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Abstract. We provide here correct versions of both Lemma 5.6 and Theorem

5.7 in the paper [Int. Electron. J. Algebra, 17(2015), 199-214]. Both Lemma

5.6 and Theorem 5.7 are false as stated, a counterexample in both cases being

any regular ring that is not semisimple.
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Unless otherwise noted, every ring R is associative with unity. The left and right

socles of R are denoted by Sl and Sr, and the left and right singular ideals by Zl

and Zr. We write the left and right annihilators in R of a set X as l(X) and r(X),

respectively.

There is an error in the paper [1] and both Lemma 5.6 and Theorem 5.7 are false

as stated. These errors can be corrected as follows.

[1, Lemma 5.6] becomes true if we replace “left finitely Kasch” by “left Kasch”.

Hence it reads as

Lemma 5.6 Every left nonsingular, left Kasch ring R is semisimple.

Proof. Assume that Zl = 0. If L is any left ideal of R we show that L is a direct

summand of R. By Zorn’s Lemma choose a left ideal M such that L ⊕M is an

essential left ideal in R; we show that r(L ⊕M) ⊂ Zl. If a ∈ r(L ⊕M), then

L⊕M ⊂ l(a). It follows that l(a) is essential left ideal in R; that is a ∈ Zl. Hence

a = 0 and so r(L⊕M) = 0. If L⊕M is a proper left ideal in R, r(L⊕M) = 0 is

in contradiction with [2, Corollary 8.28]. Thus L⊕M = R, as required. �

In 1968, Yohe [3, Theorem II] proved that a semiprime ring in which every one-

sided ideal is principal is semisimple. The following Theorem 5.7 extends this if we

add the hypothesis that the ring has the ascending chain condition on left principal
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annihilators l(a) for a ∈ R. Hence it reads as

Theorem 5.7 Let R be a semiprime, left pseudo-morphic ring. If R has the

ascending chain condition on left principal annihilators l(a) for a ∈ R, then R is

semisimple.

Proof. By Lemma 6.5 in [1], R becomes left Noetherian in this case and so it is

left Kasch, being left finitely Kasch by Theorem 5.4 in [1]. Hence by Lemma 5.6,

it suffices to show that Zl = 0. Suppose that 0 6= a ∈ Zl. Then l(a) is an essential

left ideal in R, so Ra∩ l(a) 6= 0. But [Ra∩ l(a)]2 ⊂ (Ra)l(a) = 0, a contradiction

because R is semiprime. �
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