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Abstract. A reduced, cancellative, torsion-free, commutative monoid M can

be embedded in an integral domain R, where the atoms (irreducible elements)

of M correspond to a subset of the atoms of R. This fact was used by J.

Coykendall and B. Mammenga to show that for any reduced, cancellative,

torsion-free, commutative, atomic monoid M , there exists an integral domain

R with atomic factorization structure isomorphic to M . More generally, we

show that any “nice” subset of atoms of R can be realized as the set of atoms

of an integral domain T that contains R. We will also give several applications

of this result.
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1. Introduction

Factorization properties in integral domains, from the atomic property to unique

factorization, have been studied extensively. One such property is the ascending

chain condition on principal ideals (ACCP). It is known that R satisfies ACCP

if and only if R[X] satisfies ACCP. Also, there have been several examples from

Grams [7] and Zaks [12] showing that the atomic property, where every nonzero

nonunit of R can be factored as a finite product of atoms (irreducible elements),

is weaker than ACCP. In [2], Anderson, Anderson and Zafrullah posed the natural

question, “ Is R[X] atomic when R is atomic?”. Roitman answered this question

in the negative in [10]. He started with R = F [Z, { Y1

Zn ,
Y2

Zn | n ≥ 0}] for a field F ,

and constructed an atomic domain A by adjoining an indeterminate Xi and the

element r/Xi to R for each reducible element r ∈ R. Then each nonzero nonunit of

R is either an atom in A or factors as r = Xi(r/Xi), a product of two atoms in A.

Roitman showed that A[X] is not atomic. Using the same construction technique,

This work is a part of the research done for the author’s doctoral dissertation [9] written under

the direction of D.F. Anderson at the University of Tennessee.
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Roitman later showed that the power series ring A[[X]] also need not be atomic

when A is an atomic domain [11].

This paper begins by revisiting results concerning Roitman’s construction that

are found in [1], [4], and [5]. Anderson and Anderson explored the factorization

properties of an element r in R, R[X, r/X], and R[X] in [1]. They observed that if

r is an atom in R, then r = X(r/X) is not an atom in R[X, r/X]. This property

is used by Coykendall and Zafrullah in [5] to eliminate finite factorizations into

atoms. They show that it is possible to have unique factorization for elements that

factor into a finite product of atoms while also having atoms that are not prime.

Lastly in [4], Coykendall and Mammenga focused on the factorization structure

of the set of elements of R that can be factored into atoms. Seeing that this set

is a monoid under multiplication, they also eliminated atoms and constructed an

integral domain with atomic structure isomorphic to a given reduced, cancellative,

torsion-free, atomic monoid. We will conclude by considering the relationship that

emerges among the constructed integral domains.

Throughout, R will denote an integral domain, AR the set of atoms of R, A(R)

the multiplicative set generated by the atoms and units of R, and C,R,Z,N,Zn, the

complex numbers, real numbers, integers, positive integers, and integers modulo n,

respectively.

2. Generalization

We start by generalizing the results in [4]. To this end, we give a few definitions

concerning monoids.

Definition 2.1. Let M be a commutative monoid with binary operation + and

identity element 0, and let a, b, c ∈M .

(1) The monoid M is reduced if whenever a+ b = 0, then a = 0 = b.

(2) The monoid M is cancellative if whenever a+ b = a+ c, then b = c.

(3) The monoid M is torsion-free if whenever na = nb for a positive integer n,

then a = b.

Note that if M is a commutative, cancellative, torsion-free monoid, then 〈M〉 :=

{a − b | a, b ∈ M}, the group generated by M , is a torsion-free abelian group,

i.e, 〈M〉 is an abelian group such that na = 0 implies a = 0 for all a ∈ 〈M〉 and

n ∈ Z \ {0}. In this case, it is also common to say that M is torsionless. It is

well-known that a torsionless monoid may be totally-ordered, where the ordering

is compatible with the operation ([8, Theorem 22]).

Using these monoid properties, we give a well-known result on graded domains.

