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ABSTRACT. Let D be an integral domain and S be a multiplicative subset of
D. Then given a semistar operation x on D, we introduced the S-x-Noetherian
domains, where % is the stable semistar operation of finite type associated to
*. Among other things, we provide many different characterization for S-*-
Noetherian domains by focusing on primary decomposition, weak Bourbaki
associated primes and Zariski-Samuel associated primes of the S-saturation
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1. Introduction

In [2], the authors introduced the concept of “almost finitely generated” to study
Querré’s characterization of divisorial ideals in integrally closed polynomial rings.
Then Anderson and Dumitrescu [1], introduced a general concept of S-Noetherian
rings. Let R denote a commutative ring with identity and S a multiplicative subset
of R. Then R is called an S-Noetherian ring if every ideal of R is S-finite, in the
sense that there exist an s € S and some finitely generated subideal J of I such
that sI C J. Hence the authors of [1], proved several different results which also
generalize well-known results on Noetherian rings. Recently in [13], the authors
extended the concept of S-Noetherian domains to that of S-strong Mori domain,
which is at the same time a generalization of strong Mori domains. An integral
domain D is said to be S-strong Mori domain, if for each nonzero subideal I of D,
there exist an s € S and a finitely generated ideal J of D such that sI C J¥ C [
where w is the w-operation on D.

Semistar operations over an integral domain were introduced in 1994 by Okabe
and Matsuda [14], to generalize the concept of star operation (in the sense of [10,

Section 32]). Many classical properties of integral domains were generalized to the
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case of a general semistar operation. El Baghdadi, Fontana and Picozza [5], consid-
ered the Semistar-Noetherian domains, i.e. those domains in which the Ascending
Chain Condition holds for quasi-semistar-ideals, in order to introduce the notion
of semistar Dedekind domains. Picozza [15], investigated semistar-Noetherian do-
mains in the case of stable semistar operation, that is, semistar operations dis-
tributing over finite intersections, and proved many results which generalize clas-
sical theorems of the theory of Noetherian domains. A more accurate review has
been done by Fusacchia [9], to extend the work of Heinzer and Ohm [11], on locally
Noetherian rings to semistar-Noetherian domains, with respect to a stable semistar
operation of finite type.

Throughout D is an integral domain with quotient field K and S C D is a
multiplicative set.

The goal of this note is to introduce S-semistar-Noetherian (S-*x-Noetherian)
domains. We focus on the case where the semistar operation x is stable and of fi-
nite type. We study some basic property of S-x-Noetherian domains and state the
relation between an S-x-Noetherian domain and an S-Noetherian domain. More-
over, we prove the S-*-Noetherian version of Cohen’s Theorem, that states that a
domain is Noetherian if and only if each prime ideal is finitely generated [12, The-
orem 8|, and provide many different characterizations of S-x-Noetherian domains
that use weak Bourbaki associated primes and Zariski-Samuel associated primes,
which is the main goal of this work. Also we prove a Hilbert basis Theorem for
S-x-Noetherian domains and then we show that if S is anti-archimedean, then D
is S-x-Noetherian if and only if the x-Nagata domain of D is S-Noetherian.

We first review some basic background on semistar operations. Let F(D) be
the set of all nonzero D-submodule of K, F(D) be the set of all nonzero fractional
ideals of D, and f(D) be the set of all nonzero finitely generated fractional ideals
of D. Obviously, f(D) C F(D) C F(D). As in [14], a semistar operation on D is
amap x: F(D) — F(D), E — E*, such that, for all 0 # x € K and E, F € F(D),

the following properties are satisfied

*1 : (zE)* =aE*;
*o ¢ FE C F implies that E* C F*;
*3 : FC E* and E** := (E*)* = E*.

Given a semistar operation * and an integral ideal I of D, we call the integral ideal
I* N D the quasi-x-closure of I, and say that I is a quasi-x-ideal, if I = I*ND. A
quasi-x-prime ideal of D is a prime ideal of D which is quasi-x-ideal and a quasi-

*x-maximal ideal of D is an ideal of D which is maximal in the set of all proper
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quasi-x-ideals of D. We denote by QMax*(D) (resp., QSpec*(D)) the set of all
quasi-+-maximal ideals of D (resp., quasi-x-prime ideals).

