ON IDENTITIES IN HOM-MALCEV ALGEBRAS

A. Nourou Issa

Received: 16 February 2012; Revised: 21 February 2013 Communicated by Sergei Silvestrov

ABSTRACT. In an anticommutative multiplicative Hom-algebra, an identity, equivalent to the Hom-Malcev identity, is found.

Mathematics Subject Classification (2010): 17A30, 17D10 Keywords: Malcev algebras, Hom-Lie algebras, Hom-Malcev algebras

1. Introduction and statement of results

Hom-Lie algebras were introduced in [3] as a tool in understanding the structure and constructions of q-deformations of the Witt and the Virasoro algebras within the general framework of quasi-Lie algebras and quasi-Hom-Lie algebras introduced in [6,7,13]. Hom-associative algebras, as an analogue and generalization of associative algebras for Hom-Lie algebras, have been introduced in [9]. Since then, the theory of Hom-type algebras began an intensive development (see, e.g., [2,4,8,9,10,14,16,17,18,19]). Hom-type algebras are defined by twisting the defining identities of some well-known algebras by a linear self-map, and when this twisting map is the identity map, one recovers the original type of considered algebras.

In this setting, a Hom-type generalization of Malcev algebras (called Hom-Malcev algebras) is defined in [19]. Recall that a *Malcev algebra* is a nonassociative algebra (A, \cdot) , where the binary operation "·" is anticommutative, such that the identity

$$J(x, y, x \cdot z) = J(x, y, z) \cdot x \tag{1}$$

holds for all $x, y, z \in A$ (here J(x, y, z) denotes the Jacobian, i.e. $J(x, y, z) = xy \cdot z + yz \cdot x + zx \cdot y$; here and in the sequel, juxtaposition is used in order to reduce the number of braces i.e., e.g., $xy \cdot z$ means $(x \cdot y) \cdot z$). The identity (1) is known as the *Malcev identity*. Malcev algebras were introduced by A. I. Mal'tsev [11] (calling them Moufang-Lie algebras) as tangent algebras to local smooth Moufang loops, generalizing in this way a result in Lie theory stating that a Lie algebra is a tangent algebra to a local Lie group (in fact, Lie algebras are special case of Malcev algebras). Another approach to Malcev algebras is the one from alternative algebras: every alternative algebra is Malcev-admissible [11]. So one could say that the algebraic theory of Malcev algebras started from Malcev-admissibility of algebras. The foundations of the algebraic theory of Malcev algebras go back to E. Kleinfeld [5], A. A. Sagle [12] and, as mentioned in [12], to A. A. Albert and L. J. Paige. Some twisting of the Malcev identity (1) along any algebra self-map α of A gives rise to the notion of a Hom-Malcev algebra (A, \cdot, α) ([19]; see definitions in section 2). Properties and constructions of Hom-Malcev algebras, as well as the relationships between these Hom-algebras and Hom-alternative or Hom-Jordan algebras are investigated in [19]. In particular, it is shown that a Malcev algebra are thom-Malcev algebras are Hom-Malcev algebras are Hom-Malcev algebras are

In [19], as for Malcev algebras (see [12,15]), equivalent defining identities of a Hom-Malcev algebra are given. In this note, we mention another identity in a Hom-Malcev algebra that is equivalent to the ones found in [19]. Specifically, we shall prove the following

Theorem. Let (A, \cdot, α) be a Hom-Malcev algebra. Then the identity

$$J_{\alpha}(w \cdot x, \alpha(y), \alpha(z)) = J_{\alpha}(w, y, z) \cdot \alpha^{2}(x) + \alpha^{2}(w) \cdot J_{\alpha}(x, y, z) - 2J_{\alpha}(y \cdot z, \alpha(w), \alpha(x))$$
(2)

holds for all w, x, y, z in A, where $J_{\alpha}(x, y, z) = xy \cdot \alpha(z) + yz \cdot \alpha(x) + zx \cdot \alpha(y)$. Moreover, in any anticommutative multiplicative Hom-algebra (A, \cdot, α) , the identity (2) is equivalent to the Hom-Malcev identity

$$J_{\alpha}(\alpha(x), \alpha(y), x \cdot z) = J_{\alpha}(x, y, z) \cdot \alpha^{2}(x)$$
(3)

for all x, y, z in A.