Recall that a graded domain is an integral domain R = ⊕α∈ΓRα, where Γ is a
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torsionless grading monoid (i.e., Γ is commutative, cancellative, and torsion-free),

each Rα is an additive subgroup of R, and RαRβ ⊆ Rα+β for α, β ∈ Γ. The

elements of Rα are called homogeneous and are said to have degree α.

Lemma 2.2. Let R = ⊕α∈ΓRα be a graded domain. Then ab ∈ Rα for 0 6= a, b ∈ R
if and only if a, b are homogeneous and deg(a) = α− deg(b).

The proof of this lemma relies on the total ordering of Γ that is compatible with

the operation. We use this lemma repeatedly for ab ∈ R, where R is a subset

of a graded domain of the form R[X, r/X]. Then Lemma 2.2 restricts us to the

homogeneous case with deg(a) = −deg(b).

Lemma 2.3. ([1, Proposition 1]) Let R be an integral domain and 0 6= r ∈ R.

Then U(R[X, r/X]) = U(R) if and only if r /∈ U(R).

Lemma 2.4. ([1, Lemma 7]) Let R be an integral domain and 0 6= r ∈ R. Then

s ∈ R is an atom in R[X, r/X] if and only if s is an atom in R and not an associate

of r.

With these lemmas, we can consider the atoms and units in the ring R[{Yi, ri/Yi |
ri ∈ S}], where S ⊆ R \ {0} has arbitrarily many elements and {Yi} is a family

of indeterminates. The proofs given here follow the proof of [4, Lemma 3.2] but

are included for completeness. Note that T = R[{Yi, ri/Yi | ri ∈ S}] is a graded

domain, graded by Γ = ⊕ri∈SZ with deg(r
∏
Y
mj
j

∏
(ri/Yi)

ni) = (mj − nj) for

0 6= r ∈ R. We apply Lemma 2.2 with T = R.

Lemma 2.5. Let R be an integral domain, ∅ 6= S = {αi} ⊆ R \ {0}, and {Yi} be

a family of indeterminates. Then U(R[{Yi, αi/Yi | αi ∈ S}]) = U(R) if and only if

S ∩ U(R) = ∅.

Proof. We prove the finite case by induction on |S|. The result holds when |S| = 1

by Lemma 2.3. For |S| = n, let S = {α1, . . . , αn}. Note that R[{Yi, αi/Yi |
αi ∈ S}] = R[{Yi, αi/Yi | αi ∈ S \ {αn}}][Yn, αn/Yn], thus by the induction

hypothesis U(R) = U(R[{Yi, αi/Yi | αi ∈ S \ {αn}}]) if and only if (S \ {αn}) ∩
U(R) = ∅. Also, U(R[{Yi, αi/Yi | αi ∈ S}]) = U(R[{Yi, αi/Yi | αi ∈ S \ {αn}}])
if and only if αn /∈ U(R[{Yi, αi/Yi | αi ∈ S \ {αn}}]) by Lemma 2.3. Hence

U(R[{Yi, αi/Yi | αi ∈ S}]) = U(R[{Yi, αi/Yi | αi ∈ S \ {αn}}]) = U(R) if and only

if (S \ {αn} ∪ {αn}) ∩ U(R) = S ∩ U(R) = ∅.
Now, suppose that S is infinite and S∩U(R) = ∅. We show that U(R[{Yi, αi/Yi |

αi ∈ S}]) ⊆ U(R), and it follows that U(R[{Yi, αi/Yi | αi ∈ S}]) = U(R). Let

r ∈ U(R[{Yi, αi/Yi | αi ∈ S}]). Then r ∈ U(R[{Yi, αi/Yi | αi ∈ T}]) for some finite
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subset T of S. By the finite case, we have U(R[{Yi, αi/Yi | αi ∈ T}]) = U(R) since

T ∩ U(R) ⊆ S ∩ U(R) = ∅. Thus r ∈ U(R). For the reverse implication, assume

to the contrary that there exists α ∈ S ∩ U(R). Then there exists β ∈ R be such

that αβ = 1, with βYα,
α
Yα
∈ R[{Yi, αi/Yi | αi ∈ S}] \R and (βYα)( α

Yα
) = βα = 1.

