
International Electronic Journal of Algebra

Volume 18 (2015) 92-106

ON UNIFORMITY IN LATTICES OF CLASSES OF MODULES

DEFINED BY CLOSURE PROPERTIES

Hugo Alberto Rincón-Mej́ıa and José Patricio Sánchez-Hernández
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1. Introduction

Of great interest has been the study of several lattices associated to a ring.

In particular, the study of big lattices of classes of modules defined by closure

properties. The lattice aspects of those lattices have consequence in the features of

the ring. In this work we consider some big lattices of classes of modules defined

by closure properties such as being closed under taking submodules, quotients,

injective hulls, projective covers, products and directs sums.

We use the notation L≤, L/, L⊕, L∏, Lext, LE and LP described as follows. We

denoted by L≤ the class of classes of modules closed under taking submodules, by

L/ the class of classes of modules closed under taking quotients, by L⊕ the class

of classes of modules closed under taking direct sums, by L∏ the class of classes

of modules closed under taking products, by Lext the class of classes of modules

closed under takings extensions, by LP the class of classes of modules closed under

taking projective covers and by LE the class of classes of modules closed under

taking injective hulls. In general, if ρ is a set of closure properties, we denote by

Lρ the class of classes of modules closed with respect to the closure properties in ρ.

If ρ denotes a subset of {≤, /,⊕,
∏
, ext, E, P}, we should notice that Lρ becomes a

big lattice ordered by class inclusion with meet given by class intersection. There
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are many lattices of module classes of this kind which are interesting to study by

themselves. In this paper we will study when Lρ is whether atomic or uniform.

In all of the following, R will denote an associative ring with identity. We

say that an R-module M is compressible if for all nonzero submodule N there

exists a monomorphism α : M → N . In a similar way, we say that an R-module

M is cocompressible if for every nonzero quotient N there exists an epimorphism

α : N → M . A ring R is called a V -ring if every simple module is injective.

We denote by R-simp a complete set of representatives of isomorphism classes of

simple modules. Let M,N be R-modules. Recall that N is a subquotient of M if

N embeds in a quotient of M , equivalently if N is a quotient of a submodule of M .

Thus each nonzero M has a simple subquotient. We refer the reader to [1] and [4],

where the notation for lattices of classes of modules defined by closure properties

are introduced, and for notation, terminology and for concepts on lattices, torsion

theory and for information about lattices of modules classes, respectively.

2. Preliminaries

Definition 2.1. If ρ is a set of closure properties and if C is a class of R-modules,

we denote by ξρ(C) the least class of modules containing C and being closed under

the properties in ρ.

Definition 2.2. Let L be a lattice. We say that L is bounded if there exist 0, 1 ∈ L
such that for every D ∈ L, 0 ≤ D and D ≤ 1.

Definition 2.3. In a lattice L with least element 0, we say that an element a′ ∈ L
is a pseudocomplement of a ∈ L if a′ is maximal such that a ∧ a′ = 0. L is a

pseudocomplemented lattice if all of its elements has a pseudocomplement.

Definition 2.4. Let L be a bounded lattice. We say that 0 6= C ∈ L is an atom if

for all 0 6= D ∈ L such that D ≤ C we have that D = C.

It is clear that if C is an atom of Lρ and 0 6= M ∈ C, then ξρ(M) = C.

Definition 2.5. Let L be a bounded lattice. We define the socle of L as the join

of all atoms of L and we denote it by soc(L).

We describe socles for several big lattices of classes of modules.

Theorem 2.6. The following statements hold for a ring R.

(a) soc(L≤) = {M ∈ R-Mod | M is compressible}.
(b) soc(L/) = {M ∈ R-Mod | M is cocompressible}.
(c) soc(L⊕) = 0 .
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(d) soc(L∏) = 0 .

(e) soc(LE) = {E ∈ R-Mod | E is injective}.
(f) soc(LP ) = {P ∈ R-Mod | P is projective or has not a projective cover}.
(g) soc(L≤,/) = {S ∈ R-Mod | S is simple} ∪ {0}.

Proof. (a) The atoms in L≤ are indeed ξ≤(M) with M being a compressible. In

fact, if C is an atom and if 0 6= M ∈ C, then ξ≤(M) = C. If 0 6= N ≤ M , then

ξ≤(N) = C and then M ∈ ξ≤(N). So M embeds in N , thus M is compressible.

Hence, every M ∈ soc(L≤) is compressible. On the other hand, it is clear that

every compressible module generates an atom in L≤. Hence, soc(L≤) = {M ∈
R-Mod | M is compressible}.