Observe that when $\alpha = Id$ (the identity map) in (3), then (3) is (1) i.e. the Hom-Malcev algebra (A, \cdot, α) reduces to the Malcev algebra (A, \cdot) (see [19]).

In Section 2 some instrumental lemmas are proved. Some results in these lemmas are a kind of the Hom-version of similar results by E. Kleinfeld [5] in case of Malcev algebras. The Section 3 is devoted mainly to the proof of the theorem.

Throughout this note we work over a ground field \mathbb{K} of characteristic 0.

2. Definitions and preliminary results

In this section we recall useful notions on Hom-algebras ([9,16,17,19]), as well as the one of a Hom-Malcev algebra [19]. In [5], using an analogue of the Bruck-Kleinfeld function, an identity (see identity (6) in [5]) characterizing Malcev algebras is found. This identity is used in [12] to derive further identities for Malcev algebras (see [12], Proposition 2.23). The main result of this section (Lemma 2.7) proves that the Hom-version of the identity (6) of [5] holds in any Hom-Malcev algebra. **Definition 2.1.** A multiplicative Hom-algebra is a triple (A, μ, α) , in which A is a \mathbb{K} -module, $\mu : A \times A \to A$ is a bilinear map (the binary operation), and $\alpha : A \to A$ is a linear map (the twisting map) such that α is an endomorphism of (A, μ) . The Hom-algebra (A, μ, α) is said to be *anticommutative* if the operation μ is skew-symmetric, i.e. $\mu(x, y) = -\mu(y, x)$, for all $x, y \in A$.

In the rest of this paper, we will use the abbreviation $x \cdot y = \mu(x, y)$ in a Homalgebra (A, μ, α) .

Remark. The multiplicativity is not necessary in the definition of a Hom-algebra (see, e.g., [8,9]). The multiplicativity is included here for convenience. In what follows, we assume that all Hom-algebras are multiplicative.

Definition 2.2. Let (A, \cdot, α) be an anticommutative Hom-algebra.

- (i) The Hom-Jacobian ([9]) of (A, \cdot, α) is the trilinear map $J_{\alpha}(x, y, z)$ on A defined by $J_{\alpha}(x, y, z) = xy \cdot \alpha(z) + yz \cdot \alpha(x) + zx \cdot \alpha(y)$.
- (ii) (A, \cdot, α) is called a *Hom-Lie algebra* ([3]) if the *Hom-Jacobi identity* $J_{\alpha}(x, y, z) = 0$ holds in (A, \cdot, α) .

Definition 2.3. ([19]) A Hom-Malcev algebra is an anticommutative algebra (A, \cdot, α) such that the Hom-Malcev identity (see (3))

$$J_{\alpha}(\alpha(x), \alpha(y), x \cdot z) = J_{\alpha}(x, y, z) \cdot \alpha^{2}(x)$$

holds in (A, \cdot, α) .

Remark. When $\alpha = Id$, then the Hom-Jacobi identity reduces to the usual Jacobi identity $J(x, y, z) := xy \cdot z + yz \cdot x + zx \cdot y = 0$, i.e. the Hom-Lie algebra (A, \cdot, α) reduces to the Lie algebra (A, \cdot) . Likewise, when $\alpha = Id$, the Hom-Malcev identity reduces to the Malcev identity (1), i.e. the Hom-Malcev algebra (A, \cdot, α) reduces to the Malcev algebra (A, \cdot) .

The following simple lemma holds in any anticommutative Hom-algebra.

Lemma 2.4. In any anticommutative Hom-algebra (A, \cdot, α) the following hold:

- (i) $J_{\alpha}(x, y, z)$ is skew-symmetric in its three variables.
- (ii) $\begin{aligned} \alpha^2(w) \cdot J_\alpha(x, y, z) \alpha^2(x) \cdot J_\alpha(y, z, w) + \alpha^2(y) \cdot J_\alpha(z, w, x) \alpha^2(z) \cdot J_\alpha(w, x, y) &= \\ J_\alpha(w \cdot x, \alpha(y), \alpha(z)) + J_\alpha(y \cdot z, \alpha(w), \alpha(x)) + J_\alpha(w \cdot y, \alpha(z), \alpha(x)) + J_\alpha(z \cdot x, \alpha(w), \alpha(y)) J_\alpha(z \cdot w, \alpha(x), \alpha(y)) J_\alpha(x \cdot y, \alpha(z), \alpha(w)), \text{ for all } w, x, y, z \\ in A. \end{aligned}$

Proof. The skew-symmetry of $J_{\alpha}(x, y, z)$ in x, y, z follows from the skew-symmetry of the operation ".".