If x; and % are two semistar operations on D, one says that x; < xo if E** C E*2
for each E € F(D). This is equivalent to say that (E*1)*2 = (E*2)*t = E*2 for
each £ € F(D). Let dp denote the identity (semi)star operation on D. Clearly,
dp < x for all semistar operation x on D. Let x be a semistar operation on D. For
every E € F(D), set

E* =| {F*|F CE,F € f(D)}.

It is easy to see that x¢ is a semistar operation on D, and y is called the semistar
operation of finite type associated to x. Note that (x)s = *y. A semistar operation
* is said to be of finite type if x = %; in particular % is of finite type.

A semistar operation on D is said to be stable if (E N F)* = E* N F* for every
E,F € F(D). Starting from a semistar operation x, it is possible to define the

following associated semistar operation:
E* = J{(E: D] e F*nf(D)},

where F* denotes the set of ideals J of D such that J* = D*. It is known that
is a stable semistar operation, with * < *. A semistar operation * is stable and of
finite type if and only if x = % (see [6, Theorem 2.10 and Corollary 3.9]).

If A is a nonempty subset of the prime spectrum Spec(D) of D, we can define a
semistar operation xa on D, defined by E*4 =\, EDp for each E € F(D). A
semistar operation * on D is said to be spectral if there exists A C Spec(D) such
that x = xao. Then * is stable. Finally, we recall that given a semistar operation x,
the induced operation % is always spectral, defined by the family A := QMax™/ (D);

le.,
E* := (\{EDp|P € QMax*/ (D)}, for each E € F(D).

Let X be an indeterminante over K. For each f € K[X], we let ¢p(f) denote
the content ideal of the polynomial f, i.e., the (fractional) ideal of D generated by
the coefficients of f. Let = be a semistar operation on D. If N, := {g € D[X]|g #
0 and ¢p(g)* = D*}, then N, = D[X]\U{P[X]|P € QMax*(D)} is a saturated
multiplicative subset of D[X]. The ring of fractions

Na(D,*) := D[X]x

*

is called the x-Nagata domain (of D with respect to the semistar operation x).
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The most widely studied semistar operations on D have been the identity d, v,
t := vy, and w := ¥ operations, where E? := (E~1)~!, with E=! := (D : E) :=
{z € K|zE C R}, for E € F(D).

2. S-x-Noetherian domains
Throughout this section % is a semistar operation on D.

Definition 2.1. An integral domain D is said to be S-x-Noetherian, in the case
every nonzero ideal I of D is S-x-finite, in the sense that there exist an s € S and
a finitely generated ideal J of D such that sI C J* C I*.

It is clear that if x = dp, then an S-x-Noetherian domain is just an S-Noetherian
domain and if x = w, then an S-x-Noetherian domain is an S-strong Mori domain.
Assume that x; < %o are two semistar operations on D. Then it is easy to see that
if D is an S-x1-Noetherian, then D is an S-x3-Noetherian. In particular every S-
Noetherian domain is an S-x-Noetherian domain for every semistar operation x on
D. If % is a (semi)star operation (that is if D* = D) and if D is an S-*-Noetherian

domain, then D is an S-strong Mori domain.

Remark 2.2. (1) Let I be an S-xy-finite ideal of D. In the same way as in
the proof of [8, Lemma 2.3], we can choose a finitely generated subideal J

of I such that sI C J* C I*f for some s € S.
(2) Let S be the saturation of S. Then by the same argument of [13, Propo-
sition 1.3(2)], D is an S-x-Noetherian domain if and only if D is an S-x-

Noetherian domain.

The following proposition shows the relation between an S-x-Noetherian domain
and an S-Noetherian domain. Recall that D has x-finite character if every element

of D is contained in finitely many element of QMax* (D).

Proposition 2.3. The following assertions hold.
(1) If D is an S-x-Noetherian domain, then Dp is S-Noetherian for each P €
QSpec* (D).
(2) Suppose that D has *-finite character and Dy is an S-Noetherian domain
for each M € QMax*(D). Then D is S-*-Noetherian.