(b) The proof is similar to the proof of (a).

(c) If C ∈ L⊕ is an atom, then ξ⊕(M) = C, for each nonzero module M belonging

to C. There exists a set X such that |M | < |M (X)|. Then ξ⊕(M) = C = ξ⊕(M (X)).

Thus M ∈ ξ⊕(M (X)) and so M ∼= (M (X))(Y ) for some non void set Y . But

|M | < |M (X)| ≤ |(M (X))(Y )|, a contradiction. Hence, L⊕ has no atoms.

(d) It is similar to the proof of (c).

(e) If C is an atom of LE , then C = ξE(E) = {0, E} for some E injective. Thus

the atoms are in a one to one correspondence with isomorphism classes of injective

modules. Hence soc(LE) = {E ∈ R-Mod | E is injective}.
(f) Let C be an atom of LP . If 0 6= M ∈ C, then ξP (M) = C. We have two

cases: M has a projective cover or M does not have it. If the former case happens,

then we have that {0, P (M)} = ξP (P (M)) = ξP (M). Thus M = P (M). On the

other hand, if M does not have a projective cover, then C = ξP (M) = {0,M}.
Hence, the atoms are determined by projective modules or modules which do not

have projective cover.

(g) If C is an atom of L≤,/, then C = {0, S} for some simple module S, because, as

we have already noted, every nonzero module has a simple module as a subquotient.

On the other hand, every simple module generates an atom. Thus soc(L≤, /) = {S ∈
R-Mod | S is simple}. �

Definition 2.7. Let L be a complete lattice. We say that C ∈ L is essential

if for all 0 6= D ∈ L we have that D ∧ C 6= 0. We denote E(L) =
∧
{E ∈

L | E is essential in L}.

If E ∈ L is essential, it is clear that for all atom C in L, we have that C ≤ E .

Thus soc(L) ≤ E for every essential element E in L.

A class of R-modules is called stable when it is closed under taking injective

hulls.
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Proposition 2.8. The following statements hold for a ring R.

(a) soc(LE) = E(LE).

(b) soc(LP ) = E(LP ).

(c) soc(L⊕) = E(L⊕).

(d) soc(L∏) = E(L∏).

Proof. (a) It suffices to show that soc(LE) is essential. Let 0 6= C ∈ LE . Since C
is stable, then there exists an injective module 0 6= E in C. Thus C∧soc(LE) 6= 0.

Hence, soc(LE) is essential and hence, soc(LE) = E(LE).

(b) The proof is similar to the proof of (a).

(c) Let 0 6= M ∈ R-Mod and define CM = {0 6= L ∈ R-Mod|L is not a direct

summand of M}. We claim that CM ∈ L⊕ and CM is essential. Let {Li}i∈I be a

family of modules in CM . If ⊕i∈ILi were a direct summand of M , then Li would

be a direct summand of M for each i ∈ I, a contradiction. Thus ⊕i∈ILi ∈ CM and

thus CM is closed under direct sums. Now we show that CM is essential in L⊕. Let

D ∈ L⊕ and 0 6= N ∈ D. If N ∈ CM , then we have finished.

Now suppose that N 6∈ CM . There exists a set X such that |M | < |N (X)|. Thus

N (X) is not a direct summand of M . So 0 6= N (X) ∈ D ∧ CM . Therefore CM is

essential in L⊕.

Since M 6∈ CM , M 6∈ E(L⊕). Thus soc(L⊕) = 0 = E(L⊕).

(d) The proof is similar to the proof of (c). �

Definition 2.9. Let R be a ring and let σ and ρ be such that σ ⊆ ρ ⊆ {≤,
/,⊕,

∏
, ext, E, P}. We say that C ∈ Lσ is σ − ρ essential if for all 0 6= D ∈ Lσ

such that D ≤ ξρ(C) then we have C ∧ D 6= 0. Lσ is called σ − ρ uniform if each

nonzero C ∈ Lσ is σ − ρ essential.

Recall that a bounded lattice L is atomic if for all nonzero C ∈ L there exists an

atom D ∈ L such that D ≤ C.

Theorem 2.10. Let Lσ be a σ − ρ uniform lattice. If Lσ is atomic, then Lρ is

atomic.

Proof. Suppose that Lσ is atomic and let 0 6= C ∈ Lρ. Then C ∈ Lσ and there

exists an atom D ∈ Lσ such thath D ≤ C. So ξρ(D) ≤ C. We claim that ξρ(D) is

an atom in Lρ. Indeed, let 0 6= A ∈ Lρ such that A ≤ ξρ(D). Therefore, A ∈ Lσ.

