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Abstract. Let D be an integral domain and S be a multiplicative subset of

D. Then given a semistar operation ? on D, we introduced the S-?̃-Noetherian

domains, where ?̃ is the stable semistar operation of finite type associated to

?. Among other things, we provide many different characterization for S-?̃-

Noetherian domains by focusing on primary decomposition, weak Bourbaki

associated primes and Zariski-Samuel associated primes of the S-saturation

of a given quasi-?̃-ideal I of D.
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1. Introduction

In [2], the authors introduced the concept of “almost finitely generated” to study

Querré’s characterization of divisorial ideals in integrally closed polynomial rings.

Then Anderson and Dumitrescu [1], introduced a general concept of S-Noetherian

rings. Let R denote a commutative ring with identity and S a multiplicative subset

of R. Then R is called an S-Noetherian ring if every ideal of R is S-finite, in the

sense that there exist an s ∈ S and some finitely generated subideal J of I such

that sI ⊆ J . Hence the authors of [1], proved several different results which also

generalize well-known results on Noetherian rings. Recently in [13], the authors

extended the concept of S-Noetherian domains to that of S-strong Mori domain,

which is at the same time a generalization of strong Mori domains. An integral

domain D is said to be S-strong Mori domain, if for each nonzero subideal I of D,

there exist an s ∈ S and a finitely generated ideal J of D such that sI ⊆ Jw ⊆ Iw,

where w is the w-operation on D.

Semistar operations over an integral domain were introduced in 1994 by Okabe

and Matsuda [14], to generalize the concept of star operation (in the sense of [10,

Section 32]). Many classical properties of integral domains were generalized to the
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case of a general semistar operation. El Baghdadi, Fontana and Picozza [5], consid-

ered the Semistar-Noetherian domains, i.e. those domains in which the Ascending

Chain Condition holds for quasi-semistar-ideals, in order to introduce the notion

of semistar Dedekind domains. Picozza [15], investigated semistar-Noetherian do-

mains in the case of stable semistar operation, that is, semistar operations dis-

tributing over finite intersections, and proved many results which generalize clas-

sical theorems of the theory of Noetherian domains. A more accurate review has

been done by Fusacchia [9], to extend the work of Heinzer and Ohm [11], on locally

Noetherian rings to semistar-Noetherian domains, with respect to a stable semistar

operation of finite type.

Throughout D is an integral domain with quotient field K and S ⊆ D is a

multiplicative set.

The goal of this note is to introduce S-semistar-Noetherian (S-?-Noetherian)

domains. We focus on the case where the semistar operation ? is stable and of fi-

nite type. We study some basic property of S-?̃-Noetherian domains and state the

relation between an S-?̃-Noetherian domain and an S-Noetherian domain. More-

over, we prove the S-?̃-Noetherian version of Cohen’s Theorem, that states that a

domain is Noetherian if and only if each prime ideal is finitely generated [12, The-

orem 8], and provide many different characterizations of S-?̃-Noetherian domains

that use weak Bourbaki associated primes and Zariski-Samuel associated primes,

which is the main goal of this work. Also we prove a Hilbert basis Theorem for

S-?̃-Noetherian domains and then we show that if S is anti-archimedean, then D

is S-?̃-Noetherian if and only if the ?-Nagata domain of D is S-Noetherian.

We first review some basic background on semistar operations. Let F(D) be

the set of all nonzero D-submodule of K, F(D) be the set of all nonzero fractional

ideals of D, and f(D) be the set of all nonzero finitely generated fractional ideals

of D. Obviously, f(D) ⊆ F(D) ⊆ F(D). As in [14], a semistar operation on D is

a map ? : F(D)→ F(D), E 7→ E?, such that, for all 0 6= x ∈ K and E,F ∈ F(D),

the following properties are satisfied

?1 : (xE)? = xE?;

?2 : E ⊆ F implies that E? ⊆ F ?;

?3 : E ⊆ E? and E?? := (E?)? = E?.

Given a semistar operation ? and an integral ideal I of D, we call the integral ideal

I? ∩D the quasi-?-closure of I, and say that I is a quasi-?-ideal, if I = I? ∩D. A

quasi-?-prime ideal of D is a prime ideal of D which is quasi-?-ideal and a quasi-

?-maximal ideal of D is an ideal of D which is maximal in the set of all proper
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quasi-?-ideals of D. We denote by QMax?(D) (resp., QSpec?(D)) the set of all

quasi-?-maximal ideals of D (resp., quasi-?-prime ideals).

If ?1 and ?2 are two semistar operations on D, one says that ?1 ≤ ?2 if E?1 ⊆ E?2

for each E ∈ F(D). This is equivalent to say that (E?1)?2 = (E?2)?1 = E?2 for

each E ∈ F(D). Let dD denote the identity (semi)star operation on D. Clearly,

dD ≤ ? for all semistar operation ? on D. Let ? be a semistar operation on D. For

every E ∈ F(D), set

E?f =
⋃
{F ?|F ⊆ E,F ∈ f(D)}.