Proof. (1) Assume that D is an S-*-Noetherian domain, and let P € QSpec*(D).
Let I be a non-zero ideal of D. If IDp = Dp, then for every s € S we have
sIDp C sDp C IDp. So we may assume that I Dp is a proper ideal of Dp. Since D

is an S-*-Noetherian domain, there exist an s € S and a finitely generated subideal
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J of I such that sI C J* C I*. By [6, Lemma 4.1(2)] we have J*Dp = JDp and
I*Dp = IDp. Thus we have sIDp C J*Dp = JDp C I*Dp = IDp, which shows
that IDp is S-finite. So Dp is an S-Noetherian domain.

(2) Let I be a nonzero ideal of D and 0 # a € I. Then a is contained in only
finitely many quasi-x-maximal ideal of D, say My, -+ ,M,. Fix ani € {1,--- ,n}.
Since Dy, is S-Noetherian, there exist s; € S and a finitely generated subideal J;
of I such that s;,IDy;, C J;Dpy,. Let s=81---s, and set J = (a) + J1 + -+ + Jy.
Then sIDy;, C JDyy, for every 1 < i < n. Now suppose that M’ € QMax;(D)
and M’ # M; for each 1 < @ < n. Thus a is a unit element of Dy, so that
IDyy = Dy = JDypyr. Therefore for each M € QM&X;(D), sIDy C JDyy.

Hence we have
sI*=s( () IDu)C (1 sIDuC (|l JDu=J"
M eQMax* (D) M eQMax* (D) M eQMax* (D)

Note that J is a finitely generated subideal of I. Hence sI C J* C I*. Thus D is

an S-+x-Noetherian domain. O

In the next theorem we prove the S-x-Noetherian analogue of Cohen’s Theorem.

We need the following lemma.

Lemma 2.4. Let I be an ideal of D which is mazimal among non-S-x-finite ideals
of D. Then I is a prime ideal of D with I NS = ().

Proof. Assume in the contrary that I is not prime. Then there exist a,b € D\I
such that ab € I. By maximality of I, (I,a) is S-*-finite. Hence there exists an
s € S such that s(I,a) C (ry + ady,--- ,7 + ady)* for some r1,---,r; € I and
some dy, -+ ,d; € D. On the other hand (I :p a) is an S-x-finite ideals of D,
since it contains I and b. Hence there is t € S such that ¢(I :p a) € (q1, -+ ,qn)*
for some q1,--- ,q, € (I :p a). Let z € I. Then sz € (11 + ady,--- ,7 + ad))*,
and there exists a finitely generated ideal J; of D such that J; = D* and szJ; C
(r1+ady,--- ,r +adp). Write Jy = (j1,- -+, jp). Then for each i =1,--- ,p, there

exist some u;1, -+ ,u; € D such that
sxj; = upn(r1 +ady) + - +uy(ry + ady).
Hence we have,
seJy =({wir (r +ady) + - +uy(r +ady)li = 1,--- ,p})

=({(usr1 + - +ugr) + a(uindy + - +ugdy))i = 1,--- , p}).
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Therefore ({u;1dy + -+ +uydili =1,--- ,p}) C (I :p a). Thus
t{upd + - +uadli=1,--- ,p}) Ct(I :p a) C (q1, - ,qn)".
Hence there exists a finitely generated ideal Jy of D such that J3 = D* and
t{uindy + - +uadili=1,--- ,p})J2 C(q1, -, qn)
Write Jy = (e1,--+ ,€y,). Then for each k=1,--- ,mandi=1,---,p, we have
tex(uindy + - +widy) = vikrq1 + -+ + Vikngn
for some vik1, -+, Vikn € D. Therefore
tho({uindy + -+ +ugdi|i=1,--- ,p})

=({vikrqr + - FViknqnli=1,--- ;pand k=1,--- ,m}).
Thus we obtain
steJiJ2 =({(uiry + - +uar) +a(undr + - +ugd)i =1, p}h)tda
C{wary + - Fuar)li=1,-- ,pHtJa + ({a(uind +--- +ugdy)i = 1,--- ,p})tJa
C(tri,-- s tri,aq1, -+ aqn).
Since z is arbitrary,
stlJyJy C (try,--- ,tri,aq1, -+ ,aqy) C 1.