Since Lσ is σ − ρ uniform, D ∧ A 6= 0 and since D is an atom in Lσ, we have

D = D ∧A ≤ A. Thus ξρ(D) ≤ A and ξρ(D) = A. Then ξρ(D) is an atom in Lρ.
Hence Lρ is atomic. �
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3. Atoms and uniformity

Recall that a bounded lattice L is called uniform if the meet of any nonzero

elements of L is nonzero.

Theorem 3.1. If Lσ is σ − ρ uniform, then Lσ is uniform if and only if Lρ is

uniform.

Proof. Suppose that Lσ is uniform and let 0 6= C,D ∈ Lρ. Then C,D ∈ Lσ. By

hypothesis, we have that C ∧ D 6= 0. Hence, Lρ is uniform.

Conversely, let Lρ be uniform and take 0 6= C,D ∈ Lσ. Thus ξρ(C) ∧ ξρ(D) 6= 0.

Let A = ξρ(C)∧ ξρ(D). Since A ∈ Lσ, A ≤ ξρ(C) and Lσ is σ− ρ uniform, we have

that A ∧ C 6= 0. Then since A ∧ C ≤ A ≤ ξρ(D) and since D is σ − ρ essential, we

have that A ∧ C ∧ D 6= 0. So C ∧ D 6= 0. Hence, Lσ is uniform. �

Lemma 3.2. L≤ is {≤} − {≤,⊕} uniform.

Proof. Let 0 6= C ∈ L≤ and 0 6= N ∈ ξ≤,⊕(C). We claim that C ∧ ξ≤(N) 6= 0.

Since N ∈ ξ≤,⊕(C), there exists a monomorphism N
α
� ⊕i∈I{Mi} where Mi ∈ C

∀i ∈ I, so that, for every 0 6= x ∈ N , α(x) can be written as mi0 + · · ·+mik . Let

us choose 0 6= x ∈ N such that k be least. This choice yields (0 : mis) = (0 : mir )

for all 0 ≤ r, s ≤ k. So (0 : x) = (0 : mi0).

Therefore

Rx ∼=
R

(0 : x)
=

R

(0 : mi0)
∼= Rmi0 .

So Rx
∼=
� Rmi0 ↪→ Mi0 and Rx ≤ N . Then C ∧ ξ≤(N) 6= 0. Hence L≤ is

{≤} − {≤,⊕} uniform. �

A ring R with an additive endomorphism D satisfying D(ab) = D(a)b + aD(b)

is called a differential ring and we say that R is a ring with derivation D.

Let k be a field with derivation D and let k[y,D] denote the ring of differential

polynomials in the indeterminate y with coefficients in k, i.e., the additive group of

k[y,D] is the additive group of the ring of polynomials in the indeterminate y with

coefficients in k, and multiplication in k[y,D] is defined by ya = ay +D(a) for all

a ∈ K, and its consequences.

Let k be a field of characteristic 0 and D be a derivation of k. A result due to

Kolchin ([6, Theorem, p.771]) asserts the existence of a field k ⊆ U and a derivation

D of U extending D such that the equation

p(x,D(x), · · · , D(n)
(x)) = 0 n arbitrary,
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has a solution ξ ∈ U for all p(X) ∈ U [X1, ..., Xn+1] − U . Furthermore, every

homogeneous linear differential equation in D over U has a nontrivial solution in

U . Such a field U is called a universal extension of k or a universal differential field,

see [6, Theorem, p. 771].

Let k be a universal differential field with derivation D. We denote R = K[y,D],

see [3, p. 76]. We have the next theorem for R [3, Theorem 1.4].

Theorem 3.3. The ring R has the following properties.

(1) R is a principal right and left ideal domain.

(2) R is a simple ring (and soc(R) = 0).

(3) R is a right V -ring.

(4) R is not a field.

(5) R has, up to isomorphism, a unique simple right R-module.

Example 3.4. L≤ is not always {≤}−{≤,
∏
} uniform. Let R∗ denote the opposite

ring of R. Then by Theorem 3.3, R∗ is a left local left V -ring and soc(R∗) = 0. Let

S be the simple module. Since R∗ is a left V -ring, then we have that S is an injective

module. As R∗-simp has only one member, which is an injective module, then we

have that R∗ embeds in a product SX . Thus R∗ ∈ ξ≤,∏(S). Since soc(R∗) = 0, we

have that ξ≤(R∗) ∧ ξ≤(S) = 0. Hence L≤ is not {≤} − {≤,
∏
} uniform.