Hence βYα,
α
Yα
∈ U(R[{Yi, αi/Yi | αi ∈ S}]) \ U(R). �

The next lemma is a similar generalization for Lemma 2.4.

Lemma 2.6. Let R be an integral domain, ∅ 6= S = {αi} ⊆ R \ {0}, and {Yi} be a

family of indeterminates. Then r ∈ R is an atom in R[{Yi, αi/Yi | αi ∈ S}] if and

only if r is an atom in R and r is not an associate in R of any αi ∈ S.

Proof. First, we show that U(T ) ∩ R = U(R) for T = R[{Yi, αi/Yi | αi ∈ S}].
Clearly U(R) ⊆ U(T ) ∩ R. For the reverse inclusion, let a ∈ U(T ) ∩ R. Then

there exists b ∈ T such that ab = 1 ∈ R. Thus a, b are homogeneous and deg(b) =

−deg(a) = 0 by Lemma 2.2. It follows that b ∈ R, and hence a ∈ U(R). Thus

U(T ) ∩R ⊆ U(R), so U(T ) ∩R = U(R).

(⇒) Let r ∈ R be an atom in T . First we show that r is an atom in R. Suppose

r = xy for x, y ∈ R. We may assume x ∈ U(T ) since r is an atom in T . Then

x ∈ U(T ) ∩ R = U(R), and thus r is an atom in R. Now we show r is not an

associate of any αi ∈ S. If r is an associate in R of some αi ∈ S, then there exists

u ∈ U(R) such that r = uαi = (uYi)(αi/Yi) is a nontrivial factorization in T . This

is a contradiction. Thus r is an atom in T and not an associate of any αi ∈ S.

(⇐) Conversely, let r be an atom in R that is not an associate in R of any

αi ∈ S. Suppose that r = ab for a, b ∈ T . Then ab = r ∈ R; thus a and

b are homogeneous and deg(a) = −deg(b) by Lemma 2.2. So there exist 0 6=
r1, r2 ∈ R, αji , αms ∈ S, a family of indeterminates {Yji , Yms}, and ki, as ∈ N
for 1 ≤ i ≤ n and 1 ≤ s ≤ l such that a = r1Y

k1
j1
· · ·Y knjn (

αm1

Ym1
)a1 · · · (αmlYml

)al

and b = r2(
αj1
Yj1

)k1 · · · (αjnYjn
)knY a1m1

· · ·Y alml . If some ji = ms, then Y kiji (
αms
Yms

)as =

αkims(
αms
Yms

)as−ki when as ≥ ki, and Y kiji (
αms
Yms

)as = αasmsY
ki−as
ji

when as < ki.

So we may assume that ji 6= ms for 1 ≤ i ≤ n and 1 ≤ s ≤ l. Thus, we

have r = ab = r1Y
k1
j1
· · ·Y knjn (

αm1

Ym1
)a1 · · · (αmlYml

)alr2(
αj1
Yj1

)k1 · · · (αjnYjn
)knY a1m1

· · ·Y alml =

r1r2α
k1
j1
· · ·αknjn α

a1
m1
· · ·αalml with r1, r2, αji , αms ∈ R for 1 ≤ i ≤ n and 1 ≤ s ≤ l.