Hence stI C (try,--- ,tr;,aqi, - ,aq,)* C I*. This indicate that I is S-*-finite,
which is a contradiction. Finally we show that TNS = (. If s € I NS, then
sI CsD C (sD); C I* so I is S-*-finite which is absurd. O

Theorem 2.5. An integral domain D is an S-x-Noetherian domain if and only if

every prime ideal disjoint from S is S-*-finite.

Proof. The only if part is clear by definition of S-x-Noetherian domain. For the
if part assume in the contrary that D is not an S-x-Noetherian domain. Then the
set T = {I|I is an ideal of D which is not S-*-finite } is not empty. Let {I,}aca
be a chain in 7 and set [ = {J,cp la- If I is S-x-finite, then there exist an s € S
and a finitely generated subideal J of I such that sI C J * C I*. Since J is finitely
generated, J C I, for some I, € T, so sl, C sI C J* C Ié this contradicts to
choice of T,. Hence T is not S-*-finite. Clearly I is an upper bound of {I,}sen so
by Zorn’s lemma, we can choose a maximal element P in 7. By Lemma 2.4, P is
a prime ideal of D which is disjoint from S hence by assumption P is an S-*-finite
which is absurd. (]
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Note that F(Dg) = {EDg|E € F(D)}. Thus given a semistar operation x on
D, we can define a semistar operation xg on Dg as follow; x5 : F(Dg) — F(Dsg)
such that (EDg)*s := E*Dg for each EDg € F(Dg). It is easy to check that if *

is stable and of finite type then xg is also stable and of finite type; i.e. g = (*xg).

Remark 2.6. If I is a quasi-x-ideal of D, then it is easy to see that IDg is a
quasi-xg-ideal of D. The converse hold when I is a prime ideal of D, indeed if

PDg is a quasi-xg-prime ideal of Dg, then we have
(P*QD)DS =P*DgNDg = (PDs)*S N Dg = PDg;

SO
P*NDC (P*ND)DsND=PDsND =P,

Thus P is a quasi-x-prime ideal of D.

A prime ideal P is said to be a weak Bourbaki associated prime ideal for an ideal
I of D (or simply a B,,-prime of I), if P is minimal over (I :p ) for some z € D\I.
Also P is said to be a Zariski-Samuel associated prime ideal for I (or simply a
ZS-prime of I), if it is the radical of some (I :p x). Obviously a ZS-prime ideal of
I is also a B,,-prime.

Our aim is to characterize the S-x-Noetherian domains using the notions of pri-
mary decomposition, weak Bourbaki associated primes and Zariski-Samuel associ-
ated primes. On the other hand G. Fusacchia [9], has characterized the *-Noetherian
domains with those notions, so we wish to link the notion of S-x-Noetherianity, with
that of *s-Noetherianity. For an ideal I of D, Satg(I) denotes the S-saturation of
I, that is Satg(I) := IDg N D.

Theorem 2.7. The integral domain D is S-x-Noetherian if and only if Dg is
*s-Noetherian, and for every ideal I of D, Satg(I)* = (I* :ps t) for somet € S.

Proof. Assume that D is S-x-Noetherian and let IDg be an ideal of Dg. Then
there exist an s € S and a finitely generated subideal J of I such that sI C J *C I,
Therefore IDs C J*Dg; so (IDs)*s C (J*Dg)*s = (JDg)*s. Thus (IDg)*s =
(JDg)*s. Since JDg is a finitely generated subideal of IDg, Dg is xs-Noetherian
by [5, Lemma 3.3]. Now let I be an ideal of D. Then there exists u € S such
that u Sats(I) C J* C Satg(I)* for some finitely generated subideal .J of Satg([).
Since J is finitely generated, there exists v € S such that vJ C I. So uv Satg(I) C
vJ* C I*. Hence Satg(I)* C (I* :ps uv). Now let x € (I* :ps uv). Then zuv € I*
and there exists a finitely generated ideal J' € F* such that zuvJ’ C I. Hence
xJ'Dg C IDg which implies that zJ’ C zSatgJ' C xJ'DsNaD C IDgN D* C
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(IDg)* N D* = (Sats I)*. Thus = € Satg(I)*. Therefore Satg(I)* = (I* :p: wv).
Thus the only if part is complete.