Lemma 3.5. L≤,/ is {≤, /} − {≤, /,⊕} uniform.

Proof. Let 0 6= C ∈ L≤,/ and 0 6= N ∈ ξ≤,/,⊕(C). We claim that C ∧ ξ≤,/(N) 6= 0.

By hypothesis there exists an epimorphism α such as in the following diagram:

⊕i∈IMi
α // // M

N
?�

OO

where Mi ∈ C, ∀i ∈ I.

Choose 0 6= x ∈ N such that x = α(mi0 + · · · + mik) with k least. Then

(0 : mis) = (0 : mir ) for all 0 ≤ r, s ≤ k. Thus (0 : x) = (0 : mi0).

Therefore

Rx ∼=
R

(0 : x)
∼=

R

(0 : mi0)
∼= Rmi0 .

So Rx
∼=
� Rmi0 ↪→ Mi0 and Rx ≤ N . Then C ∧ ξ≤,/(N) 6= 0. Hence L≤,/ is

{≤, /} − {≤, /,⊕} uniform. �
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Let C,D be two classes of R-modules. We define

(C : D) =

{
L ∈ R-Mod

∣∣∣∣ there exist M ∈ C, N ∈ D and an exact

sequence 0→M → L→ N → 0

}
.

A class of R-modules closed under isomorphism is called with zero if it contains

the zero module.

Remark 3.6. Let C,D and E be three classes with zero of R-modules. Then

((C : D) : E) = (C : (D : E)), see [2, Proposition 2.2].

We can define recursively: C:0 = {0} and C:(n+1) = (C : C:n
).

Remark 3.7. Let C be a class with zero of R-modules. Then ξext(C) =
⋃
n∈N C:n.

Proof. First let us take
⋃
n∈N C:n ∈ Lext. Suppose that

0→ N →M → L→ 0

is exact with N,L ∈
⋃
n∈N C:n. Then N ∈ C:n and L ∈ C:m for some n,m ∈ N.

This means that M ∈ (Cn : C:m) = C:(n+m) by Remark 3.6. Thus M ∈
⋃
n∈N C:n.

Now, if C ⊆ D ∈ Lext, then (C : C) ⊆ (D : D) = D, and, inductively, C:n ⊆ D for

all n ∈ N. Hence
⋃
n∈N C:n ⊆ D. �

It is easy to see that if C is an hereditary class, then ξext(C) is also an hereditary

class. Similarly, if C is a cohereditary class, then ξext(C) is also a cohereditary class.

Hence C ∈ L≤,/ implies that ξext(C) ∈ L≤,/,ext.

Lemma 3.8. L≤ is {≤} − {≤, ext} uniform.

Proof. Let 0 6= C ∈ L≤. It suffices to show that for every nonzero M ∈ ξ≤,ext(C)
we have that C ∧ξ≤(M) 6= 0. It follows from Remark 3.7 that ξ≤,ext(C) = ξext(C) =⋃
n∈N C:n.

If 0 6= M ∈
⋃
n∈N C:n, then M ∈ C:n, for some n ∈ N. Let us choose the least n

with this property.

If n = 1, then M ∈ C.
If n > 1, then M ∈ (C : C:(n−1)), and thus there exists an exact sequence

0→ L
f→M

g→ N → 0

with L ∈ C and N ∈ C:(n−1).

Thus 0 6= L ∈ C ∧ ξ≤(M). Hence L≤ is {≤} − {≤, ext} uniform. �

Lemma 3.9. L/ is {/} − {/, ext} uniform.

Proof. The proof is similar to that of Lemma 3.8. �
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Lemma 3.10. L≤,/ is {≤, /} − {≤, /, ext} uniform.

Proof. Let 0 6= C ∈ L≤,/. It is easy to see that ξ≤,/,ext(C) = ξext(C) =
⋃
n∈N C:n.

Suppose that 0 6= N is such thatN ∈ ξ≤,/,ext(C). We will show that ξ≤,/(N)∧C 6= 0.

As N ∈
⋃
n∈N C:n, let us take the least n such that N ∈ C:n.

If n = 1, then N ∈ C and we are done.

If n > 1, there exists an exact sequence

0→ L
f→ N

g→M → 0

with L ∈ C and M ∈ C:(n−1).