Expanding the expression in the left-hand side of (ii) and then rearranging terms, we get (by the skew-symmetry of ".")

$$\begin{aligned} \alpha^{2}(w) \cdot J_{\alpha}(x, y, z) &- \alpha^{2}(x) \cdot J_{\alpha}(y, z, w) + \alpha^{2}(y) \cdot J_{\alpha}(z, w, x) \\ &- \alpha^{2}(z) \cdot J_{\alpha}(w, x, y) \\ &= -\alpha^{2}(z) \cdot (wx \cdot \alpha(y)) + \alpha^{2}(y) \cdot (wx \cdot \alpha(z)) \\ &- \alpha^{2}(x) \cdot (yz \cdot \alpha(w)) + \alpha^{2}(w) \cdot (yz \cdot \alpha(x)) \\ &- \alpha^{2}(x) \cdot (wy \cdot \alpha(z)) - \alpha^{2}(z) \cdot (yw \cdot \alpha(x)) \\ &+ \alpha^{2}(w) \cdot (zx \cdot \alpha(y)) + \alpha^{2}(y) \cdot (xz \cdot \alpha(w)) \\ &- \alpha^{2}(x) \cdot (zw \cdot \alpha(y)) + \alpha^{2}(y) \cdot (zw \cdot \alpha(x)) \\ &+ \alpha^{2}(w) \cdot (xy \cdot \alpha(z)) - \alpha^{2}(z) \cdot (xy \cdot \alpha(w)). \end{aligned}$$

Next, adding and subtracting $\alpha(yz) \cdot \alpha(wx)$ (resp. $\alpha(wx) \cdot \alpha(yz)$, $\alpha(zx) \cdot \alpha(wy)$, $\alpha(wy) \cdot \alpha(zx)$, $\alpha(xy) \cdot \alpha(zw)$ and $\alpha(zw) \cdot \alpha(xy)$) in the first (resp. second, third, fourth, fifth, and sixth) line of the right-hand side expression in the last equality above, we come to the equality (ii) of the lemma.

In a Hom-Malcev algebra (A, \cdot, α) we define the multilinear map G by

$$G(w, x, y, z) = J_{\alpha}(w \cdot x, \alpha(y), \alpha(z)) - \alpha^2(x) \cdot J_{\alpha}(w, y, z) - J_{\alpha}(x, y, z) \cdot \alpha^2(w) \quad (4)$$

for all w, x, y, z in A. Remark.

- (i) If α = Id in (4), then G(w, x, y, z) reduces to the function f(w, x, y, z) defined in [5] which in turn is a variation of the Bruck-Kleinfeld function defined in [1].
- (ii) If in (4) replace $J_{\alpha}(t, u, v)$ with the Hom-associator [9] as(t, u, v), then one recovers the Hom-Bruck-Kleinfeld function defined in [19].

Lemma 2.5. In a Hom-Malcev algebra (A, \cdot, α) the function G(w, x, y, z) defined by (4) is skew-symmetric in its four variables.

Proof. From the skew-symmetry of "." and $J_{\alpha}(t, u, v)$ (see Lemma 2.4(i)) it clearly follows that

G(x, w, y, z) = -G(w, x, y, z) and G(w, x, z, y) = -G(w, x, y, z). Next, using the skew-symmetry of $J_{\alpha}(t, u, v)$,

$$G(y, x, y, z) = J_{\alpha}(y \cdot x, \alpha(y), \alpha(z)) - J_{\alpha}(x, y, z) \cdot \alpha^{2}(y)$$

$$= J_{\alpha}(\alpha(y), \alpha(z), y \cdot x) - J_{\alpha}(y, z, x) \cdot \alpha^{2}(y)$$

$$= J_{\alpha}(y, z, x) \cdot \alpha^{2}(y) - J_{\alpha}(y, z, x) \cdot \alpha^{2}(y) \text{ (by (3))}$$

$$= 0.$$

Likewise, one checks that G(w, y, y, z) = 0. This suffices to prove the skewsymmetry of G(w, x, y, z) in its variables.