It is easy to see that ?f is a semistar operation on D, and ?f is called the semistar

operation of finite type associated to ?. Note that (?f )f = ?f . A semistar operation

? is said to be of finite type if ? = ?f ; in particular ?f is of finite type.

A semistar operation on D is said to be stable if (E ∩ F )? = E? ∩ F ? for every

E,F ∈ F(D). Starting from a semistar operation ?, it is possible to define the

following associated semistar operation:

E?̃ =
⋃
{(E : J)|J ∈ F? ∩ f(D)},

where F? denotes the set of ideals J of D such that J? = D?. It is known that ?̃

is a stable semistar operation, with ?̃ ≤ ?. A semistar operation ? is stable and of

finite type if and only if ? = ?̃ (see [6, Theorem 2.10 and Corollary 3.9]).

If ∆ is a nonempty subset of the prime spectrum Spec(D) of D, we can define a

semistar operation ?∆ on D, defined by E?∆ =
⋂
P∈∆ EDP for each E ∈ F(D). A

semistar operation ? on D is said to be spectral if there exists ∆ ⊆ Spec(D) such

that ? = ?∆. Then ? is stable. Finally, we recall that given a semistar operation ?,

the induced operation ?̃ is always spectral, defined by the family ∆ := QMax?f (D);

i.e.,

E?̃ :=
⋂
{EDP |P ∈ QMax?f (D)}, for each E ∈ F(D).

Let X be an indeterminante over K. For each f ∈ K[X], we let cD(f) denote

the content ideal of the polynomial f , i.e., the (fractional) ideal of D generated by

the coefficients of f . Let ? be a semistar operation on D. If N? := {g ∈ D[X]|g 6=
0 and cD(g)? = D?}, then N? = D[X]\

⋃
{P [X]|P ∈ QMax?̃(D)} is a saturated

multiplicative subset of D[X]. The ring of fractions

Na(D, ?) := D[X]N?

is called the ?-Nagata domain (of D with respect to the semistar operation ?).
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The most widely studied semistar operations on D have been the identity d, v,

t := vf , and w := ṽ operations, where Ev := (E−1)−1, with E−1 := (D : E) :=

{x ∈ K|xE ⊆ R}, for E ∈ F(D).

2. S-?̃-Noetherian domains

Throughout this section ? is a semistar operation on D.

Definition 2.1. An integral domain D is said to be S-?-Noetherian, in the case

every nonzero ideal I of D is S-?-finite, in the sense that there exist an s ∈ S and

a finitely generated ideal J of D such that sI ⊆ J? ⊆ I?.

It is clear that if ? = dD, then an S-?-Noetherian domain is just an S-Noetherian

domain and if ? = w, then an S-?-Noetherian domain is an S-strong Mori domain.

Assume that ?1 ≤ ?2 are two semistar operations on D. Then it is easy to see that

if D is an S-?1-Noetherian, then D is an S-?2-Noetherian. In particular every S-

Noetherian domain is an S-?-Noetherian domain for every semistar operation ? on

D. If ? is a (semi)star operation (that is if D? = D) and if D is an S-?̃-Noetherian

domain, then D is an S-strong Mori domain.

Remark 2.2. (1) Let I be an S-?f -finite ideal of D. In the same way as in

the proof of [8, Lemma 2.3], we can choose a finitely generated subideal J

of I such that sI ⊆ J? ⊆ I?f for some s ∈ S.

(2) Let S be the saturation of S. Then by the same argument of [13, Propo-

sition 1.3(2)], D is an S-?-Noetherian domain if and only if D is an S-?-

Noetherian domain.

The following proposition shows the relation between an S-?̃-Noetherian domain

and an S-Noetherian domain. Recall that D has ?-finite character if every element

of D is contained in finitely many element of QMax?̃(D).

Proposition 2.3. The following assertions hold.

(1) If D is an S-?̃-Noetherian domain, then DP is S-Noetherian for each P ∈
QSpec?̃(D).

(2) Suppose that D has ?-finite character and DM is an S-Noetherian domain

for each M ∈ QMax?̃(D). Then D is S-?̃-Noetherian.

Proof. (1) Assume that D is an S-?̃-Noetherian domain, and let P ∈ QSpec?̃(D).