Then L is a nonzero subquotient of N in C. Thus 0 6= L ∈ C ∧ ξ≤,/(N). Hence

L≤,/ is {≤, /} − {≤, /, ext} uniform. �

Remark 3.11. ([2, Lemma 1.7; 6, Sec. 2]) L≤,/ is a pseudocomplemented big lat-

tice. The pseudocomplement for C ∈ L≤,/ is given by

C⊥{≤,/} = {M ∈ R-Mod | M does not have a nonzero subquotient in C}.

Moreover, C⊥{≤,/} belongs to L≤,/,⊕,ext.

Lemma 3.12. L≤,/ is {≤, /} − {≤, /,⊕, ext} uniform.

Proof. Let 0 6= C ∈ L≤,/ and 0 6= N ∈ ξ≤,/,⊕,ext(C). We claim that C ∧ ξ≤,/(N) 6=
0. As a consequence of Remark 3.11, (C⊥{≤,/})⊥{≤,/} belongs to L≤,/,⊕,ext and also

it contains C. Then it is clear that ξ≤,/,⊕,ext(C) ≤ (C⊥{≤,/})⊥{≤,/} .

It is easy to see that (C⊥{≤,/})⊥{≤,/} consists precisely of the modules such that

each one of its nonzero subquotient has a nonzero subquotient in C.
In particular, since N is a nonzero subquotient of itself, then N has a nonzero

subquotient belonging to C. Then C ∧ ξ≤,/(N) 6= 0. Hence L≤,/ is {≤, /} − {≤,
/,⊕, ext} uniform. �

The following result is a direct consequence of Theorem 2.6.

Theorem 3.13. Let R be a ring. Then the following statements hold.

(1) L≤ is atomic if and only if each nonzero M ∈ R-Mod has a compressible

submodule.

(2) L/ is atomic if and only if each nonzero M ∈ R-Mod has a cocompressible

quotient.

(3) L⊕ and L∏ are never atomic.

(4) LE and LP are always atomic.

Lemma 3.14. For each ring R, L≤,/ is atomic.
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Proof. It follows from the fact that every nonzero module has a nonzero simple

subquotient. �

Lemma 3.15. For each ring R, L≤,/,⊕ is atomic.

Proof. By Lemma 3.5, we have that L≤,/ is {≤, /} − {≤, /,⊕} uniform. Then by

Theorem 2.10, L≤,/,⊕ is atomic. �

Lemma 3.16. For each ring R, both L≤,/,ext and L≤,/,⊕,ext are atomic.

Proof. The proof is similar to that of Lemma 3.15. �

Theorem 3.17. The following statements are equivalent for a ring R.

(i) L≤ is uniform.

(ii) R is left local and left semi-artinian.

Proof. Suppose that L≤ is uniform. Let S, S′ be simple modules. Thus {0, S},
{0, S′} ∈ L≤. By hypothesis, {0, S} ∧ {0, S′} 6= 0. So {0, S} = {0, S′} and hence

S ∼= S′. Then R is a left local ring.

Let 0 6= M ∈ R-Mod. Then ξ≤(M)∧{0, S} 6= 0. Therefore S ∈ ξ≤(M). Thus S

embeds in M . Hence R is left semi-artinian.

Conversely, suppose that R is left local and left semi-artinian. It suffices to show

that ξ≤(N)∧ξ≤(M) 6= 0 for any nonzero N,M ∈ R-Mod. But this follows from the

fact that as R is left local and left semi-artinian, then a copy of the simple module

RS embeds both in M and in N . Thus S ∈ ξ≤(N) ∧ ξ≤(M). �

Theorem 3.18. The following statements are equivalent for a ring R.

(i) L≤,ext is uniform.

(ii) R is left local and left semi-artinian.

Proof. By Lemma 3.8, we have that L≤ is {≤, } − {≤, ext} uniform. Then by

Theorem 3.1, L≤,ext is uniform if and only if L≤ is uniform. But from Theorem

3.17 we have that L≤ is uniform if and only if R is left local and left semi-artinian.

Hence L≤,ext is uniform if and only if R is left local and left semi-artinian. �

Theorem 3.19. The following statements are equivalent for a ring R.

(i) L≤,⊕ is uniform.

(ii) R is left local and left semi-artinian.

Proof. The proof is similar to that of Theorem 3.18. �

Theorem 3.20. The following statements are equivalent for a ring R.

(i) L/ is uniform.
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(ii) R is left max and left local.

Proof. Suppose that L/ is uniform. Let S, S′ be simple modules. Thus {0, S},{0,
S′} ∈ L/. Then by hypothesis, {0, S} ∧ {0, S′} 6= 0. Thus {0, S} = {0, S′} and

S ∼= S′. Hence R is left local.