As we shall see below, the following lemma is a consequence of the definition of G(w, x, y, z) and the skew-symmetry of $J_{\alpha}(t, u, v)$ and G(w, x, y, z).

Lemma 2.6. Let (A, \cdot, α) be a Hom-Malcev algebra. Then

$$J_{\alpha}(w \cdot x, \alpha(y), \alpha(z)) + J_{\alpha}(x \cdot y, \alpha(z), \alpha(w)) + J_{\alpha}(y \cdot z, \alpha(w), \alpha(x)) + J_{\alpha}(z \cdot w, \alpha(x), \alpha(y)) = 0;$$

$$(5)$$

$$2G(w, y, y, z) - \alpha^{2}(w) \cdot J_{\alpha}(x, y, z) + \alpha^{2}(x) \cdot J_{\alpha}(w, y, z) - \alpha^{2}(y) \cdot J_{\alpha}(z, w, x)$$

$$+\alpha^{2}(z) \cdot J_{\alpha}(w, x, y) = J_{\alpha}(w \cdot x, \alpha(y), \alpha(z)) + J_{\alpha}(y \cdot z, \alpha(w), \alpha(x)), \quad (6)$$

for all w, x, y, z in A.

Proof. From the definition of G(w, x, y, z) (see (4)) we have

$$\begin{aligned} J_{\alpha}(w \cdot x, \alpha(y), \alpha(z)) &= G(w, x, y, z) + \alpha^{2}(x) \cdot J_{\alpha}(w, y, z) + J_{\alpha}(x, y, z) \cdot \alpha^{2}(w), \\ J_{\alpha}(x \cdot y, \alpha(z), \alpha(w)) &= G(x, y, z, w) + \alpha^{2}(y) \cdot J_{\alpha}(x, z, w) + J_{\alpha}(y, z, w) \cdot \alpha^{2}(x), \\ J_{\alpha}(y \cdot z, \alpha(w), \alpha(x)) &= G(y, z, w, x) + \alpha^{2}(z) \cdot J_{\alpha}(y, w, x) + J_{\alpha}(z, w, x) \cdot \alpha^{2}(y), \\ J_{\alpha}(z \cdot w, \alpha(x), \alpha(y)) &= G(z, w, x, y) + \alpha^{2}(w) \cdot J_{\alpha}(z, x, y) + J_{\alpha}(w, x, y) \cdot \alpha^{2}(z). \end{aligned}$$

Therefore, by the skew-symmetry of ".", $J_{\alpha}(x, y, z)$ and $G(w, x, y, z)$, we get $J_{\alpha}(w \cdot x, \alpha(y), \alpha(z)) + J_{\alpha}(x \cdot y, \alpha(z), \alpha(w)) + J_{\alpha}(y \cdot z, \alpha(w), \alpha(x)) + J_{\alpha}(z \cdot w, \alpha(x), \alpha(y)) \\ &= G(w, x, y, z) + G(x, y, z, w) + G(y, z, w, x) + G(z, w, x, y) \\ &= G(w, x, y, z) - G(w, x, y, z) + G(y, z, w, x) - G(y, z, w, x) \\ &= 0, \end{aligned}$

which proves (5).

Next, again from the expression of G(w, x, y, z), $J_{\alpha}(w \cdot x, \alpha(y), \alpha(z)) + J_{\alpha}(y \cdot z, \alpha(w), \alpha(x))$ $= [G(w, x, y, z) + \alpha^{2}(x) \cdot J_{\alpha}(w, y, z) + J_{\alpha}(x, y, z) \cdot \alpha^{2}(w)]$ $+ [G(y, z, w, x) + \alpha^{2}(z) \cdot J_{\alpha}(y, w, x) + J_{\alpha}(z, w, x) \cdot \alpha^{2}(y)]$ $= 2G(w, x, y, z) - \alpha^{2}(w) \cdot J_{\alpha}(x, y, z) + \alpha^{2}(x) \cdot J_{\alpha}(y, z, w) - \alpha^{2}(y) \cdot J_{\alpha}(z, w, x)$ $+ \alpha^{2}(z) \cdot J_{\alpha}(w, x, y),$ where we get (6)

so that we get (6).