Let I be a non-zero ideal of D. If IDP = DP , then for every s ∈ S we have

sIDP ⊆ sDP ⊆ IDP . So we may assume that IDP is a proper ideal of DP . Since D

is an S-?̃-Noetherian domain, there exist an s ∈ S and a finitely generated subideal
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J of I such that sI ⊆ J ?̃ ⊆ I ?̃. By [6, Lemma 4.1(2)] we have J ?̃DP = JDP and

I ?̃DP = IDP . Thus we have sIDP ⊆ J ?̃DP = JDP ⊆ I ?̃DP = IDP , which shows

that IDP is S-finite. So DP is an S-Noetherian domain.

(2) Let I be a nonzero ideal of D and 0 6= a ∈ I. Then a is contained in only

finitely many quasi-?̃-maximal ideal of D, say M1, · · · ,Mn. Fix an i ∈ {1, · · · , n}.
Since DMi

is S-Noetherian, there exist si ∈ S and a finitely generated subideal Ji

of I such that siIDMi ⊆ JiDMi . Let s = s1 · · · sn and set J = (a) + J1 + · · ·+ Jn.

Then sIDMi
⊆ JDMi

for every 1 6 i 6 n. Now suppose that M ′ ∈ QMax?̃(D)

and M ′ 6= Mi for each 1 6 i 6 n. Thus a is a unit element of DM ′ so that

IDM ′ = DM ′ = JDM ′ . Therefore for each M ∈ QMax?̃(D), sIDM ⊆ JDM .

Hence we have

sI ?̃ = s(
⋂

M∈QMax?̃(D)

IDM ) ⊆
⋂

M∈QMax?̃(D)

sIDM ⊆
⋂

M∈QMax?̃(D)

JDM = J ?̃.

Note that J is a finitely generated subideal of I. Hence sI ⊆ J ?̃ ⊆ I ?̃. Thus D is

an S-?̃-Noetherian domain. �

In the next theorem we prove the S-?̃-Noetherian analogue of Cohen’s Theorem.

We need the following lemma.

Lemma 2.4. Let I be an ideal of D which is maximal among non-S-?̃-finite ideals

of D. Then I is a prime ideal of D with I ∩ S = ∅.

Proof. Assume in the contrary that I is not prime. Then there exist a, b ∈ D\I
such that ab ∈ I. By maximality of I, (I, a) is S-?̃-finite. Hence there exists an

s ∈ S such that s(I, a) ⊆ (r1 + ad1, · · · , rl + adl)
?̃ for some r1, · · · , rl ∈ I and

some d1, · · · , dl ∈ D. On the other hand (I :D a) is an S-?̃-finite ideals of D,

since it contains I and b. Hence there is t ∈ S such that t(I :D a) ⊆ (q1, · · · , qn)?̃

for some q1, · · · , qn ∈ (I :D a). Let x ∈ I. Then sx ∈ (r1 + ad1, · · · , rl + adl)
?̃,

and there exists a finitely generated ideal J1 of D such that J?1 = D? and sxJ1 ⊆
(r1 + ad1, · · · , rl + adl). Write J1 = (j1, · · · , jp). Then for each i = 1, · · · , p, there

exist some ui1, · · · , uil ∈ D such that

sxji = ui1(r1 + ad1) + · · ·+ uil(rl + adl).

Hence we have,

sxJ1 =({ui1(r1 + ad1) + · · ·+ uil(rl + adl)|i = 1, · · · , p})

=({(ui1r1 + · · ·+ uilrl) + a(ui1d1 + · · ·+ uildl)|i = 1, · · · , p}).
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Therefore ({ui1d1 + · · ·+ uildl|i = 1, · · · , p}) ⊆ (I :D a). Thus

t({ui1d1 + · · ·+ uildl|i = 1, · · · , p}) ⊆ t(I :D a) ⊆ (q1, · · · , qn)?̃.

Hence there exists a finitely generated ideal J2 of D such that J?2 = D? and

t({ui1d1 + · · ·+ uildl|i = 1, · · · , p})J2 ⊆ (q1, · · · , qn)

Write J2 = (e1, · · · , em). Then for each k = 1, · · · ,m and i = 1, · · · , p, we have

tek(ui1d1 + · · ·+ uildl) = vik1q1 + · · ·+ viknqn

for some vik1, · · · , vikn ∈ D. Therefore

tJ2({ui1d1 + · · ·+ uildl|i = 1, · · · , p})

=({vik1q1 + · · ·+ viknqn|i = 1, · · · , p and k = 1, · · · ,m}).

Thus we obtain

stxJ1J2 =({(ui1r1 + · · ·+ uilrl) + a(ui1d1 + · · ·+ uildl)|i = 1, · · · , p})tJ2

⊆({(ui1r1 + · · ·+ uilrl)|i = 1, · · · , p})tJ2 + ({a(ui1d1 + · · ·+ uildl)|i = 1, · · · , p})tJ2

⊆(tr1, · · · , trl, aq1, · · · , aqn).