Let 0 6= M ∈ R-Mod. Then ξ/(M) ∧ {0, S} 6= 0. Therefore S ∈ ξ/(M).

Thus there exists an epimorphism M � S. Then there exists N ≤ M such that

M/N ∼= S. This implies that N is a maximal submodule of M . Hence R is left

max ring.

Conversely, suppose that R is left local and left max. Let 0 6= N,M ∈ R-Mod.

Since R is left max, there exist maximal submodules M1 ≤ M and N1 ≤ N

respectively. Therefore M/M1
∼= S ∼= N/N1, because R is left local. Thus

0 6= S ∈ ξ/(M) ∧ ξ/(N). Hence, L/ is uniform. �

Theorem 3.21. The following statements are equivalent for a ring R.

(i) L/,ext is uniform.

(ii) R is left max and left local.

Proof. It follows from Theorem 3.20 and Lemma 3.9. �

Theorem 3.22. The following statements are equivalent for a ring R.

(i) L⊕ is uniform.

(ii) R is semisimple and left local.

Proof. Suppose that L⊕ is uniform. Let 0 6= M,P ∈ R-Mod with P being a

projective module. By hypothesis, ξ⊕(M) ∧ ξ⊕(P ) 6= 0. So there exist sets X,Y

such that M (X) ∼= P (Y ). Since P is projective, then P (Y ) and M (X) are projective.

Hence each module M is projective. Thus R is a semisimple ring.

Let S, S′ be two simple modules. Then ξ⊕(S) ∧ ξ⊕(S′) 6= 0. So there exist sets

X,Y such that S(X) ∼= S′(Y ). Therefore S ∼= S′. Thus R is left local.

Conversely, suppose that R is semisimple and left local. Let 0 6= M,N ∈ R-Mod

and let S denote the simple module. Since R is semisimple, then M ∼= S(X) and

N ∼= S(Y ) for some sets X,Y . Let Z be a infinite set such that |X|, |Y | ≤ |Z|. Then

M (Z) ∼= (S(X))(Z) ∼= S(X×Z) ∼= S(Z) ∼= S(Y×Z) ∼= (S(Y ))(Z) = N (Z). Therefore

0 6= M (Z) ∈ ξ⊕(M) ∧ ξ⊕(N). Hence L⊕ is uniform. �

Theorem 3.23. The following statements are equivalent for a ring R.

(i) L∏ is uniform.

(ii) R is semisimple and left local.
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Proof. Suppose that L∏ is uniform. Let 0 6= M,E ∈ R-Mod with E as an injective

module. Then by hypothesis, ξ∏(M) ∧ ξ∏(E) 6= 0. So there exist sets X,Y such

that MX ∼= EY . Since E is injective, then EY is also injective. Thus MX is

injective. Therefore M is injective. Hence R is semisimple.

Let S, S′ be two simple modules. Then ξ∏(S) ∧ ξ∏(S′) 6= 0. So there exist sets

X,Y such that SX ∼= S′Y . Therefore S ∼= S′. Thus R is left local.

Conversely, suppose that R is semisimple and left local. Let 0 6= M,N ∈ R-Mod.

Then, if S is the simple module, M ∼= S(X), N ∼= S(Y ) for some sets X,Y . Let Z be

a infinite set such that |M |, |N | ≤ |Z|. We can assume that R is non trivial. Then

2 ≤ |M |, |N | and thus |2Z | ≤ |MZ | ≤ |ZZ | ≤ |(2Z)Z | = |2(Z×Z)| = |2Z |. Hence

|M ||Z| = |2||Z|. Similarly, |N ||Z| = |2||Z|. Then |M ||Z| = |N ||Z|.
On the other hand, there exists a set A such that MZ ∼= S(A). Since MZ is

infinite, then S(A) is infinite. Therefore |S(A)| = max{|S|, |A|}, because |MZ | =

|S(A)|. Since |S| ≤ |S(X)| = |M | < |MZ | = |S(A)| = max{|S|, |A|}, we have that

|S| < max{|S|, |A|}. Thus |A| = max{|S|, |A|} = |MZ |.
Similarly, there exists a set B such that NZ ∼= S(B) and |NZ | = |B|. Thus

|A| = |B|. Then MZ ∼= S(A) ∼= S(B) ∼= NZ . So 0 6= MZ ∈ ξ∏(M) ∧ ξ∏(N). Hence

L∏ is uniform. �

Proposition 3.24. The following statements are equivalent for a ring R.

(i) LE is uniform.

(ii) R is trivial.