For the if part assume that Dg is xs-Noetherian, and for every ideal I of D,
Sats(I)* = (I* :ps t) for some t € S. Let I be an ideal of D. Then (IDg)*s =
(JDg)*s for some finitely generated subideal J of I. Let a € I. Then % € I*Dg =
J*Dg hence there exists u € S such that au € J*. Thus auJ’ C J for some finitely
generated ideal J’ of D such that J'* = D*. Hence aJ’Dg C JDg and we have,

aJ' Ca(J'DsnN D) CalJ'DsNaD C JDgN D = Satg(J).

Therefore a € Satg(J)* = (J* :ps t). Since a is an arbitrary element of I, we get
I C (J*:ps t) that is tI C J* C I*. Thus [ is S-*finite as required. O

Recall that a topological space A is said to be Noetherian if A satisfies the
descending chain condition on closed sets. Consider A C Spec(D) with the relative
topology induced by Zariski topology on Spec(D). We will call an intersection of
members of A a A-radical ideal. Recall that an ideal I of D is A-radically finite if
there exists a finitely generated ideal J C I such that I and J are contained in the
same members of A. Also A is a Noetherian topological space if and only if every

prime ideal of D is A-radically finite (see [16, Section 1]).

Lemma 2.8. Assume that P is the family of all quasi-*-prime ideals P such that
PnNS =0. If Dp is Noetherian for every P € P, and every quasi-x-ideal I with
INS =0 has finitely many minimal prime ideals, then every prime ideal Q of D
with QN S = 0 is P-radically finite.

Proof. Assume that IDg is a proper ideal of Dg. If I Dg is a quasi-*g-ideal, then
IDs = (IDs)** N Ds = (I* N D)Ds.

Thus (I* N D)Dg is a proper ideal of Dg. Therefore by assumption I* N D has
finitely many minimal prime ideals. Thus IDg has finitely many minimal prime
ideals. Let PDg be a quasi-xg-prime ideal of Dg. Then (Dg)pp, is Noetherian,
since by Remark 2.6, P is a quasi-kx-prime ideal of D, and by assumption, Dp is
Noetherian. Therefore by [9, Lemma 4.4], the family QSpec*s (Dg) of quasi-kg-
prime ideals of Dg is a Noetherian topological space; i.e. every prime ideal of Dg is
QSpec*s (Dg)-radically finite. Now let Q be a prime ideal of D such that @N.S = 0.
Then QDg is a prime ideal of Dg, thus there exists a finitely generated ideal J C Q
such that JDg and QDg are contained in the same members of QSpec*s (Dg). A
simple check shows that (Q and .J are contained in the same members of P; that is
Q is P-radically finite. O
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Now composing Theorem 2.7 with [9, Corollary 4.6], we get the following char-

acterization for S-x-Noetherian domains.

Corollary 2.9. The following are equivalent:
(1) D is S-*-Noetherian.
(2) The following hold:
(i) Dgs is *g-Noetherian.
(ii) For every ideal I of D, Sats(I)* = (I* :ps t) for somet € S.
(3) The following hold:
(i) Dp is Noetherian for every quasi-x-prime ideal P with PN .S = 0.
(ii) For every quasi-x-ideal I, with INS =0, IDg and Sats(I) admit a
primary decomposition.
(iii) For every ideal I of D, Sats(I)* = (I* :ps t) for somet € S.
(4) The following hold:
(i) Dp is Noetherian for every quasi-x-prime ideal P with PN S = 0.
(ii) For every quasi-x-ideal I, with I NS = (, Sats(I) and IDg have
finitely many ZS-prime ideals.
(iii) Ewery prime ideal P of D with PN S, is P-radically finite, where P is
the same as Lemma 2.8.
(iv) For every ideal I of D, Satg(I)* = (I* :ps t) for somet € S.
(5) The following hold:
(i) Dp is Noetherian for every quasi-x-prime ideal P with PN S = 0.
(ii) Fvery quasi-x-ideal I, with INS = 0, has finitely many By, -prime ideal
P such that PNS = 0.
(iii) For every ideal I of D, Sats(I)* = (I* :ps t) for some t € S.