Assume αji , αms /∈ U(R) for 1 ≤ i ≤ n and 1 ≤ s ≤ l. Then, we have

r = (r1α
a1
m1
· · ·αalml)(r2α

k1
j1
· · ·αknjn ) = (r1α

a1
m1
· · ·αalmlr2α

k1
j1
· · ·αkn−1

jn
)αjn , with both

r1α
k1
j1
· · ·αknjn r2α

a1
m1
· · ·αal−1

ml
and αml elements of R. By assumption αml /∈ U(R)

and r is an atom in R. It follows that r1α
k1
j1
· · ·αknjn r2α

a1
m1
· · ·αal−1

ml
∈ U(R). Thus

k1 = k2 = · · · = kn = a1 = · · · = al−1 = al− 1 = 0 since the αi are not units. Then

r = (r1r2)αml with r1r2 ∈ U(R). This is a contradiction to our assumption that r
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is not an associate in R of any αi ∈ S. Thus al = 0. It follows that r = ab = r1r2

with a, b ∈ R; so we may assume that a ∈ U(R) ⊆ U(T ). Hence r is an atom in T .

Now, suppose some of the αi are units. By the above argument, we may as-

sume all of the αi are units with αiβi = 1 for some βi ∈ R. It follows that
1
Yi

= βi(
αi
Yi

) ∈ T . Recall, r = (r1α
a1
m1
· · ·αalml)(r2α

k1
j1
· · ·αknjn ) is an atom in R with

r1α
a1
m1
· · ·αalml , r2α

k1
j1
· · ·αknjn ∈ R. Thus we may assume r1α

a1
m1
· · ·αalml ∈ U(R). Let

u ∈ R be such that u(r1α
a1
m1
· · ·αalml) = 1. Then a(uY a1m1

· · ·Y alml(
1
Yj1

)k1 · · · ( 1
Yjn

)kn) =

(r1Y
k1
j1
· · ·Y knjn (

αm1

Ym1
)a1 · · · (αmlYml

)al)(uY a1m1
· · ·Y alml(

1
Yj1

)k1 · · · ( 1
Yjn

)kn). Now, we have

the following (r1Y
k1
j1
· · ·Y knjn (

αm1

Ym1
)a1 · · · (αmlYml

)al)(uY a1m1
· · ·Y alml(

1
Yj1

)k1 · · · ( 1
Yjn

)kn) =

u(r1α
a1
m1
· · ·αalml) = 1. Hence a ∈ U(T ) and r is an atom in T . �

To ensure that the final condition of the previous lemma is satisfied, we require

that S be unit closed in R. We say that S ⊆ R is unit closed if us ∈ S for all

s ∈ S and u ∈ U(R). Notice that if S is unit closed and r /∈ S, then r is not

associates with any α ∈ S. Thus, when S is unit closed, r ∈ R is an atom in

T = R[{Yi, αi/Yi | αi ∈ S}] if and only if r is an atom in R and r /∈ S.

We conclude this section with our main result which will be used in several

applications in the next section.

Theorem 2.7. Let R be an integral domain and S a subset of atoms of R that

is unit closed. Then there exists an integral domain T containing R such that

U(T ) = U(R) and AT = S.

Proof. Let T0 = R. Inductively, define

Tn+1 = Tn[{Y
α

(n)
i
, α

(n)
i /Y

α
(n)
i
| α(n)

i ∈ ATn \ S}],

where {Y
α

(n)
i
} is a family of indeterminates. We know ATn ∩ U(Tn) = ∅ for all

n ≥ 0, and so U(Tn) = U(Tn+1) by Lemma 2.5. It follows that U(Tn) = U(R)

for all n ≥ 0. Also, S is unit closed so the elements of S are atoms that are not

associates with the elements in ATn \ S. Thus S ⊆ ATn for all n ≥ 0 by Lemma

2.6.

Let T =
⋃
Tn. Then T is an integral domain since each Tn is an integral domain

and T0 ⊆ T1 ⊆ T2 ⊆ · · · . We have shown that U(Tn) = U(R) for all n ≥ 0; thus

U(T ) = U(R). It remains to show that AT = S. We have S ⊆ ATn for all n ≥ 0,

and thus S ⊆
⋂
ATn ⊆ AT . For the reverse inclusion, let r be an atom of T . Then

r ∈ Tn for some n. It follows that r ∈ ATn since r ∈ AT and U(Tn) = U(T ). If

r /∈ S, then r = (Yr)(r/Yr) is reducible in Tn+1 ⊆ T . This is a contradiction; thus

r ∈ S and AT = S. �
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3. Applications

We next give several applications of Theorem 2.7. The first example shows

that every integral domain is contained in an integral domain (not a field) with

no atoms. This type of integral domain has been studied extensively [3] and is

called an antimatter domain. In [3, Theorem 2.13], Coykendall, Dobbs and Mullins

also prove this result. Our techniques provide a shorter proof with a completely

different construction.