Since x is arbitrary,

stIJ1J2 ⊆ (tr1, · · · , trl, aq1, · · · , aqn) ⊆ I.

Hence stI ⊆ (tr1, · · · , trl, aq1, · · · , aqn)?̃ ⊆ I ?̃. This indicate that I is S-?̃-finite,

which is a contradiction. Finally we show that I ∩ S = ∅. If s ∈ I ∩ S, then

sI ⊆ sD ⊆ (sD)?̃ ⊆ I ?̃ so I is S-?̃-finite which is absurd. �

Theorem 2.5. An integral domain D is an S-?̃-Noetherian domain if and only if

every prime ideal disjoint from S is S-?̃-finite.

Proof. The only if part is clear by definition of S-?̃-Noetherian domain. For the

if part assume in the contrary that D is not an S-?̃-Noetherian domain. Then the

set T = {I|I is an ideal of D which is not S-?̃-finite } is not empty. Let {Iα}α∈Λ

be a chain in T and set I =
⋃
α∈Λ Iα. If I is S-?̃-finite, then there exist an s ∈ S

and a finitely generated subideal J of I such that sI ⊆ J ?̃ ⊆ I ?̃. Since J is finitely

generated, J ⊆ Iα for some Iα ∈ T , so sIα ⊆ sI ⊆ J ?̃ ⊆ I ?̃α this contradicts to

choice of Iα. Hence I is not S-?̃-finite. Clearly I is an upper bound of {Iα}α∈Λ so

by Zorn’s lemma, we can choose a maximal element P in T . By Lemma 2.4, P is

a prime ideal of D which is disjoint from S hence by assumption P is an S-?̃-finite

which is absurd. �



ON S-SEMISTAR-NOETHERIAN DOMAINS 63

Note that F(DS) = {EDS |E ∈ F(D)}. Thus given a semistar operation ? on

D, we can define a semistar operation ?S on DS as follow; ?S : F(DS) → F(DS)

such that (EDS)?S := E?DS for each EDS ∈ F(DS). It is easy to check that if ?

is stable and of finite type then ?S is also stable and of finite type; i.e. ?̃S = (̃?S).

Remark 2.6. If I is a quasi-?-ideal of D, then it is easy to see that IDS is a

quasi-?S-ideal of D. The converse hold when I is a prime ideal of D, indeed if

PDS is a quasi-?S-prime ideal of DS, then we have

(P ? ∩D)DS = P ?DS ∩DS = (PDS)?S ∩DS = PDS ;

so

P ? ∩D ⊆ (P ? ∩D)DS ∩D = PDS ∩D = P.

Thus P is a quasi-?-prime ideal of D.

A prime ideal P is said to be a weak Bourbaki associated prime ideal for an ideal

I of D (or simply a Bw-prime of I), if P is minimal over (I :D x) for some x ∈ D\I.

Also P is said to be a Zariski-Samuel associated prime ideal for I (or simply a

ZS-prime of I), if it is the radical of some (I :D x). Obviously a ZS-prime ideal of

I is also a Bw-prime.

Our aim is to characterize the S-?̃-Noetherian domains using the notions of pri-

mary decomposition, weak Bourbaki associated primes and Zariski-Samuel associ-

ated primes. On the other hand G. Fusacchia [9], has characterized the ?̃-Noetherian

domains with those notions, so we wish to link the notion of S-?̃-Noetherianity, with

that of ?̃S-Noetherianity. For an ideal I of D, SatS(I) denotes the S-saturation of

I, that is SatS(I) := IDS ∩D.

Theorem 2.7. The integral domain D is S-?̃-Noetherian if and only if DS is

?̃S-Noetherian, and for every ideal I of D, SatS(I)?̃ = (I ?̃ :D?̃ t) for some t ∈ S.

Proof. Assume that D is S-?̃-Noetherian and let IDS be an ideal of DS . Then

there exist an s ∈ S and a finitely generated subideal J of I such that sI ⊆ J ?̃ ⊆ I ?̃.

Therefore IDS ⊆ J ?̃DS ; so (IDS)?̃S ⊆ (J ?̃DS)?̃S = (JDS)?̃S . Thus (IDS)?̃S =

(JDS)?̃S . Since JDS is a finitely generated subideal of IDS , DS is ?̃S-Noetherian

by [5, Lemma 3.3]. Now let I be an ideal of D. Then there exists u ∈ S such

that uSatS(I) ⊆ J ?̃ ⊆ SatS(I)?̃ for some finitely generated subideal J of SatS(I).