Proof. Suppose that R is not trivial. Let 0 6= E be an injective module. Then

there exists a set X such that |EX | > |E|. Since E and EX are injective, then

{0, E}, {0, EX} ∈ LE and their meet is {0}. Hence LE is not uniform.

The converse is immediate. �

Proposition 3.25. The following statements are equivalent for a ring R.

(i) LP is uniform.

(ii) R is trivial.

Proof. Suppose that R is not trivial. Let 0 6= P be a projective module. Then

there exists a set X such that |P (X)| > |P |. Since P and P (X) are projective, then

{0, P}, {0, P (X)} ∈ LP and their meet is {0}. Thus LP is not uniform.

The converse is immediate. �

Proposition 3.26. The following statements are equivalent for a ring R.

(i) Lext is uniform.

(ii) R is trivial.
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Proof. Suppose that R is not trivial. Let 0 6= E be an injective module. Then

{0, EX} ∈ Lext for any infinite set X. Let X,Y be infinite sets such that |EX | <
|EY |. Then EX 6∼= EY . Thus {0, EX} ∧ {0, EY } = 0. Hence Lext is not uniform.

The converse is immediate. �

Theorem 3.27. The following statements are equivalent for a ring R.

(i) L≤,/ is uniform.

(ii) R is left local.

Proof. Suppose that L≤,/ is uniform. Let S, S′ ∈ R-Mod be simple modules. Then

{0, S} ∧ {0, S′} 6= 0, since both belong to L≤,/, which is uniform. Thus S ∼= S′.

Hence R is left local.

Conversely, suppose that R is left local. Let 0 6= M,N ∈ R-Mod. Then there

exist simple modules S and S′ which are subquotients of M and N respectively.

Thus S ∼= S′, since R is left local. So 0 6= {0, S} ≤ ξ≤,/(M)∧ ξ≤,/(N). Hence L≤,/
is uniform. �

The following theorem establishes, that left local rings are the rings whose big

lattice of Serre classes is uniform.

Theorem 3.28. The following statements are equivalent for a ring R.

(i) L≤,/,ext is uniform.

(ii) R is left local.

Proof. By Lemma 3.10, we have that L≤,/ is {≤, /} − {≤, /, ext} uniform. Then

by Theorem 3.1, L≤,ext is uniform if and only if L≤ is uniform. But from Theorem

3.27 we have that L≤ is uniform if and only if R is left local. Thus L≤,/,ext is

uniform if and only if R is left local. �

Theorem 3.29. The following statements are equivalent for a ring R.

(i) L≤,/,⊕ is uniform.

(ii) R is left local.

Proof. It follows from Theorem 3.27 and Lemma 3.5. �

The following theorem describes rings for which the lattice of hereditary torsion

theories is uniform.

Theorem 3.30. The following statements are equivalent for a ring R.

(i) L≤,/,⊕,ext is uniform.

(ii) R is left local.
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Proof. It follows from Theorem 3.27 and Lemma 3.12. �

Theorem 3.31. The following statements are equivalent for a ring R.

(i) L≤,E is uniform.

(ii) R is left semi-artinian and left local.

Proof. Assume that L≤,E is uniform. Let 0 6= M,S ∈ R-Mod, where S is a simple

module. Since L≤,E is uniform and ξ≤,E(E) = ξ≤(E) for all injective module E,

then there exists 0 6= N ∈ R-Mod such that N ∈ ξ≤(E(S)) ∧ ξ≤(E(M)), i.e.,

N ≤ E(S) and N ≤ E(M). Then 0 6= N ∩ S and S ≤ N ≤ E(M). Thus,

0 6= M ∩ S. Therefore S ≤M . Hence R is left semi-artinian.

If S and S′ are two simple modules, then, as in the above paragraph, we have

that S ≤ S′. Therefore S ∼= S′. Hence R is left local.

Conversely, suppose that R is left semi-artinian left local ring. Let M,N be two

nonzero modules. If S is the simple module, then S embeds both in N and M .

Therefore 0 6= S ∈ ξ≤,E(M) ∧ ξ≤,E(N). Hence L≤,E is uniform. �

Theorem 3.32. The following statements are equivalent for a ring R.

(i) L⊕,/ is uniform.

(ii) R is left local and left max.

Proof. Assume that L⊕,/ is uniform. Let S be a simple module. Then ξ⊕,/(S) =

{S(X)|X is a set }. Clearly, ξ⊕,/(S) is an atom. Therefore, L⊕,/ has only one atom,

because L⊕,/is uniform. Hence R has only one type of simple, and thus R is left

local.