Proof. (1) = (2) Follows by Theorem 2.7.

(2) = (3) (i) Let P be a quasi-*-prime ideal of D with PN S = (). Then PDg is
a quasi-xg-prime ideal of Dg. Since by assumption Dg is a *g-Noetherian domain,
[9, Corollary 4.6] implies that, (Dg)pps = Dp is a Noetherian domain.

(ii) Let I be a quasi-x-ideal of D. Then IDg is a quasi-*g-ideal of Dg. Hence
by [9, Corollary 4.6], IDg admits a primary decomposition. Suppose that IDg =
N, Q;Ds for some P;-primary ideals Q; of D such that P, NS = (). Therefore
IDsND = (N, Q:Ds) N D = N_,(Q:Ds N D) = (i, Qi. Hence Satg(I)
admits a primary decomposition and so has finitely many minimal prime ideals
which implies that I also has finitely many minimal prime ideals.

(3) = (4) (ii) is clear, since if every ideal has a primary decomposition, then it

must have finitely many ZS-prime ideals (see [3, Theorem 4.5]).
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(iii) hold from Lemma 2.8.

(4) = (5) (ii) Let PDg be a quasi-*g-ideal of Dg. Then by Remark 2.6, P is a
quasi-x-prime ideal of D. Hence by assumption (i), Dp = (Dgs)pps is Noetherian.
On the other hand it is easy to see that QSpec*s (Dg) is a Noetherian topological
space if and only if every prime ideal Q of D with Q NS = 0 is P-radically finite.
Let I be a quasi-*-ideal of D with I NS = (. Thus [9, Corollary 4.6] implies that,
IDg has finitely many B,,-prime ideals. Therefore I has finitely many B,,-prime
ideals P such that P NS = 0, since the B,,-prime ideals of IDg are corresponding
to the B,,-prime ideals of I which don’t meet S (see [11, Proposition 1.2]).

(5) = (1) Assumptions (i) and (ii) together with [9, Corollary 4.6] imply that,
Dg is xg-Noetherian. Thus the result follows by (iii) and Theorem 2.7. O

In the above characterization, taking * = w, we get a new characterization for

S-strong Mori domains.

Corollary 2.10. The following are equivalent:

(1) D is an S-strong Mori domain.
(2) The following hold:
(i) Dp is Noetherian for every quasi-w-prime ideal P with PN .S = {).
(ii) For every quasi-w-ideal I, with INS =0, IDg and Sats(I) admit a
primary decomposition.
(iii) For every ideal I of D, Satg(I)” = (I" :p t) for somet € S.
(3) The following hold:
(i) Dp is Noetherian for every quasi-w-prime ideal P with PN .S = (.
(ii) For every quasi-w-ideal I, with I NS = 0, Sats(I) and IDg have
finitely many ZS-prime ideals.
(iii) Fwvery prime ideal P of D with PN S, is P-radically finite, where P is
the family of quasi-w-prime ideals P such that PN S = ().
(iv) For every ideal I of D, Satg(I)” = (I" :p t) for somet € S.
(4) The following hold:
(i) Dp is Noetherian for every quasi-w-prime ideal P with PN .S = {).
(ii) Fvery quasi-w-ideal I, with I NS = 0, has finitely many B, -prime
ideal P such that PN S = ().
(iii) For every ideal I of D, Satg(I)” = (I" :p t) for somet € S.