A. NOUROU ISSA

From Lemma 2.5 and Lemma 2.6, we get the following expression of G(w, x, y, z).

Lemma 2.7. Let (A, \cdot, α) be a Hom-Malcev algebra. Then

$$G(w, x, y, z) = 2[J_{\alpha}(w \cdot x, \alpha(y), \alpha(z)) + J_{\alpha}(y \cdot z, \alpha(w), \alpha(x))]$$
(7)

for all w, x, y, z in A.

Proof. Set $g(w, x, y, z) = J_{\alpha}(w \cdot x, \alpha(y), \alpha(z)) + J_{\alpha}(x \cdot y, \alpha(z), \alpha(w)) + J_{\alpha}(y \cdot z, \alpha(w), \alpha(x)) + J_{\alpha}(z \cdot w, \alpha(x), \alpha(y))$. Then (5) says that g(w, x, y, z) = 0 for all w, x, y, z in A. Now, by adding g(w, x, y, z) - g(x, w, y, z) to the right-hand side of Lemma 2.4(ii), we get

$$\begin{aligned} \alpha^{2}(w) \cdot J_{\alpha}(x, y, z) &- \alpha^{2}(x) \cdot J_{\alpha}(y, z, w) \\ &+ \alpha^{2}(y) \cdot J_{\alpha}(z, w, x) - \alpha^{2}(z) \cdot J_{\alpha}(w, x, y) \\ &= J_{\alpha}(w \cdot x, \alpha(y), \alpha(z)) + J_{\alpha}(y \cdot z, \alpha(w), \alpha(x)) \\ &+ J_{\alpha}(w \cdot y, \alpha(z), \alpha(x)) + J_{\alpha}(z \cdot x, \alpha(w), \alpha(y)) \\ &- J_{\alpha}(z \cdot w, \alpha(x), \alpha(y)) - J_{\alpha}(x \cdot y, \alpha(z), \alpha(w)) \\ &+ J_{\alpha}(w \cdot x, \alpha(y), \alpha(z)) + J_{\alpha}(x \cdot y, \alpha(z), \alpha(w)) \\ &+ J_{\alpha}(y \cdot z, \alpha(w), \alpha(x)) + J_{\alpha}(z \cdot w, \alpha(x), \alpha(y)) \\ &- J_{\alpha}(x \cdot w, \alpha(y), \alpha(z)) - J_{\alpha}(w \cdot y, \alpha(z), \alpha(x)) \\ &- J_{\alpha}(y \cdot z, \alpha(x), \alpha(w)) - J_{\alpha}(z \cdot x, \alpha(w), \alpha(y)) \\ &= 3J_{\alpha}(w \cdot x, \alpha(y), \alpha(z)) + 3J_{\alpha}(y \cdot z, \alpha(w), \alpha(x)) \end{aligned}$$

i.e.

$$\alpha^{2}(w) \cdot J_{\alpha}(x, y, z) - \alpha^{2}(x) \cdot J_{\alpha}(y, z, w) + \alpha^{2}(y) \cdot J_{\alpha}(z, w, x) - \alpha^{2}(z) \cdot J_{\alpha}(w, x, y)$$
$$= 3[J_{\alpha}(w \cdot x, \alpha(y), \alpha(z)) + J_{\alpha}(y \cdot z, \alpha(w), \alpha(x))].$$
(8)

Next, adding (6) and (8) together, we get

$$2G(w, x, y, z) - \alpha^{2}(w) \cdot J_{\alpha}(x, y, z) + \alpha^{2}(x) \cdot J_{\alpha}(y, z, w)$$

$$- \alpha^{2}(y) \cdot J_{\alpha}(z, w, x) + \alpha^{2}(z) \cdot J_{\alpha}(w, x, y)$$

$$+ \alpha^{2}(w) \cdot J_{\alpha}(x, y, z) - \alpha^{2}(x) \cdot J_{\alpha}(y, z, w)$$

$$+ \alpha^{2}(y) \cdot J_{\alpha}(z, w, x) - \alpha^{2}(z) \cdot J_{\alpha}(w, x, y)$$

$$= J_{\alpha}(w \cdot x, \alpha(y), \alpha(z)) + J_{\alpha}(y \cdot z, \alpha(w), \alpha(x))$$

$$+ 3[J_{\alpha}(w \cdot x, \alpha(y), \alpha(z)) + J_{\alpha}(y \cdot z, \alpha(w), \alpha(x))]$$

i.e.

