commutative ring and M be an R-module. We will use the following

notations and basic notions:

Z(R) := {a ∈ R | ax = 0 for some 0 6= x ∈ R} denotes the set of zero divisors of R.

Z(M) := {a ∈ R | ax = 0 for some 0 6= x ∈ M} denotes the set of zero divisors of

M , and Ann(M) := {a ∈ R | ax = 0 for all 0 6= x ∈M} denotes the annihilator of

M . Q(R) denotes the total ring of quotients of R, that is, the localization of R by

the set of all its non zero divisors. qf(R) denotes the quotient field of R. A non

zero divisor element of R will be called a regular element, and an ideal of R which

contains a regular element will be called a regular ideal.
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Recall that an R-module M is called singly projective if, for any cyclic submodule

N , the inclusion map N → M factors through a free module F . An R-module M

is called P -flat if, for any (s, x) ∈ R×M such that sx = 0, x ∈ (0 : s)M . A ring R

is called an FSP -ring if all P -flat ideals of R are singly projective.

Recall from [12] that R is a strongly P -coherent ring if every principal ideal I

of R is cyclically presented, i.e., I ∼= R/Rr for some r ∈ R. Cyclically presented

coincides with (1, 1) presented in the sense of [1].

Proposition 2.1. Any strongly P -coherent ring is an FSP -ring.

Proof. Assume that R is a strongly P -coherent ring and we must show that it is

an FSP -ring. Let J be a P -flat ideal of R and a be a nonzero element of J . Then,

Ra is cyclically presented since R is strongly P -coherent. Hence, the inclusion map

Ra→ J factors through a free module by [1, Proposition 4.1], as desired. �

Let R be a ring. An element a ∈ R is called generalized morphic if (0 : a) ∼= R/Rb

for some b ∈ R. The ring itself is said to be generalized morphic if every element is

generalized morphic.

By [15, Example 2.4], [12, page 15] and Proposition 2.1, we have von Neumann

regular =⇒ PP -ring =⇒ generalized morphic =⇒ strongly P -coherent =⇒ FSP -

ring. Then, we obtain:

Corollary 2.2. Any von Neumann regular ring, any PP -ring and any generalized

morphic ring are FSP -rings.

The converse does not generally hold. For example, Z/4Z is an FSP -ring which

is not a PP -ring.

We begin by studying the transfer of the FSP -property to direct products.

Theorem 2.3. Let (Ri)i:=1,..,n be a family of commutative rings. Then R :=∏n
i=1Ri is an FSP -ring if and only if Ri is an FSP -ring for all i := 1, .., n.

The proof of the theorem involves the following lemma.

Lemma 2.4. Let (Ri)i:=1,2 be a family of rings and Mi be an Ri-modules for

i := 1, 2. Then M1 ×M2 is a P-flat (R1 ×R2)-module if and only if Mi is a P-flat

Ri-module for i := 1, 2.

Proof. Let (a, x) ∈ R1 ×M1 such that ax = 0. Then (x, 0) ∈ M1 ×M2 , (a, 0) ∈
R1 × R2 and (x, 0)(a, 0) = (0, 0). Hence, (x, 0) ∈ (0 : (a, 0))(M1 ×M2) and so

x ∈ (0 : a)M1. Therefore, M1 is a P -flat R1-module. Similarly, M2 is a P -flat

R2-module.



ON RINGS OVER WHICH EVERY P-FLAT IDEAL IS SINGLY PROJECTIVE 49

Conversely, let (x, y) ∈ M1 ×M2 and (a, b) ∈ R1 × R2 such that (a, b)(x, y) =

(0, 0). Then, ax = 0 and by = 0 and so (x, y) ∈ (0 : (a, b))(M1 ×M2) since M1, M2

are P -flat and (0 : (a, b)) = (0 : a)× (0 : b). Therefore, M1 ×M2 is P -flat. �

Proof of Theorem 2.3.

