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Abstract. In this article, we establish a relation between the values of a frieze

of type D̃n and some values of an SL2-tiling t associated with a particular

quiver of type Ã2n−1. This relation allows us to compute, independently of

each other, all the cluster variables in the cluster algebra associated with a

quiver Q of type D̃n.
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1. Introduction

Cluster algebras were introduced by S. Fomin and A. Zelevinsky in [16] and [17].

They are a class of commutative algebras which was shown to be connected to

various areas of mathematics like, for instance, combinatorics, Lie theory, Poisson

geometry, Teichmüller theory, mathematical physics and representation theory of

algebras.

A cluster algebra is generated by a set of variables, called cluster variables,

obtained recursively by a combinatorial process known as mutation starting from a

set of initial cluster variables. Explicit computation of cluster variables is difficult

and has been extensively studied, see [4], [2], [1], [3], [7], [8].

In order to compute cluster variables, one may use friezes, which were introduced

by Coxeter [15] and studied by Conway and Coxeter [12], [13]. Various relationships

are known between friezes and cluster algebras, see [11], [20], [21], [4], [6], [15], [1],

[2], [3].

The present work is motivated by the use of friezes to compute cluster variables

and is inspired by the results in [4], [3], [19] giving an explicit formula as a product

of 2× 2 matrices for all cluster variables in coefficient-free cluster algebras of types

Ã and D, thus explaining at the same time the Laurent phenomenon and positivity.

Our objective here is to show that similar techniques can be used for computing

cluster variables in coefficient-free cluster algebras of type D̃.

In this paper, we establish a relation between the values of a frieze of type D̃ and

some values of an SL2-tiling t associated with a particular quiver of type Ã. For this

we associate with each quiver of type D̃n a particular quiver of type Ã2n−1. This
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correspondence allows us to obtain an algorithm for computing cluster variables of

a cluster algebra of type D̃n independently of each other, that is without iteration.

The article is organized as follows. In Section 2, we recall some basic notions on

SL2-tilings associated with a quiver of type Ã. In Section 3, we set preliminaries on

friezes of type D̃ and establish a correspondence between a frieze of type D̃ and an

SL2-tiling associated with a particular quiver of type Ã. In Section 4, we give an

algorithm to compute all the cluster variables in a cluster algebra associated with

a quiver of type D̃.

2. SL2-tiling of the plane

In this section we recall some notions on SL2-tilings and apply them to a quiver

of type Ã according to [4].

Definition 2.1. Let K be a field and Z2 the discrete plane. We call SL2-tiling of

the plane a map t : Z2 → K such that for any u, v ∈ Z

det

(
t(u, v + 1) t(u+ 1, v + 1)

t(u, v) t(u+ 1, v)

)
= 1.

The following example represents an SL2-tiling with K = Q.

Example 2.2. 1 1 4 19

... ... 1 2 9 43

1 3 14 67 ...

1 1 1 1 4 19 91

1 1 1 1 2 3 4 17 81 388 ...

1 2 3 4 9 14 19 81 386 1849

... ...

The SL2-tiling is an extension to the whole plane of the frieze introduced by

Coxeter [15] and studied by Conway and Coxeter [12], [13].

Let ∆ be a finite acyclic (containing no oriented cycles) quiver with ∆0 the set

of its points and ∆1 the set of its arrows and K a field. The translation quiver Z∆

associated with ∆ (see [5], Chapter VIII.1.1]) consists of two sets:

the set of points (Z∆)0 = Z×∆0 = {(k, i) | k ∈ Z, i ∈ ∆0} and the set of arrows

(Z∆)1 = {(k, α) : (k, i)→ (k, j) | k ∈ Z, α : i→ j ∈ ∆1}∪
{(k, α′) : (k, j)→ (k + 1, i) | k ∈ Z, α : i→ j ∈ ∆1} .

Let us define a frieze associated with the quiver ∆.

In the translation quiver Z∆ (see [5, Chapter VIII.1.1]), let us replace the points

(Z∆)0 by their images under a frieze function a: (Z∆)0 → K defined for some initial
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values a(0, i) ∈ K as follows: a(k, i)a(k + 1, i) = 1 +
∏

(k,i)→(m,j) a(m, j) where the

product is taken over the arrows (see [4, Section 2]). The resulting translation

quiver with values associated with its vertices is called a frieze.

In general we associate a boundary to an SL2-tiling.

Definition 2.3. We call boundary a bi-infinite sequence

. . . c−2x−2c−1x−1c0x0c1x1c2x2 . . . ,

with xi ∈ {x, y} and ci ∈ K for all i ∈ Z.

Coefficients ck equal to one are usually omitted in the sequence representing a

boundary.