$$2G(w, x, y, z) = 4[J_{\alpha}(w \cdot x, \alpha(y), \alpha(z)) + J_{\alpha}(y \cdot z, \alpha(w), \alpha(x))] \text{ and } (7) \text{ follows.} \quad \Box$$

3. Proof

Relaying on the lemmas of Section 2, we are now in position to prove the theorem.

Proof of the Theorem. First we establish the identity (2) in a Hom-Malcev algebra. We may write (4) in an equivalent form:

$$J_{\alpha}(w \cdot x, \alpha(y), \alpha(z)) = \alpha^2(x) \cdot J_{\alpha}(w, y, z) + J_{\alpha}(x, y, z) \cdot \alpha^2(w) + G(w, x, y, z).$$
(9)

Now in (9), replace G(w, x, y, z) with its expression from (7) to get

 $-J_{\alpha}(w \cdot x, \alpha(y), \alpha(z)) = \alpha^{2}(x) \cdot J_{\alpha}(w, y, z) + J_{\alpha}(x, y, z) \cdot \alpha^{2}(w) + 2J_{\alpha}(y \cdot z, \alpha(w), \alpha(x)),$

which leads to (2).

Now, we proceed to prove the equivalence of (2) with (3) in an anticommutative Hom-algebra (A, \cdot, α) .

First assume (3) in (A, \cdot, α) . Then, as we have seen just above, Lemmas 2.4, 2.5, 2.6, and 2.7 imply that (2) holds in any Hom-Malcev algebra.

Conversely, assume (2) in (A, \cdot, α) . Then, setting w = y in (2), we get, by the skew-symmetry of $J_{\alpha}(x, y, z)$,

$$J_{\alpha}(y \cdot x, \alpha(y), \alpha(z)) = \alpha^{2}(y) \cdot J_{\alpha}(y, z, x) - 2J_{\alpha}(\alpha(y), \alpha(x), y \cdot z).$$
(10)

Now, the permutation of z with x in (10) gives

$$J_{\alpha}(y \cdot z, \alpha(y), \alpha(x)) = \alpha^{2}(y) \cdot J_{\alpha}(y, x, z) - 2J_{\alpha}(\alpha(y), \alpha(z), y \cdot x),$$

i.e.

$$2J_{\alpha}(y \cdot z, \alpha(y), \alpha(x)) = -2\alpha^{2}(y) \cdot J_{\alpha}(y, z, x) - 4J_{\alpha}(\alpha(y), \alpha(z), y \cdot x),$$

or

$$4J_{\alpha}(\alpha(y),\alpha(z),y\cdot x) = -2\alpha^2(y)\cdot J_{\alpha}(y,z,x) - 2J_{\alpha}(y\cdot z,\alpha(y),\alpha(x)).$$
(11)

Next, the subtraction of (11) from (10) gives (keeping in mind the skew-symmetry of $J_{\alpha}(x, y, z)$)

$$-3J_{\alpha}(\alpha(y),\alpha(z),y\cdot x) = 3\alpha^2(y)\cdot J_{\alpha}(y,z,x)$$

i.e.

$$J_{\alpha}(\alpha(y), \alpha(z), y \cdot x) = J_{\alpha}(y, z, x) \cdot \alpha^{2}(y)$$

so that we get (3).

Remark. If set $\alpha = Id$, then the identity (2) (resp. (3)) reduces to the identity (2.26) (resp. (2.4)) of [12]. The equivalence of (2.4) and (2.26) of [12] could be inferred from the works [12] and [15].