Using induction on n, it suffices to prove the assertion for n = 2. Assume that

R1×R2 is an FSP -ring and we must show that Ri is an FSP -ring for i = 1, 2. Let

I1 be a P -flat ideal of R1 and a1 be a nonzero element of I1, then I1×R2 is a P -flat

ideal of R1 ×R2 by Lemma 2.4 and R1a1 ×R2 is a cyclic (R1 ×R2)-submodule of

I1×R2. Then there exists a free (R1×R2)-module F (F ' (R1×R2)Λ for some finite

index set Λ), a morphism ϕ : R1a1×R2 → F and a morphism ψ : F → I1×R2 such

that ψoϕ = id(R1a1×R2). Consider the morphism ϕ1 : R1a1 → RΛ
1 and a morphism

ψ1 : RΛ
1 → I1, defined by the following diagram:

0 - R1a1 -

@
@
@
@
@
@
@
@
@R

(R1a1 ×R2) -(I1 ×R2) - I1

@
@
@R �

�
��

(R1 ×R2)Λ ψ1

ϕ

ϕ1

ψ

i1
id(R1a1×R2) π1

π1

(R1)Λ

?
�
�
�
�
�
�
�
�
��

So ψ1 ◦ ϕ1 = ψ1 ◦ π1 ◦ ϕ ◦ i1 = π1 ◦ ψ ◦ ϕ ◦ i1 = π ◦ id(R1a×R2) ◦ i1 = idR1a,

and that I1 is singly projective. Hence, R1 is an FSP -ring.

Conversely, we assume that R1 and R2 are FSP -rings and let I be a P -flat ideal

of R1 × R2. Note that I has the form I = I1 × I2 for some ideals I1, I2 of R1 and

R2, respectively. On the other hand, Ii is Ri-P -flat for every i = 1, 2 by Lemma

2.4 since I is P -flat. Let (a1, a2) be a nonzero element of I1 × I2. Since Ri is

an FSP -ring, there exists a free Ri module Fi, a morphism ϕi : Riai → Fi and a

morphism ψi : Fi → Ii such that ψi ◦ ϕi = idRiai . It follows that the morphism ϕ

and ψ defined by ϕ : R1a1×R2a2 → F1×F2 such that ϕ(x, y) = (ϕ1(x), ϕ2(y)) and

ψ : F1×F2 → I1×I2 such that ψ(x, y) = (ψ1(x), ψ2(y)), then ψ◦ϕ = id(R1a1×R2a2).

Therefore I1 × I2 is singly projective, which completes the proof. �

The next result establish the transfer of the FSP -property to localization.
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Theorem 2.5. Let R be a commutative ring and let S be a set of regular elements

of R. Then, if S−1(R) is an FSP -ring, then so is R.

Before proving Theorem 2.5, we establish the following lemmas.

Lemma 2.6. Let R be a commutative ring and let M be an R-module. Then the

following conditions are equivalent:

(1) M is P -flat.

(2) The canonical map M ⊗R Ra→M ⊗R R is injective for any a ∈ R.

(3) Tor(M,R/Ra) = 0 for all 0 6= a ∈ R.

Proof. (1)⇒ (2) Assume that M is a P -flat module. Let a be a nonzero element

of R and let u : M ⊗RRa→M ⊗RR, where u(m⊗a) = ma. We must show that u

is injective. If m.a = 0, there exists βi ∈ (0 : a) and mi such that m =
∑n

i:=1 βimi.

Hence, m⊗ a =
∑n

i:=1 βimi ⊗ a =
∑n

i:=1mi ⊗ βia = 0.

(2)⇒ (1) Let (m, a) be an element of M ×R such that ma = 0 and we must show

that m ∈ (0 : a)M . Consider the map f : R → Ra such that f(1) = a. The exact

sequence 0→ kerf → R→ Ra→ 0 yields the exact sequence kerf⊗M → R⊗M →
Ra⊗M → 0 where (f⊗1M )(1⊗m) = a⊗m = 0. Since u : Ra⊗M → R⊗M (where

u(a⊗m) = am) is injective, then (1⊗m) ∈ ker(f⊗1M ) = Im(i⊗1M ) and so there

exists (yi,mi)1≤i≤n ∈ kerf ×M such that 1 ⊗m = (i ⊗ 1M )(
∑

1≤i≤n(yi ⊗mi) =∑
1≤i≤n(i(yi) ⊗mi) = 1 ⊗

∑
1≤i≤n i(yi)mi. Therefore,

∑
1≤i≤n i(yi)mi = m and

i(yi)a = i(yia) = i(f(yi)) = i(0) = 0. Hence M is P -flat.

Finally, it is easy to check that (2)⇔ (3). �

Lemma 2.7. Let R be a commutative ring, M be an R-module, and let S be a set

of regular elements of R. If S−1M is a singly projective S−1R-module, then M is

a singly projective R-module.