Example 3.1. Let R be an integral domain with set of atoms AR. There exists

an integral domain T (not a field) containing R such that T has no atoms. If R is

not a field, then let S be the empty set and note that S is unit closed. The result

follows by Theorem 2.7. If R is a field, note that R ⊆ R[X], and apply the previous

argument to R[X].

We also note that the technique of Theorem 2.7 was used in [5] to construct an

integral domain where all the finite atom factorizations are unique, but the atoms

need not be prime.

Remark 3.2. Coykendall and Zafrullah construct an integral domain with a single,

non-prime atom, up to associates [5, Theorem 2.8]. Let R be an integral domain

with a non-prime atom x. Let S be the set of all associates of x, i.e., S = {ux |
u ∈ U(R)}. Note that S is unit closed, and by Theorem 2.7, there exists an integral

domain T with AT = S. Thus x is the only atom, up to associates. Note that all

elements of T that factor into a finite product of atoms do so uniquely, but x is not

prime.

This example leads us to focus on the set of elements in an integral domain that

can be written as a finite product of atoms and units. For an integral domain R,

we will denote this set by A(R) and say that A(R) is the multiplicatively closed

set generated by the atoms and units of R. Notice that for an integral domain R,

we have A(R) = R \ {0} if and only if R is atomic. The set A(R) has some nice

properties. For example, A(R) is a monoid under multiplication. With this fact

in mind, we examine the relationship between monoids and A(R) by considering

semi-group rings. Recall that the semi-group ring R[X;M ] = {
∑
rmX

m | rm ∈
R,m ∈M} is an integral domain if and only if R is an integral domain and M is a

commutative, cancellative, torsion-free monoid [6, Theorem 8.1]. Moreover, when

R[X;M ] is an integral domain, U(R[X;M ]) = {uXm | u ∈ U(R),m invertible in

M} [6, Theorem 11.1]. The following lemma shows the relationship between the

irreducible elements of M and atoms of R[X;M ].
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Lemma 3.3. ([4, Lemma 3.1]) Let M be a commutative, reduced, cancellative,

torsion-free monoid, R be an integral domain, and m ∈ M . Then m is irreducible

in M if and only if Xm is an atom (irreducible) in the semigroup ring R[X;M ].

With this lemma we are able to strengthen [4, Theorem 3.3]. Instead of an inte-

gral domain with the atomic factorization structure isomorphic to a given atomic,

commutative, cancellative, reduced, torsion-free monoid M , we construct an in-

tegral domain T such that M ∼= A(T ) by the map m 7→ Xm. The only unit of

the integral domain T will be 1. Thus (A(T )/ ∼) = A(T ) ∼= M , where ∼ is the

equivalence relation defined by a ∼ b if and only if a and b are associates. For the

remainder of this paper we use ∼ to denote this equivalence relation.

Corollary 3.4. Let M be an atomic, commutative, cancellative, torsion-free, re-

duced monoid. Then there exists an integral domain T with A(T ) ∼= M .