Example 3.1. There is a 4-dimensional Hom-Malcev algebra (A, \cdot, α) with basis $\{e_1, e_2, e_3, e_4\}$ and multiplication table given by

$e_1 \cdot e_2$	$= -\alpha(e_2)$	$= -e_2 \cdot e_1,$
$e_1 \cdot e_3$	$= -e_3$	$= -e_3 \cdot e_1,$
$e_1 \cdot e_4$	$= e_4$	$= -e_4 \cdot e_1,$
$e_2 \cdot e_3$	$= 2e_4$	$= -e_3 \cdot e_2,$

and all other products are 0, with α being defined by

$$\begin{aligned} \alpha(e_1) &= e_1 + e_3 + e_4, \\ \alpha(e_2) &= 2e_2 + e_3 + 2e_4, \\ \alpha(e_3) &= e_3, \\ \alpha(e_4) &= 2e_4 \end{aligned}$$

(see [19], Example 2.14; here, for simplicity, we specify this example from [19] by taking suitable values for the coefficients in the expression of α). So (A, \cdot, α) verifies (3). Moreover, in general, (A, \cdot, α) is neither a Malcev algebra nor a Hom-Lie algebra and so (A, \cdot, α) is a nontrivial Hom-Malcev algebra.

We proceed to show how the main identities (2) and (7) do work in this example. First we observe that, by the skew-symmetry of G(w, x, y, z) (see Lemma 2.5), $G(e_1, e_2, e_3, e_4)$ is the only one essential nontrivial expression of the map G with respect to (A, \cdot, α) .

Now we have

$$\begin{aligned} \alpha^2(e_1) &= e_1 + 2e_3 + 3e_4, \\ \alpha^2(e_2) &= 4e_2 + 3e_3 + 8e_4, \\ J_{\alpha}(e_1, e_3, e_4) &= 0, \\ J_{\alpha}(e_2, e_3, e_4) &= 0, \\ J_{\alpha}(e_1 \cdot e_2, \alpha(e_3), \alpha(e_4)) &= 0, \\ J_{\alpha}(e_3 \cdot e_4, \alpha(e_1), \alpha(e_2)) &= 0. \end{aligned}$$

Therefore, the definition of G (see (4)) implies that $G(e_1, e_2, e_3, e_4) = 0$. From the other side, the identity (7) gives

$$G(e_1, e_2, e_3, e_4) = 2[J_{\alpha}(e_1 \cdot e_2, \alpha(e_3), \alpha(e_4)) + J_{\alpha}(e_3 \cdot e_4, \alpha(e_1), \alpha(e_2))] = 0.$$

Therefore, this example illustrates the concordance of (4) with (7) in the Hom-Malcev algebra (A, \cdot, α) defined above.

For the verification of (2), first we consider (4), i.e.

$$G(w, x, y, z) = J_{\alpha}(w \cdot x, \alpha(y), \alpha(z)) + J_{\alpha}(w, y, z) \cdot \alpha^{2}(x) + \alpha^{2}(w) \cdot J_{\alpha}(x, y, z).$$

In the present case, this looks as

 $\begin{aligned} G(e_1, e_2, e_3, e_4) &= J_{\alpha}(e_1 \cdot e_2, \alpha(e_3), \alpha(e_4)) + J_{\alpha}(e_1, e_3, e_4) \cdot \alpha^2(e_2) + \alpha^2(e_1) \cdot J_{\alpha}(e_2, e_3, e_4) \\ \text{which identically holds indeed in } (A, \cdot, \alpha) \quad \text{since } J_{\alpha}(e_1 \cdot e_2, \alpha(e_3), \alpha(e_4)) = 0, \\ J_{\alpha}(e_1, e_3, e_4) &= 0, \ J_{\alpha}(e_2, e_3, e_4) = 0, \ G(e_1, e_2, e_3, e_4) = 0 \quad (\text{see above}). \ \text{Therefore, by} \\ (7), \ \text{we conclude that the identity } (2) \ \text{works for } (A, \cdot, \alpha) \quad \text{defined above.} \end{aligned}$

Acknowledgment. The author would like to thank the referee for valuable comments and suggestions.