Proof. Assume that S−1M is a singly projective S−1R-module and let a be a

non zero element of M . We must show that the inclusion map Ra → M factors

through a free module. Since S is a set of regular elements of R, then the morphism

s : M → S−1M , where s(m) = m
1 is injective. On the other hand, S−1M is singly

projective over R by [4, Proposition 6] since S−1M is singly projective S−1R-

module. Hence, there exists a free R-module F , a morphism ϕ : Ra → F and a

morphism ψ : F → S−1M such that ψ ◦ ϕ = f , where f = s ◦ idRa by [11, Lemma

2.1]. We consider the morphism ψ1 : F → M defined by ψ = s ◦ ψ1. Therefore,

ψ ◦ϕ = s ◦ψ1 ◦ϕ = f = s ◦ idRa and so ψ1 ◦ϕ = idRa since s is injective. It follows

that M is singly projective. �
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Proof of Theorem 2.5.

Assume that S−1(R) is an FSP -ring and let I be a P -flat ideal of R. Then

S−1(I) is P -flat by [13, Lemma 3.1] and so it is singly projective since S−1(R) is

an FSP -ring. Hence, I is singly projective by Lemma 2.7. It follows that R is an

FSP -ring. �

Corollary 2.8. Let R be a ring. Then R is an FSP -ring if so is Q(R). In

particular, any domain is an FSP -ring.

We combine Theorem 2.5 with [6, Proposition 3.1] to get the transfer of the

FSP -property to the amalgamation A ./f J .

Proposition 2.9. Let f : A → B be a ring homomorphism and let J be an ideal

of B. Assume that J and f−1(J) are regular ideals of B and A respectively. Then

A ./f J is an FSP -ring if so are Q(A) and Q(B).

Proof. By [6, Proposition 3.1], we have Q(A ./f J) = Q(A)×Q(B). Then Q(A ./f

J) is an FSP -ring if so are Q(A) and Q(B) (by Theorem 2.3). Hence, A ./f J is

an FSP -ring if so are Q(A) and Q(B) by Theorem 2.5. �

Corollary 2.10. Let A be a ring and I be a regular ideal of A. Then A ./ I is an

FSP -ring if so is Q(A).

Proposition 2.9 enables us to construct other classes of FSP -rings.

Example 2.11. Let A and B be two domains and let J be an ideal of B. Then

A ./f J is an FSP -ring.

In particular, if I is an ideal of a domain A, then R =: A ./ I is an FSP -ring.

Now, we study the transfer of a FSP -property between a ring A and A ∝ E,

the trivial ring extension of A by E, where E is an A-module. The main result

(Theorem 2.12) enriches the literature with original examples of FSP -rings. Recall

that if E is an A-module, then Z(E) = {a ∈ A | ae = 0 for some 0 6= e ∈ E}.

Theorem 2.12. Let A be a ring, E be an A-module, and let R := A ∝ E be a

trivial ring extension of A by E. Then

(1) Assume that A is a domain and E is an A-module such that Z(E) = 0

(In particular if E is a K-vector space, where K := qf(A)). Then R is an

FSP -ring.

(2) Assume that A is a domain and E is a divisible A-module. Then R is an

FSP -ring.
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(3) Let (A,M) be a local ring and let R =: A ∝ E be the trivial ring extension

of A by an A-module E such that ME = 0. Then R is an FSP -ring if and

only if so is A.

Before proving Theorem 2.12, we establish the following lemmas.

Lemma 2.13. Let A be a ring, E be an A-module and let R := A ∝ E be a trivial

ring extension of A by E. If J := I ∝ E (where I is a non-zero ideal of A) is a

P -flat ideal of R, then I is a P -flat ideal of A.

Proof. Let x ∈ I and d ∈ A such that xd = 0. Then (x, 0) ∈ J , (d, 0) ∈ R

and (x, 0)(d, 0) = (0, 0). Since J is P -flat, then there exists (yi, ei)i=1,...,n a family

of elements of J and (ci, fi)i=1,...,n a family of elements of (0 : (d, 0)) such that

(x, 0) =
∑n

i:=1(yi, ei)(ci, fi). Therefore, x =
∑n

i:=1 yici, where yi ∈ I and dci = 0

for all 1 ≤ i ≤ n. Hence, I is P -flat. �

Lemma 2.14. Let A be a domain, E be an A-module, F 6= 0 be a submodule of E

and R := A ∝ E be a trivial ring extension of A by E. Then 0 ∝ F is not a P -flat

R-module.

Proof. Let F be a nonzero submodule of E. Two cases are then possible:

Case 1: Z(F ) = 0. Let (0, f) 6= (0, 0) and (0, e) 6= (0, 0) two elements of 0 ∝ F .

Then, (0, f).(0, e) = (0, 0) and (0 : (0, e)) = 0 ∝ E since Z(F ) = 0. Then (0, f) /∈
(0 : (0, e))(0 ∝ F ) = 0. Thus 0 ∝ F is not a P -flat R-module.