Now we prove a Hilbert Basis Theorem for S-*-Noetherian domains. To this
purpose we use the semistar operation x[X] on D[X], induced canonically from the

semistar operation x on D, introduced by the second author [17] (see also [18]).
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Theorem 2.11. [17, Theorem 2.1] Let X and Y be two indeterminate over D and
let x be a semistar operation on D. Set Dy := D[X], and K, := K(X) and take
the following subset of Spec(D1):

¥ :={Q1 € Spec(D1)|Q1 N D = (0) or (Q, N D)*/ ¢ D*}.
Set 61 := §(07) := D1 [Y\(U{@Q:1[Y]|Q1 € ©1}) and
E°®t .= E[Y]e: N Ky, for all E € F(Dy).

(a) The mapping *[X] :=Og:: F(D1) = F(D1), E — E°Si is a stable semis-
tar operation of finite type on D[X], i.e., x[X] = *[X].

(b) #[X] = x/[X] = #[X].

(c) *[X] < [*], where [*] is the semistar operation canonically associated to

introduced in [4].
(¢) dp[X] =dpix).

Remark 2.12. Assume that J is an ideal of D such that J* = D*. Set J, := J[X].
Thus (J1ND)* = J* = D*. Therefore J;[Y|N&F # 0; so that J; Yle: = Di[Y]s

Hence using the notation of Theorem 2.11 we get;

*
1

JIX] = 11 [Y]g: N Ky = Dy[Y]g: N Ky = DX

On the other hand if JIX|*"XI = D[X]*X]] then by Theorem 2.11(c), JX|* =
D[X]M. Thus by [4, Theorem 2.3(c)], J* = D*.

Recall that a multiplicative subset S of an integral domain D is anti-archimedean
if N, 8"D NS # 0 for every s € S.

Theorem 2.13. Let S be an anti-archimedean subset of D. Then D is S-%-
Noetherian if and only if the polynomial ring D[X] is S-x[X]-Noetherian.

Proof. Assume that D is S-*-Noetherian and A is a nonzero ideal of D[X]. For
each h € N suppose that I is the ideal of D generated by the set of leading
coeflicients of the polynomials in A of degree less than or equal to h. Since D is
S-*-Noetherian, each I}, is S-*-finite, that is for each h € N there exist s;, € S and a
finitely generated ideal Jp, C I of D such that s, I, C J;f - I,f. Note that Ip = AN
DCL C- -, thus I = Uh>0 Iy, is an ideal of D. Therefore there exist s € S and a
finitely generated ideal J of D such that sI C J* C I*. Since J is finitely generated,
there exists m € N such that J C I,,,. Let J = (b1, --,br) and assume that
fi, -+, fr are polynomials in A having leading coefficients by, --- , by and degrees

ny,--- ,ng respectively. For each h < m set by, -, bk, n the generators of Jj
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and let g1, -+, gk, n be polynomials in A of degrees nyp,--- ,ng, » which have
bih, -+, b, .n as leading coeflicients respectively. Let f € A with leading coefficient
a and degree n. Then a € I and sa € sI C J* = (by,--- ,bg)*. Therefore there
exists a finitely generated ideal Q of D such that Q* = D* and saQ C (by,---by).
Assume that @ = (dy,---,d.) so sad; = Z?erijbj for each ¢ = 1,---,z and
some r;; € D. If n > m, then we set g; = disf — Z?Zl rij f; X" for each
i =1,---,z. Then g; € A and has degree strictly less than n. If we still have
degg; > m for some i € {1,---,z}, we repeat the same process. After finitely
many steps, we can find a finitely generated ideal Q' of D such that (Q')* = D*
and an integer ¢ > 1 such that Q's?f C (f1,---, fx)D[X] + T, where T denotes
the set of all polynomials in A of degree less than or equal to m. Now let FF € T

with leading coefficient b and degree n’ < m; so that b € I,,,. Therefore s,,b €

SmIm C Jf = (bim, -+ b, .m)*. Thus there exists a finitely generated ideal @Q;
of D such that QF = D* and s,,bQ; C (01,my -+ » by m). Let Q1 = (e1,--- ,ey).
Then s,,be; = Z?gl U;jbjm for each ¢ =1,--- ,y and some u;; € D. Now assume