Proof. Let M be a monoid that is atomic, commutative, cancellative, torsion-free,

and reduced. ThenR = Z2[X;M ] is an integral domain and U(R) = U(Z2[X;M ]) =

{rXm | r ∈ U(Z2),m invertible in M} = {1} [6, Theorem 11.1]. By Lemma 3.3,

we know that {Xm | m ∈ AM} ⊆ AR. Let S = {Xm | m ∈ AM} and note that S

is unit closed since U(R) = {1}. Then there exists an integral domain T such that

AT = S by Theorem 2.7. It follows that M ∼= A(T ) by the monoid isomorphism

m 7→ Xm. �

This corollary gives a partial answer to the following question: If M is an atomic,

commutative, cancellative monoid, when does there exist an integral domain R such

that A(R) ∼= M? In general, A(R) is an atomic, commutative, cancellative monoid,

but need not be reduced or torsion-free. It is easy to see that A(R) is not torsion-

free if the characteristic of R is not 2 since (−1)2 = 12, but −1 6= 1, and A(R) is

reduced if and only if U(R) = {1}. For example, A(R) is an atomic, commutative,

cancellative monoid that is neither torsion-free nor reduced for the integral domain

R = R +XC[[X]].

The next example shows that for an integral domain R such that A(R)/ ∼ is a

torsion-free monoid, there exists an integral domain T with A(T ) ∼= A(R)/ ∼.

Example 3.5. ([9, Example 3.2.5]) Let R be an integral domain with set of atoms

AR. Let M be a monoid such that M ∼= A(R)/ ∼. Note that the equivalence class of

an atom in A(R) is represented by an atom of M . Assume M ∼= A(R)/ ∼ is torsion-

free. Then by Corollary 3.4 there exists an integral domain T with U(T ) = {1} such

that A(T ) ∼= M .

It is clear that M is commutative and atomic; so we show that M is reduced and

cancellative. Let a, b, c ∈ A(R) such that āb̄ = 1. Then there exists u ∈ U(R) such
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that uab = 1. It follows that ua, b ∈ U(R) and ua = ā = 1 = b̄. Thus M is reduced.

To show M is cancellative, suppose āb̄ = āc̄. Then there exists u ∈ U(R) such that

ab = uac. Hence b = uc by cancellation; so b̄ = uc = c̄. Thus M is cancellative.

We have considered A(R) as a monoid, now we consider A(R) as a multiplica-

tively closed set generated by the atoms of R. One property of multiplicatively

closed sets that is of interest is the saturated property. Recall that a multiplica-

tively closed set S is saturated if whenever ab ∈ S for a, b ∈ R, then a, b ∈ S. Also,

the saturation of a multiplicatively closed set S is the smallest saturated set S∗

that contains S, or equivalently, S∗ = {x ∈ R | xy ∈ S for some y ∈ R}. We now

turn back to Roitman’s construction [10,11] to adjoin more atoms and maintain

atom factorizations rather than creating factorizations that are not atomic. With

this alternate use of the construction, we show that every integral domain R can

be embedded in an integral domain T with A(R) ⊆ A(T ) and A(T ) saturated.

Theorem 3.6. Let R be an integral domain. Then there exists an integral domain

T such that R ⊆ T , U(R) = U(T ), A(R) ⊆ A(T ), and A(T ) is saturated.

Proof. Let T0 = R and S0 be the saturation of A(T0) = A(R) in R. Let A0 =

S0 \ A(T0) be the set of nonunit elements in the saturation of A(T0) that cannot

be factored as a finite product of atoms. Let T1 = R[{Y (0)
i , a

(0)
i /Y

(0)
i | a(0)

i ∈ A0}],
where {Y (n)

i } is a family of indeterminates for each n ≥ 0. Then A0 ⊆ A(T1) since

a
(0)
i = Y

(0)
i (a

(0)
i /Y

(0)
i ) for all a

(0)
i ∈ A0, and Y

(0)
i , a

(0)
i /Y

(0)
i ∈ A(T1). It follows from

Lemma 2.5 that U(T1) = U(T0) since A0∩U(R) = ∅, andA(T0) ⊆ A(T1) by Lemma

2.6. Finally, S0 ⊆ A(T1) by construction. Inductively define Sn to be the saturation

of A(Tn), An = Sn\A(Tn), and Tn+1 = Tn[{Y (n)
i , a

(n)
i /Y

(n)
i | a(n)

i ∈ An}]. Then Tn

is an integral domain for every n ≥ 0 and T0 ⊆ T1 ⊆ T2 ⊆ · · · ; thus T =
⋃
Tn is an

integral domain. Finally, A(Tn) ⊆ Sn ⊆ A(Tn+1) and U(Tn) = U(R) for all n ≥ 0.