Each boundary may be embedded into the Euclidean plane in the following

way: the x (or y) determine the horizontal (or vertical, respectively) segments of a

discrete path, that is x(or y) corresponds to a segment of the form [(u, v) , (u+1, v)]

(or [(u, v) , (u, v + 1)], respectively) in the plane. The variables ci become thus

labels of the vertices of a discrete path. A boundary is called admissible if none of

the sequences (xn)n≤0 and (xn)n≥0 is ultimately constant.

Given an admissible boundary f embedded in the plane, let (u, v) be a point in

Z2. Then the word associated with (u, v) is the portion of the boundary f delimited

by the horizontal and vertical projections of the point (u, v) on the boundary f .

The following example shows an embedded boundary and how to associate a

word with a point in Z2.

Example 2.4. The word associated with the point P is c−2yc−1xc0xc1yc2yc3xc4.

c3 c4

c2

c−1 c0 c1

c−2 P

If we set ci = 1, for all i then the word associated with the point P can be written

as follows: yxxyyx.

It is always possible to construct an SL2-tiling starting from an admissible

boundary in the plane. The work [4] provides a formula for a value in the tiling at

the point (u, v) ∈ Z2. This formula is given in terms of the associated word and

the following matrices:
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M(a, x, b) =

(
a 1

0 b

)
; M(a, y, b) =

(
b 0

1 a

)
, a, b ∈ K.

The following theorem from [4, Theorem 4] allows us to compute the variable

lying at the point (u, v) ∈ Z2.

Theorem 2.5. Given an admissible boundary f , there exists a unique SL2-tiling t

of the plane extending the embedding of the boundary into the plane. For any point

(u, v) below the boundary, with an associated word b0x1b1x2...bnxn+1bn+1 where

n ≥ 1, xi ∈ {x, y}, bi ∈ K, the tiling t is defined by the formula

t(u, v) =
1

b1b2...bn
(1, b0)

n∏
i=2

M(bi−1, xi, bi)

(
1

bn+1

)
.

Now we give an application of the notion of SL2-tiling to a quiver of type Ã
according to [4].

Consider an acyclic quiver Θ of type Ãn, n ≥ 1, such that its points are labelled

by natural numbers modulo (n+ 1) in clockwise orientation. Let us form a word ω

by associating a variable xj ∈ {x, y} with arrows of Θ as follows. Let xj = x if the

arrow is j → j + 1 and xj = y if it is j ← j + 1. Let ω be such a word x1x2...xn+1

which encodes the orientation of arrows in the quiver Θ. Let ∞ω∞ be the extension

of ω by considering indices j ∈ Z and putting xk = xj if k equals j modulo (n+ 1).

Then ∞ω∞ defines an admissible boundary associated with the quiver Θ.

According to [4], given some initial values a(0, i) the values of the tiling t from

Theorem 2.5 below the admissible boundary ∞ω∞ are values of the frieze associated

with the quiver Θ. These values are computed by applying the map t.

We present in the following example an SL2-tiling for a quiver Θ of type Ã3.

Example 2.6. Consider the following quiver Θ of type Ã3:

2 // 3

��
1 //

OO

4

We have ω = xxxy and the boundary associated with Θ is f = ∞(xxxy)∞. This

gives us the following SL2-tiling:
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1

... ... 1 1 1 1

1 1 1 1 2 3 4

1 1 1 1 2 3 4 9 14 19

1 1 1 1 2 3 4 9 14 19 43 67 ...

1 2 3 4 9 14 19 43 67

... ...
The word corresponding to the values 9 in the tiling is yxxxyx and then, according

to Theorem 2.5,

9 = (1, 1)

(
1 1

0 1

)(
1 1

0 1

)(
1 1

0 1

)(
1 0

1 1

)(
1

1

)
.

An admissible boundary f is said to be periodic if it is of, the form
∞(c1x1...cn+1xn+1c1)∞ and in this case its period is (n + 1). The SL2-tiling as-

sociated with this boundary has periodicity determined by the vector (r, s), where

r (or s) is the number of x (or y, respectively) among x1, ..., xn+1. We have also

r + s = n+ 1.

We call the finite sequence c1x1...cn+1xn+1c1 a generator of the boundary

f . Note that when extending a generator c1x1...cn+1xn+1c1 to a boundary
∞(c1x1...cn+1xn+1c1)∞ we glue adjacent copies of the generator in a way that

there is only one occurrence of c1 between xn+1 and x1 (...xn+1c1x1...). The ad-

missible boundary f associated with the quiver Θ of type Ãr,s is ∞ω∞ constructed

above. Its generator can be obtained by cutting the quiver Θ at one of its points

and reading the resulting quiver clockwise (by reading the resulting quiver anti-

clockwise we obtain a generator of a boundary equivalent to f). This operation

creates an additional point of the quiver Θ, the second copy of the point at which

we cut. Thus the quiver of type Ãr,s is transformed into a quiver of type Ar+s+1.

In Example 2.6 let us cut the quiver Ã3,1 at its point 1. We obtain in this way a

quiver of type A5 (reading clockwise) labelled as follows: 1 // 2 // 3 // 4 1oo .