that G; = s,, Fe; — Z?’:”l uijgj’mX"/_”fvm for each i = 1,--- ,y. Note that G; has
degree strictly less than F' so G; € T and the leading coefficient of G; is contained
in I,_1 for each ¢ = 1,--- ,y. We repeat this process for G; for all t = 1,--- ,y.
After finitely many steps we can find a finitely generated ideal @} of D such that
(Q))* = D* and tFQ} C B, where B := ({g1.n,"** s Gkp.n|h = 1,--+ ,m})D[X] and
t = $182...8m,. Therefore tFQ[X] C B. Note that Q'[X] and Q}[X] are finitely
generated ideals of D[X] and by Remark 2.12, Q'[X*IX] = Q4 [X]*¥] = D[X]*IX].
Thus tF € B*X] that is tT C B*IX]. Let v € Nis1 s'D NS therefore

Q'[X]tof Ct(f1,-+ , fm) D[X] + tTD[X]

C(fi,+++  fm) DIX] + B

Thus tvf € ((fi,--, fm)D[X] + BN = ((f1,--- | fn)D[X] + B)*X]. Since
(f1,-+, fm)D[X]+ B is a finitely generated subideal of A, A is S-x[X]-finite. Thus
D[X] is an S-x[X]-Noetherian domain.

Conversely assume that D[X] is S-x[X]-Noetherian and I is a nonzero ideal of D.
By Theorem 2.11(c), D[X] is an S-[*]-Noetherian domain. Therefore ID[X] is an
S-[*]-finite ideal of D[X]. So there exist an s € S and a finitely generated subideal
J of I such that sID[X] C JD[X]¥ C ID[X]*. Note that ED[X]* = E*D[X]
for every E € F(D) [4, Theorem 2.3(d)]. Thus sI C J* C I*, that is, I is S-*-finite
ideal of D. Thus D is an S-*-Noetherian domain. g
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Remark 2.14. Let S be an anti-archimedean subset of D. Since %[ X]| < [x], it
is easy to see that D is S-%-Noetherian if and only if the polynomial ring D[X] is
S-[x]-Noetherian.

Theorem 2.15. If S is an anti-archimedean subset of an integral domain D, then

D is S—%-Noetherian if and only if Na(D,x) is an S-Noetherian domain.

Proof. Assume that D is S-x-Noetherian. Let INa(D,*) be a non-zero ideal
of Na(D,«), where I is an ideal of D[X]. By Theorem 2.13, D[X] is S-x[X]-
Noetherian. So there exist s € S and a finitely generated subideal J of I such
that sI C J*X1 C "X Now let % := %5 be the spectral semistar operation
on D[X] defined by the set A := {PD[X]|P € QMax*(D)}. Then x[X] <
(cf. [15, Proposition 3.4(1)]). Hence (J*X)* = J* and (I*X)* = I* therefore
sI C J* C I*; so sINa(D,x) C J*Na(D,*) C I*Na(D, ). Now we have
I"Na(D,x)=( ()|  ID[X]pppx)) Na(D,)
PEQMax* (D)

=( ﬂ (ID[X]N*)PD[X]N* )Na(D, %)
PeQMax* (D)

L(I'Na(D,*)) Na(D,+) = I Na(D, ).

(for (1) see the proof of [7, Proposition 3.4(1)]). Similarly we can show that
J*Na(D,*) = JNa(D,x). Therefore we get sI Na(D,*) C JNa(D,*) C I Na(D, *),
that is, Na(D, *) is an S-Noetherian domain.

Conversely assume that Na(D, %) is an S-Noetherian domain. Let I be a nonzero
ideal of D. Then there exist an s € S and a finitely generated subideal J of ID[X]
such that sI Na(D,*) C JNa(D,*) C INa(D,*). Let a € I. Then sag € J for
some g € N,. Hence (sa)cp(g) C c¢p(J). Since cp(g) is a finitely generated ideal
of D with c¢p(g9)* = D*, sa € (cp(J))*. As a is an arbitrary element of I, we get
sI C (ep(J))*. Note that cp(J) is a finitely generated subideal of I hence I is

S-*-finite as required. O
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