References

- R. H. Bruck and E. Kleinfeld, *The structure of alternative division rings*, Proc. Amer. Math. Soc., 2 (1951), 878-890.
- [2] Y. Frégier, A. Gohr and S. D. Silvestrov, Unitality algebras of Hom-associative type and surjective or injective twistings, J. Gen. Lie Theory Appl., 3(4) (2009), 285-295.
- [3] J. T. Hartwig, D. Larsson and S. D. Silvestrov, Deformations of Lie algebras using σ-derivations, J. Algebra, 295(2) (2006), 314-361. (Preprint in Mathematical Sciences, 2003:32, LUTFMA-5036-2003, Centre for Mathematical Sciences, Department of Mathematics, Lund Institute of Technology, 2003, 52 pp.; arXiv:math/0408064 [math.RA]).
- [4] A. N. Issa, *Hom-Akivis algebras*, Comment. Math. Univ. Carolin., 52(4) (2011), 485-500. (arXiv:1003.4770 [math.RA]).
- [5] E. Kleinfeld, A note on Moufang-Lie rings, Proc. Amer. Math. Soc., 9 (1958), 72-74.
- [6] D. Larsson and S. D. Silvestrov, *Quasi-Lie algebras*, in "Noncommutative Geometry and Representation Theory in Mathematical Physics", ed. Jurgen Fuchs et al., Amer. Math. Soc., Contemp. Math., 391 (2005). (Preprint in Mathematical Sciences 2004:30, LUTFMA-5049-2004, Centr for Mathematical Sciences, Department of Mathematics, Lund Institute of Technology, 2004, 7pp.).
- [7] D. Larsson and S. D. Silvestrov, Quasi-Hom-Lie algebras, central extensions and 2-cocycle-like identities, J. Algebra, 288(2) (2005), 321-344.
- [8] A. Makhlouf, Hom-alternative algebras and Hom-Jordan algebras, Int. Electron. J. Algebra, 8 (2010), 177-190. (arXiv:0909.0326 [math.RA]).
- [9] A. Makhlouf and S. D. Silvestrov, *Hom-algebra structures*, J. Gen. Lie Theory Appl., 2(2) (2008), 51-64. (Preprint in Mathematical Sciences, Lund University, Centre for Mathematical Sciences, Centrum Scientiarum Mathematicarum, 2006:10, LUTFMA-5074-2006; arXiv:math/0609501 [math.RA]).

A. NOUROU ISSA

- [10] A. Makhlouf and S. D. Silvestrov, Hom-algebras and Hom-coalgebras, J. Algebra Appl., 9(4) (2010), 553-589. (arXiv:0811.0400 [math.RA]).
- [11] A. I. Mal'tsev, Analytic loops, Mat. Sb. N.S., 36(78) (1955), 569-576.
- [12] A. A. Sagle, Malcev algebras, Trans. Amer. Math. Soc., 101 (1961), 426-458.
- [13] G. Sigurdsson and S. D. Silvestrov, Graded quasi-Lie algebras of Witt type, Czechoslovak J. Phys., 56 (2006), 1287-1291.
- [14] G. Sigurdsson and S. D. Silvestrov, Lie color and Hom-Lie algebras of Witt type and their central extensions, 247-255, Chapter 21, in "Generalized Lie Theory in Mathematics, Physics and Beyond" (Eds: S. Silvestrov, E. Paal, V. Abramov, A. Stolin), Springer-Verlag, Berlin, Heidelberg, 2008, 324pp.
- [15] K. Yamaguti, Note on Malcev algebras, Kumamoto J. Sci. Ser. A, 5 (1962), 203-207.
- [16] D. Yau, Enveloping algebras of Hom-Lie algebras, J. Gen. Lie Theory Appl., 2(2) (2008), 95-108.
- [17] D. Yau, Hom-algebras and Homology, J. Lie Theory, 19(2) (2009), 409-421.
 (arXiv:0712.3515 [math.RA]).
- [18] D. Yau, Hom-Novikov algebras, J. Phys. A, 44(8) (2011), 085202, 20pp. (arXiv:0909.0726 [math.RA]).
- [19] D. Yau, Hom-Maltsev, Hom-alternative, and Hom-Jordan algebras, Int. Electron. J. Algebra, 11 (2012), 177-217.

A. Nourou Issa

Département de Mathématiques Université d'Abomey-Calavi 01 BP 4521 Cotonou 01, Benin e-mail: woraniss@yahoo.fr