Case 2: Z(F ) 6= 0. Let 0 6= d ∈ A and 0 6= f ∈ F such that df = 0. Hence,

(d, 0)(0, f) = (0, 0) and (0 : (d, 0) ⊆ 0 ∝ E and so (0, f) /∈ (0 : (d, 0))(0 ∝ F ) = 0.

Therefore, 0 ∝ F is not a P -flat R-module. �

Lemma 2.15. Let T := K ∝ E be the trivial ring extension of a field K by a

K-vector space E. Then T is an FSP -ring.

Proof. T is the only P -flat ideal of T by [2, Corollary 3.4] and Lemma 2.14 since

K is a field. Hence T is an FSP -ring. �

Lemma 2.16. Let (A,M) be a local ring and I be a P-flat ideal of A. Then IM = I

or Ann(I) = 0.

Proof. Let I be a P -flat ideal of I. Two cases are possible: Ann(I) = 0 or

Ann(I) 6= 0. Assume that Ann(I) 6= 0 and we must show that IM = I. Let x be

a nonzero element of I, then there exists a nonzero element d of Ann(I) such that

dx = 0. Since I is P -flat, then there exists (yi)i=1,...,n a family of elements of I
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and (ci)i=1,...,n a family of elements of (0 : d) such that x =
∑n

i:=1 yici. Therefore,

x ∈ IM and so I = IM . �

Proof of Theorem 2.12.

(1) The set S := (A − {0}) ∝ E is the set of regular elements of R ∝ E by [2,

Theorem 3.5]. Hence, by [2, Theorem 4.1], Q(A ∝ E) ' S−1(A) ∝ S−1(E) = K ∝
S−1(E), where K := qf(A). Therefore, A ∝ E is an FSP -ring by Lemma 2.15 and

Corollary 2.8.

(2) Assume that A is a domain and E is a divisible A-module. Let J be a nonzero

P -flat ideal of R and we must show that J is singly projective. By [2, Corollary

3.4], J = I ∝ E or J = 0 ∝ E′ for some ideal I of R or some submodule E′ of E.

Since 0 ∝ E′ is not P -flat by Lemma 2.14, then J = I ∝ E. Let L be a principal

sub-ideal of J . Two cases are then possible:

Case 1: L = 0 ∝ E′, where E′ is a cyclic submodule of E. Thus J is singly

projective. Indeed there exists a free A-module F and an epimorphism f such that

I ' F/kerf . Consider the morphism ϕ : F ⊗A R → I ⊗A R(' I ∝ E) defined by

ϕ = (f ⊗ idR). Then ϕ ◦ id(0∝E′) = id(0∝E′).

Case 2: L = I ′ ∝ E, where I ′ is a principal sub-ideal of I. Hence, I is a P -flat

ideal of A (by Lemma 2.13) and so it is singly projective (since A is an FSP -ring).

Then there exists a free A-module F , a morphism ϕ1 : I ′ → F and a morphism

ψ1 : F → I such that ψ1 ◦ ϕ1 = idI′ . Consider the morphisms ϕ and ψ defined by

ϕ : I ′ ⊗A R → F ⊗A R such that ϕ = (ϕ1 ⊗ idR) and ψ : F ⊗ R → I ⊗A R, such

that ψ = (ψ1 ⊗ idR), then ψ ◦ ϕ = (ψ1 ⊗ idR) ◦ (ϕ1 ⊗ idR) = (ψ1 ◦ ϕ1) ⊗ idR =

idI′ ⊗ idR = id(I′∝E). Therefore I ∝ E is singly projective, as desired.

(3) Assume that A is an FSP -ring and let J be a P -flat ideal of R. By

Lemma 2.16, we may assume that J(M ∝ E) = J . Then J = J(M ∝ E) ⊆
(M ∝ E)(M ∝ E) = M2 ∝ 0 and so J = I ∝ 0 for some ideal I of A. But

J ⊗R A ∼= J ⊗R R/(0 ∝ E) ∼= J/J(0 ∝ E) ∼= I ∝ 0/(I ∝ 0)(0 ∝ E) = I ∝ 0.