Since J is finitely generated, there exists v ∈ S such that vJ ⊆ I. So uv SatS(I) ⊆
vJ ?̃ ⊆ I ?̃. Hence SatS(I)?̃ ⊆ (I ?̃ :D?̃ uv). Now let x ∈ (I ?̃ :D?̃ uv). Then xuv ∈ I ?̃

and there exists a finitely generated ideal J ′ ∈ F? such that xuvJ ′ ⊆ I. Hence

xJ ′DS ⊆ IDS which implies that xJ ′ ⊆ xSatS J
′ ⊆ xJ ′DS ∩ xD ⊆ IDS ∩ D?̃ ⊆
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(IDS)?̃ ∩D?̃ = (SatS I)?̃. Thus x ∈ SatS(I)?̃. Therefore SatS(I)?̃ = (I ?̃ :D?̃ uv).

Thus the only if part is complete.

For the if part assume that DS is ?̃S-Noetherian, and for every ideal I of D,

SatS(I)?̃ = (I ?̃ :D?̃ t) for some t ∈ S. Let I be an ideal of D. Then (IDS)?̃S =

(JDS)?̃S for some finitely generated subideal J of I. Let a ∈ I. Then a
1 ∈ I ?̃DS =

J ?̃DS hence there exists u ∈ S such that au ∈ J ?̃. Thus auJ ′ ⊆ J for some finitely

generated ideal J ′ of D such that J ′?̃ = D?̃. Hence aJ ′DS ⊆ JDS and we have,

aJ ′ ⊆ a(J ′DS ∩D) ⊆ aJ ′DS ∩ aD ⊆ JDS ∩D = SatS(J).

Therefore a ∈ SatS(J)?̃ = (J ?̃ :D?̃ t). Since a is an arbitrary element of I, we get

I ⊆ (J ?̃ :D?̃ t) that is tI ⊆ J ?̃ ⊆ I ?̃. Thus I is S-?̃-finite as required. �

Recall that a topological space ∆ is said to be Noetherian if ∆ satisfies the

descending chain condition on closed sets. Consider ∆ ⊆ Spec(D) with the relative

topology induced by Zariski topology on Spec(D). We will call an intersection of

members of ∆ a ∆-radical ideal. Recall that an ideal I of D is ∆-radically finite if

there exists a finitely generated ideal J ⊆ I such that I and J are contained in the

same members of ∆. Also ∆ is a Noetherian topological space if and only if every

prime ideal of D is ∆-radically finite (see [16, Section 1]).

Lemma 2.8. Assume that P is the family of all quasi-?̃-prime ideals P such that

P ∩ S = ∅. If DP is Noetherian for every P ∈ P, and every quasi-?̃-ideal I with

I ∩ S = ∅ has finitely many minimal prime ideals, then every prime ideal Q of D

with Q ∩ S = ∅ is P-radically finite.

Proof. Assume that IDS is a proper ideal of DS . If IDS is a quasi-?̃S-ideal, then

IDS = (IDS)?̃S ∩DS = (I ?̃ ∩D)DS .

Thus (I ?̃ ∩ D)DS is a proper ideal of DS . Therefore by assumption I ?̃ ∩ D has

finitely many minimal prime ideals. Thus IDS has finitely many minimal prime

ideals. Let PDS be a quasi-?̃S-prime ideal of DS . Then (DS)PDS
is Noetherian,

since by Remark 2.6, P is a quasi-?̃-prime ideal of D, and by assumption, DP is

Noetherian. Therefore by [9, Lemma 4.4], the family QSpec?̃S (DS) of quasi-?̃S-

prime ideals of DS is a Noetherian topological space; i.e. every prime ideal of DS is

QSpec?̃S (DS)-radically finite. Now let Q be a prime ideal of D such that Q∩S = ∅.
Then QDS is a prime ideal of DS , thus there exists a finitely generated ideal J ⊆ Q

such that JDS and QDS are contained in the same members of QSpec?̃S (DS). A

simple check shows that Q and J are contained in the same members of P; that is

Q is P-radically finite. �
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Now composing Theorem 2.7 with [9, Corollary 4.6], we get the following char-

acterization for S-?̃-Noetherian domains.

Corollary 2.9. The following are equivalent:

(1) D is S-?̃-Noetherian.

(2) The following hold:

(i) DS is ?̃S-Noetherian.

(ii) For every ideal I of D, SatS(I)?̃ = (I ?̃ :D?̃ t) for some t ∈ S.

(3) The following hold:

(i) DP is Noetherian for every quasi-?̃-prime ideal P with P ∩ S = ∅.
(ii) For every quasi-?̃-ideal I, with I ∩ S = ∅, IDS and SatS(I) admit a

primary decomposition.

(iii) For every ideal I of D, SatS(I)?̃ = (I ?̃ :D?̃ t) for some t ∈ S.

(4) The following hold:

(i) DP is Noetherian for every quasi-?̃-prime ideal P with P ∩ S = ∅.
(ii) For every quasi-?̃-ideal I, with I ∩ S = ∅, SatS(I) and IDS have

finitely many ZS-prime ideals.