Hence A(T ) =
⋃
n Sn =

⋃
nA(Tn). We show that A(T ) =

⋃
nA(Tn) is saturated.

Let ab ∈ A(T ) for a, b ∈ T . Then there exists an n such that ab ∈ A(Tn) ⊆ Sn.

Hence a, b ∈ Sn ⊆ A(Tn+1) ⊆ A(T ) since Sn is saturated. �

4. Partial ordering

In general, for an integral domain R there are many unit closed subsets of AR.

Using Theorem 2.7, we can construct a different integral domain for each of these

subsets. Before we give the main result, we start with a lemma that indicates the

relationship at individual steps of the construction. We use it to show that the

ordering of unit closed subsets in A(R) and the associated constructed integral
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domains reverses, i.e., for unit closed A ⊆ B ⊆ A(R) with constructed integral

domains TA, TB , resp., from Theorem 2.7, we have TB ⊆ TA.

Lemma 4.1. Let R be an integral domain with set of atoms AR and A,B ∈ {S ⊆
AR | S is unit closed} with A ⊆ B. Then TBn ⊆ TAn for all n ≥ 0, where TB0 = R,

TBn = TBn−1[{Yr, r/Yr | r ∈ TBn−1 \ (B∪U(R))}], {Yr} is a family of indeterminates,

and TAn is defined similarly.

Proof. We proceed by induction on n. For A ⊆ B, we have R \ (B ∪U(R)) ⊆ R \
(A∪U(R)). Thus the result holds for n = 1 and TB1 ⊆ TA1 by construction. Assume

the result holds for n− 1. Then TBn−1 ⊆ TAn−1. It follows that TBn−1 \ (B ∪U(R)) ⊆
TAn−1 \ (A ∪ U(R)). Hence TBn = TBn−1[{Yr, r/Yr | r ∈ TBn−1 \ (B ∪ U(R))}] ⊆
TAn−1[{Yr, r/Yr | r ∈ TAn−1 \ (A ∪ U(R))}] = TAn . �

Finally, we state and prove the main result concerning the partial ordering under

inclusion of the constructed integral domains.

Theorem 4.2. Let R be an integral domain. Then there exists a function f : {S ⊆
AR | S is unit closed} → {T | R ⊆ T ⊆ BR =

⋃
Bn is an integral domain} such

that f(B) ⊆ f(A) whenever A ⊆ B.

Proof. We show the desired function is f : {S ⊆ AR | S is unit closed} → {T |
R ⊆ T ⊆ BR =

⋃
Bn is an integral domain} defined by S 7→ TS , where TS is the

integral domain constructed similarly to the construction in the proof of Theorem

2.7 as follows. Let TS0 = R and TSn = TSn−1[{Yr, r/Yr | r ∈ TSn−1 \ (S ∪ U(R))}],
where {Yr} is a family of indeterminates. Then TS =

⋃
TSn is an integral domain

since each TSn is an integral domain and TS0 ⊆ TS1 ⊆ TS2 ⊆ · · · . Also, from Theorem

2.7, we have ATS = S. It suffices to show that f satisfies the desired condition, that

is, if A ⊆ B, for A,B ∈ {S ⊆ A | S is unit closed}, then f(B) = TB ⊆ TA = f(A).

By Lemma 4.1, TB =
⋃
TBn ⊆

⋃
TAn = TA. Thus f(B) ⊆ f(A). �

Note that for an integral domain R all of the constructed integral domains in

this section are contained in the integral domain B defined as follows. Let B0 = R

and Bn = Bn−1[{Yr, r/Yr | r ∈ Bn−1}], where {Yr} is a family of indeterminates.

Then B0 ⊆ B1 ⊆ B2 ⊆ · · · are integral domains, and thus BR =
⋃
Bn is an integral

domain.
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