So, I is a P -flat ideal of A since J is a P -flat ideal of R by Lemma 2.13. Hence,

I is a singly projective ideal of A since A is an FSP -ring. We claim that J is a

singly projective ideal of R. Indeed, let I ′ ∝ 0 be a principal sub-ideal of J , where

I ′ is a principal sub-ideal of I. Since I is singly projective and (I ∝ 0 = J) ∼= I,

then there exists a free A-module F , a morphism ϕ1 : I ′ ∝ 0 → F and a mor-

phism ψ1 : F → I ∝ 0 such that ψ1 ◦ ϕ1 = idI′∝0. Consider the morphisms f , ϕ

and ψ defined by f : F → F ⊗A R, where f(x) = x ⊗ 1R, ϕ : I ′ ∝ 0 → F ⊗A R

such that ϕ = (f ◦ ϕ1) and ψ : F ⊗A R → I ∝ 0, such that ψ1 = (ψ ◦ f). Then

ψ ◦ ϕ = ψ ◦ (f ◦ ϕ1) = ψ1 ◦ ϕ1 = id(I′∝0). Therefore J = I ∝ 0 is singly projective,
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as desired.

Conversely, assume that R is an FSP -ring and let I be a P -flat ideal of A. We

claim that J = I ∝ 0 is a P -flat ideal of R. Indeed, let (x, 0) be an element

of I ∝ 0 and (d, e) be an element of A ∝ E such that (x, 0)(d, e) = (0, 0).

Then xd = 0, since I is P -flat, then there exists (yi)i=1,...,n a family of elements

of I and (ci)i=1,...,n a family of elements of (0 : d) such that x =
∑n

i:=1 yici.

Therefore (x, 0) = (
∑n

i:=1 yici, 0) =
∑n

i:=1(yi, 0)(ci, 0), where (yi, 0) ∈ I ∝ 0 and

(d, e)(ci, 0) = (0, 0) for all 1 ≤ i ≤ n and so I ∝ 0 is P -flat. Hence, J is a singly

projective ideal of R, since R is an FSP -ring. We claim that I is a singly pro-

jective ideal of A. Indeed, let I ′ be a principal sub-ideal of I, then I ′ ∝ 0 is a

principal sub-ideal of J . Since J is singly projective and (I ∝ 0 = J) ∼= I, then

there exists a free R module F (F ' RS for some finite index set S), a morphism

ϕ1 : I ′ → F and a morphism ψ1 : F → I such that ψ1◦ϕ1 = idI′ . Consider the mor-

phisms f , ϕ and ψ defined by f : AS → F (∼= RS), where f((ai)i∈S) = ((ai, 0)i∈S),

ϕ : I ′ → AS such that ϕ1 = (f ◦ ϕ) and ψ : AS → I, such that ψ = (ψ1of). Then

ψ ◦ ϕ = ψ1 ◦ f ◦ ϕ = ψ1 ◦ ϕ1 = idI′ . Therefore, I is singly projective and this

completes the proof of Theorem 2.12. �

Our next (and last) results establish the transfer of FSP property to a particular

homomorphic image.

Theorem 2.17. Let R be a ring and let I be a pure ideal of R. If R is an FSP -ring,

then R/I is an FSP -ring.

Before proving Theorem 2.17, we establish the following lemma.

Lemma 2.18. Let 0→ A→ B → C → 0 be an exact sequence of R-modules. If C

and A are P -flat, then so is B.

Proof. Let a be a nonzero element of R. Consider the exact and commutative

diagram with exact rows:

0 -ker(i⊗ 1B) - 0

? ? ?
Ra⊗A - Ra⊗B -Ra⊗ C 0-

? ? ?

i⊗ 1A i⊗ 1B i⊗ 1C

0 -R⊗A - R⊗B -R⊗ C - 0
1R ⊗ u
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where i ⊗ 1A, i ⊗ 1C and 1R ⊗ u are injective since R, A and C are P -flat and

the snake lemma shows that the sequence 0→ ker(i⊗ 1B)→ 0 is exact. Hence, B

is P -flat. �

Proof of Theorem 2.17.

Let R be an FSP -ring and let J/I be a P -flat ideal of R/I. Then J is a P -flat

ideal of R by Lemma 2.18 (using the exact sequence 0 → I → J → J/I → 0)

where I and J/I are P -flat R-modules (since I is a pure ideal of R). Since R is an

FSP -ring, then J is singly projective. The epimorphism p : J → J/I is singly split

since I is a pure submodule of J (by [3, p. 114]). Hence, J/I is a singly projective

R-module by [3, Corollary 13]. Let K/I be a principal sub-ideal of J/I, then there

exists a free R-module F , a morphism ϕ : K/I → F and a morphism ψ : F → J/I

such that ψ◦ϕ = idK/I . It follows that (ψ⊗idR/I)◦(ϕ⊗1R/I)(x) = x. We get that

J/I is a singly projective ideal of R/I. Hence, R/I is an FSP -ring, as desired. �
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