(iii) Every prime ideal P of D with P ∩S, is P-radically finite, where P is

the same as Lemma 2.8.

(iv) For every ideal I of D, SatS(I)?̃ = (I ?̃ :D?̃ t) for some t ∈ S.

(5) The following hold:

(i) DP is Noetherian for every quasi-?̃-prime ideal P with P ∩ S = ∅.
(ii) Every quasi-?̃-ideal I, with I∩S = ∅, has finitely many Bw-prime ideal

P such that P ∩ S = ∅.
(iii) For every ideal I of D, SatS(I)?̃ = (I ?̃ :D?̃ t) for some t ∈ S.

Proof. (1)⇒ (2) Follows by Theorem 2.7.

(2)⇒ (3) (i) Let P be a quasi-?̃-prime ideal of D with P ∩ S = ∅. Then PDS is

a quasi-?̃S-prime ideal of DS . Since by assumption DS is a ?̃S-Noetherian domain,

[9, Corollary 4.6] implies that, (DS)PDS
= DP is a Noetherian domain.

(ii) Let I be a quasi-?̃-ideal of D. Then IDS is a quasi-?̃S-ideal of DS . Hence

by [9, Corollary 4.6], IDS admits a primary decomposition. Suppose that IDS =⋂n
i=1 QiDS for some Pi-primary ideals Qi of D such that Pi ∩ S = ∅. Therefore

IDS ∩ D = (
⋂n
i=1 QiDS) ∩ D =

⋂n
i=1(QiDS ∩ D) =

⋂n
i=1 Qi. Hence SatS(I)

admits a primary decomposition and so has finitely many minimal prime ideals

which implies that I also has finitely many minimal prime ideals.

(3) ⇒ (4) (ii) is clear, since if every ideal has a primary decomposition, then it

must have finitely many ZS-prime ideals (see [3, Theorem 4.5]).
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(iii) hold from Lemma 2.8.

(4)⇒ (5) (ii) Let PDS be a quasi-?̃S-ideal of DS . Then by Remark 2.6, P is a

quasi-?̃-prime ideal of D. Hence by assumption (i), DP = (DS)PDS
is Noetherian.

On the other hand it is easy to see that QSpec?̃S (DS) is a Noetherian topological

space if and only if every prime ideal Q of D with Q ∩ S = ∅ is P-radically finite.

Let I be a quasi-?̃-ideal of D with I ∩ S = ∅. Thus [9, Corollary 4.6] implies that,

IDS has finitely many Bw-prime ideals. Therefore I has finitely many Bw-prime

ideals P such that P ∩ S = ∅, since the Bw-prime ideals of IDS are corresponding

to the Bw-prime ideals of I which don’t meet S (see [11, Proposition 1.2]).

(5) ⇒ (1) Assumptions (i) and (ii) together with [9, Corollary 4.6] imply that,

DS is ?̃S-Noetherian. Thus the result follows by (iii) and Theorem 2.7. �

In the above characterization, taking ?̃ = w, we get a new characterization for

S-strong Mori domains.

Corollary 2.10. The following are equivalent:

(1) D is an S-strong Mori domain.

(2) The following hold:

(i) DP is Noetherian for every quasi-w-prime ideal P with P ∩ S = ∅.
(ii) For every quasi-w-ideal I, with I ∩ S = ∅, IDS and SatS(I) admit a

primary decomposition.

(iii) For every ideal I of D, SatS(I)w = (Iw :D t) for some t ∈ S.

(3) The following hold:

(i) DP is Noetherian for every quasi-w-prime ideal P with P ∩ S = ∅.
(ii) For every quasi-w-ideal I, with I ∩ S = ∅, SatS(I) and IDS have

finitely many ZS-prime ideals.

(iii) Every prime ideal P of D with P ∩S, is P-radically finite, where P is

the family of quasi-w-prime ideals P such that P ∩ S = ∅.
(iv) For every ideal I of D, SatS(I)w = (Iw :D t) for some t ∈ S.

(4) The following hold:

(i) DP is Noetherian for every quasi-w-prime ideal P with P ∩ S = ∅.
(ii) Every quasi-w-ideal I, with I ∩ S = ∅, has finitely many Bw-prime

ideal P such that P ∩ S = ∅.
(iii) For every ideal I of D, SatS(I)w = (Iw :D t) for some t ∈ S.

Now we prove a Hilbert Basis Theorem for S-?̃-Noetherian domains. To this

purpose we use the semistar operation ?[X] on D[X], induced canonically from the

semistar operation ? on D, introduced by the second author [17] (see also [18]).
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Theorem 2.11. [17, Theorem 2.1] Let X and Y be two indeterminate over D and

let ? be a semistar operation on D. Set D1 := D[X], and K1 := K(X) and take

the following subset of Spec(D1):

Θ?
1 := {Q1 ∈ Spec(D1)|Q1 ∩D = (0) or (Q1 ∩D)?f  D?}.