Let 0 6= M ∈ R-Mod. Then ξ⊕,(M) = {N | ∃α : M (X) � N}. Since ξ⊕,/(S)

is the unique atom, and since L⊕,/ is uniform, we have that ξ⊕,/(S) ≤ ξ⊕,/(M).

Therefore, there exists an epimorphism M (X) � S for some set X, because S ∈
ξ⊕,/(M). Then S is a quotient of M . Thus M has a maximal submodule. Hence

R is left max.

Suppose that R is left local and left max. Let 0 6= M,N ∈ R-Mod and let S

denote the unique type of simple modules. Since R is left max, then there exists

a maximal submodule M ′ ≤ M . Therefore M/M ′ ∼= S. Thus there exists an

epimorphism M � S. Then S ∈ ξ⊕,/(M) and, moreover, ξ⊕,/(S) ≤ ξ⊕,/(M).

Similarly, for N we have that ξ⊕,/(S) ≤ ξ⊕,/(N). Then 0 6= ξ⊕,/(S) ≤ ξ⊕,/(M)∧
ξ⊕,/(N). Hence L⊕,/ is uniform. �

Proposition 3.33. The following statements are equivalent for a ring R.

(i) Lext,E is uniform.

(ii) R is trivial.
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Proof. Suppose that R is not trivial. Let 0 6= E be an injective module. Then

{0, EX} ∈ Lext,E for any infinite set X. Let X,Y be infinite sets such that |EX | <
|EY |. Then EX 6∼= EY . Thus {0, EX} ∧ {0, EY } = 0. Hence Lext,E is not uniform.

The converse follows immediately. �

Proposition 3.34. Let R be a ring. Then Lext,P is uniform if and only if R is

trivial.

Proof. The proof is similar to that of Proposition 3.33. �

Remark 3.35. (Lemma of Bumby) If A,B are injective modules such that A is

isomorphic to a submodule of B and B is isomorphic to a submodule of A, then

A ∼= B, see [5, Proposition 3.60].

Theorem 3.36. The following statements are equivalent for a ring R.

(i) LE,∏ is uniform.

(ii) R is left local and left semi-artinian.

Proof. Assume that LE,∏ is uniform. Notice that if E is injective, then ξE,
∏(E)

= {EX | X is a set}. Let 0 6= M ∈ R-Mod and S be a simple module. Then since

LE,∏, is uniform, there exist sets X,Y such that E(S)X ∼= E(M)Y . Therefore

S ≤ E(M). Thus S ≤ M , since E(M) is the injective hull of M . Hence R is left

semi-artinian.

If we take M = S′, where S′ is a simple module, then S ≤ S′. So S ∼= S′. Hence

R is left local.

Suppose that R is left local and left semi-artinian ring. Let M,N be two nonzero

modules and let S be the unique type of simple module. Put E = E(S). Since

S embeds in M and since R is left semi-artinian, we have that E ≤ E(M). On

the other hand, soc(M) = S(X) for some set X. Thus soc(M) is essential in M ,

because R is left semi-artinian. Then E(M) ≤ E(soc(M)). Therefore, E(M) =

E(soc(M)) ≤ E(S(X)) ≤ E(SX) ≤ E(S)X . Thus, E(M) ≤ EX .

If X is infinite, then EX ≤ E(M)X ≤ (EX)X ∼= EX×X ∼= EX . Then, by the

Lemma of Bumby, EX ∼= E(M)X .

If X is finite, take Y = N. Then E(M) ≤ E(S)X ≤ E(S)Y = EY and proceed

as in the case when X is infinite.

Thus in any case, we have that EX ∼= E(M)X . Similarly for N , there exists a

set Z such that EZ ∼= E(N)Z .

Let Y be an infinite set such that |X|, |Z| ≤ |Y |. Then, (E(M)X)Y ∼= (EX)Y ∼=
EX×Y ∼= EY ∼= EZ×Y ∼= (EZ)Y ∼= (E(N)Z)Y . Thus E(M)Y ∼= E(N)Y . Then,

ξE,
∏(M) ∧ ξE,∏(S) 6= 0. Hence LE,∏ is uniform. �
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Recall that the lattice of natural classes is precisely L≤,E,⊕, and it is also denoted

R − nat. Dauns and Zhou proved that R − nat is a complete boolean lattice [4

Theorem 5.1.5, p. 119].

Proposition 3.37. The following statements are equivalent for a ring R.

(i) R− nat is uniform.

(ii) R is trivial.

Proof. It follows from the fact that R− nat is a complete boolean lattice. �
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