Set S?
1 := S(Θ?

1) := D1[Y ]\(
⋃
{Q1[Y ]|Q1 ∈ Θ?

1}) and

E
	S?

1 := E[Y ]S?
1
∩K1, for all E ∈ F(D1).

(a) The mapping ?[X] :=	S?
1
: F(D1)→ F(D1), E 7→ E

	S?
1 is a stable semis-

tar operation of finite type on D[X], i.e., ?̃[X] = ?[X].

(b) ?̃[X] = ?f [X] = ?[X].

(c) ?[X] ≤ [?], where [?] is the semistar operation canonically associated to ?

introduced in [4].

(c) dD[X] = dD[X].

Remark 2.12. Assume that J is an ideal of D such that J ?̃ = D?̃. Set J1 := J [X].

Thus (J1∩D)?̃ = J ?̃ = D?̃. Therefore J1[Y ]∩S?̃
1 6= ∅; so that J1[Y ]S?̃

1
= D1[Y ]S?̃

1
.

Hence using the notation of Theorem 2.11 we get;

J [X]?[X] = J1[Y ]S?̃
1
∩K1 = D1[Y ]S?̃

1
∩K1 = D[X]?[X].

On the other hand if J [X]?[X] = D[X]?[X], then by Theorem 2.11(c), J [X][?] =

D[X][?]. Thus by [4, Theorem 2.3(c)], J ?̃ = D?̃.

Recall that a multiplicative subset S of an integral domain D is anti-archimedean

if
⋂
n≥1 s

nD ∩ S 6= ∅ for every s ∈ S.

Theorem 2.13. Let S be an anti-archimedean subset of D. Then D is S-?̃-

Noetherian if and only if the polynomial ring D[X] is S-?[X]-Noetherian.

Proof. Assume that D is S-?̃-Noetherian and A is a nonzero ideal of D[X]. For

each h ∈ N suppose that Ih is the ideal of D generated by the set of leading

coefficients of the polynomials in A of degree less than or equal to h. Since D is

S-?̃-Noetherian, each Ih is S-?̃-finite, that is for each h ∈ N there exist sh ∈ S and a

finitely generated ideal Jh ⊆ Ih of D such that shIh ⊆ J ?̃h ⊆ I ?̃h. Note that I0 = A∩
D ⊆ I1 ⊆ · · · , thus I =

⋃
h>0 Ih is an ideal of D. Therefore there exist s ∈ S and a

finitely generated ideal J of D such that sI ⊆ J ?̃ ⊆ I ?̃. Since J is finitely generated,

there exists m ∈ N such that J ⊆ Im. Let J = (b1, · · · , bk) and assume that

f1, · · · , fk are polynomials in A having leading coefficients b1, · · · , bk and degrees

n1, · · · , nk respectively. For each h 6 m set b1,h, · · · , bkh,h the generators of Jh
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and let g1,h, · · · , gkh,h be polynomials in A of degrees n1,h, · · · , nkh,h which have

b1,h, · · · , bkh,h as leading coefficients respectively. Let f ∈ A with leading coefficient

a and degree n. Then a ∈ I and sa ∈ sI ⊆ J ?̃ = (b1, · · · , bk)?̃. Therefore there

exists a finitely generated ideal Q of D such that Q?̃ = D?̃ and saQ ⊆ (b1, · · · bk).

Assume that Q = (d1, · · · , dz) so sadi =
∑k
j=1 rijbj for each i = 1, · · · , z and

some rij ∈ D. If n > m, then we set gi = disf −
∑k
j=1 rijfjX

n−nj for each

i = 1, · · · , z. Then gi ∈ A and has degree strictly less than n. If we still have

deg gi > m for some i ∈ {1, · · · , z}, we repeat the same process. After finitely

many steps, we can find a finitely generated ideal Q′ of D such that (Q′)?̃ = D?̃

and an integer q > 1 such that Q′sqf ⊆ (f1, · · · , fk)D[X] + T , where T denotes

the set of all polynomials in A of degree less than or equal to m. Now let F ∈ T

with leading coefficient b and degree n′ 6 m; so that b ∈ Im. Therefore smb ∈
smIm ⊆ J ?̃m = (b1,m, · · · , bkm,m)?̃. Thus there exists a finitely generated ideal Q1

of D such that Q?̃
1 = D?̃ and smbQ1 ⊆ (b1,m, · · · , bkm,m). Let Q1 = (e1, · · · , ey).

Then smbei =
∑km
j=1 uijbj,m for each i = 1, · · · , y and some uij ∈ D. Now assume

that Gi = smFei −
∑km
j=1 uijgj,mXn′−nj,m for each i = 1, · · · , y. Note that Gi has

degree strictly less than F so Gi ∈ T and the leading coefficient of Gi is contained

in Im−1 for each i = 1, · · · , y. We repeat this process for Gi for all i = 1, · · · , y.

After finitely many steps we can find a finitely generated ideal Q′1 of D such that

(Q′1)?̃ = D?̃ and tFQ′1 ⊆ B, where B := ({g1,h, · · · , gkh,h|h = 1, · · · ,m})D[X] and

t = s1s2...sm. Therefore tFQ′1[X] ⊆ B. Note that Q′[X] and Q′1[X] are finitely

generated ideals of D[X] and by Remark 2.12, Q′[X]?[X] = Q′1[X]?[X] = D[X]?[X].

Thus tF ∈ B?[X] that is tT ⊆ B?[X]. Let v ∈
⋂
i>1 s

iD ∩ S therefore

Q′[X]tvf ⊆t(f1, · · · , fm)D[X] + tTD[X]

⊆(f1, · · · , fm)D[X] + B?[X].

Thus tvf ∈ ((f1, · · · , fm)D[X] + B?[X])?[X] = ((f1, · · · , fm)D[X] + B)?[X]. Since

(f1, · · · , fm)D[X]+B is a finitely generated subideal of A, A is S-?[X]-finite. Thus

D[X] is an S-?[X]-Noetherian domain.

Conversely assume that D[X] is S-?[X]-Noetherian and I is a nonzero ideal of D.

By Theorem 2.11(c), D[X] is an S-[?]-Noetherian domain. Therefore ID[X] is an

S-[?]-finite ideal of D[X]. So there exist an s ∈ S and a finitely generated subideal

J of I such that sID[X] ⊆ JD[X][?] ⊆ ID[X][?]. Note that ED[X][?] = E?̃D[X]

for every E ∈ F(D) [4, Theorem 2.3(d)]. Thus sI ⊆ J ?̃ ⊆ I ?̃, that is, I is S-?̃-finite

ideal of D. Thus D is an S-?̃-Noetherian domain. �
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Remark 2.14. Let S be an anti-archimedean subset of D. Since ?[X] ≤ [?], it

is easy to see that D is S-?̃-Noetherian if and only if the polynomial ring D[X] is

S-[?]-Noetherian.

Theorem 2.15. If S is an anti-archimedean subset of an integral domain D, then

D is S-?̃-Noetherian if and only if Na(D, ?) is an S-Noetherian domain.

Proof. Assume that D is S-?̃-Noetherian. Let I Na(D, ?) be a non-zero ideal

of Na(D, ?), where I is an ideal of D[X]. By Theorem 2.13, D[X] is S-?[X]-

Noetherian. So there exist s ∈ S and a finitely generated subideal J of I such

that sI ⊆ J?[X] ⊆ I?[X]. Now let ∗ := ?4 be the spectral semistar operation

on D[X] defined by the set ∆ := {PD[X]|P ∈ QMax?̃(D)}. Then ?[X] ≤ ∗
(cf. [15, Proposition 3.4(1)]). Hence (J?[X])∗ = J∗ and (I?[X])∗ = I∗ therefore

sI ⊆ J∗ ⊆ I∗; so sI Na(D, ?) ⊆ J∗Na(D, ?) ⊆ I∗Na(D, ?). Now we have

I∗Na(D, ?) =(
⋂

P∈QMax?̃(D)

ID[X]PD[X]) Na(D, ?)

=(
⋂

P∈QMax?̃(D)

(ID[X]N?)PD[X]N?
) Na(D, ?)

†
=(I Na(D, ?)) Na(D, ?) = I Na(D, ?).

(for (†) see the proof of [7, Proposition 3.4(1)]). Similarly we can show that

J∗Na(D, ?) = J Na(D, ?). Therefore we get sI Na(D, ?) ⊆ J Na(D, ?) ⊆ I Na(D, ?),

that is, Na(D, ?) is an S-Noetherian domain.

Conversely assume that Na(D, ?) is an S-Noetherian domain. Let I be a nonzero

ideal of D. Then there exist an s ∈ S and a finitely generated subideal J of ID[X]

such that sI Na(D, ?) ⊆ J Na(D, ?) ⊆ I Na(D, ?). Let a ∈ I. Then sag ∈ J for

some g ∈ N?. Hence (sa)cD(g) ⊆ cD(J). Since cD(g) is a finitely generated ideal

of D with cD(g)? = D?, sa ∈ (cD(J))?̃. As a is an arbitrary element of I, we get

sI ⊆ (cD(J))?̃. Note that cD(J) is a finitely generated subideal of I hence I is

S-?̃-finite as required. �
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