If in this quiver of type A5 we denote by x the arrows oriented toward the right

and by y those oriented toward the left then we get the generator ω = xxxy.

A quiver Θ of type Ãr,s has (r+ s) possibilities of cutting, we choose any one of

them. The quiver underlying ω is the quiver of type Ar+s+1.

We now recall the definition of a seed due to Fomin and Zelevinsky [17, Section

1.2].

Definition 2.7. Let Γ be a quiver (without loops or oriented two-cycles) with

(n+ 1) points and χ = {u1, u2, ..., un+1} a set of variables called cluster variables,
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such that a variable ui is associated with the point i (with 1 ≤ i ≤ n+ 1) of Γ. The

set χ is called a cluster and the pair (Γ, χ) is called a seed.

We can obtain other seeds by mutation (see [17, Section 1.2]) starting from

the seed (Γ, χ). The set of all cluster variables obtained by successive mutation

generates an algebra over Z called cluster algebra which is denoted by A(Γ, χ). For

cluster algebras, we refer to the papers [16] and [17].

Remark 2.8. We say that the type of a seed (Γ, χ) and the cluster algebra A(Γ, χ)

coincides with the type of quiver Γ.

If we associate a point j of a quiver Θ of type Ãn with the variable uj , j =

1, ..., (n+ 1), these variables will correspond to the vertices of the boundary. Then

the variables of the SL2-tiling below the boundary are cluster variables of the

cluster algebra A(Θ, {u1, ..., un+1}). They are obtained by applying the formula of

Theorem 2.5 (see [4, Section 8]; [3, Section 4.4]).

Our aim in this paper is to compute cluster variables of a cluster algebra of type

D̃n.

3. SL2-tiling and friezes of type D̃

In this section we establish a relation between values of a frieze of type D̃ and

some values of an SL2-tiling associated with a particular quiver of type Ã. To this

end we propose a way to associate an admissible boundary with a quiver of type D̃.

3.1. Preliminaries on friezes of type D̃. Consider a quiver Q whose underlying

graph is of type D̃n. We agree to label the points of Q as follows:

1 n

3 . . . (n− 1)

2 (n+ 1)

where a solid segment represents an arrow without its orientation.

The forks are the full sub-quivers of Q generated by the points {1, 2, 3} and by the

points {(n− 1), n, (n+ 1)}, respectively. We agree to call:

- fork arrows, the arrows of each fork,

- joint of each fork, the points 3 or n− 1, respectively

- and fork vertices, the points 1 and 2 or n and (n+ 1), respectively.
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If we associate with each vertex i of Q a variable ui then we get the seed G =

(Q,χ) whose underlying graph can be represented by the following diagram:

u1 un

u3 . . . un−1 .

u2 un+1

Let us define a frieze on the translation quiver ZQ by the function

a: (ZQ)0 → Q(u1, u2, ..., un+1) such that for (k, i) ∈ (ZQ)0 we have

a(k, i)a(k + 1, i) = 1 +
∏

(k,i)→(m,j) a(m, j)

with initial variables a(0, i) = ui and the product taken over the arrows. Then

all the values of the frieze are cluster variables of A(Q, {u1, u2, ..., un+1}) (see [1,

Section 1.3]).

The study of seeds of type D̃n can be subdivided into different cases depending

on the orientation of fork arrows. For each fork we have the following three cases:

- The fork is composed by two arrows leaving the joint,

- The fork is composed by two arrows entering the joint,

- The fork is composed by one arrow leaving the joint and another arrow

entering the joint.

It is well-known that for two seeds G1 and G2, which are mutation equivalent (we

refer to [17, Section 8] for the notion of mutation equivalent), the cluster algebras

A(G1) and A(G2) associated with these seeds, respectively, coincide (see [17, Section

1.2]).

Our aim in this paper is to compute cluster variables of a cluster algebra of type

D̃n independently of each other. The following lemma in [5, Chapter VII.5.2] allows

us to reduce the study to one of the three different cases mentioned above.

Lemma 3.1. Let Q1 and Q2 be two quivers having the same underlying graph G.

If G is a tree then Q1 and Q2 are mutation equivalent.

In the following, G denotes a seed of type D̃n with a quiver whose each fork is

composed by two arrows both entering (or leaving) the joint.

We denote by F the frieze associated with the seed G. We define in the following

the notion of modelled quiver which will help us to compute the cluster variables

of a cluster algebra of type D̃n without using iteration.

Definition 3.2. We call modelled quiver F̄ associated with G, the translation

quiver obtained from the frieze F as follows:

1. by gluing in F the arrows of each shifted copy of the forks,

2. by multiplying the values assigned to vertices of the fork corresponding to the
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arrows that were glued in step 1. Namely the arrows obtained by gluing in step 1

have a(k, 1)a(k, 2) or a(k, n)a(k, n+ 1) as the corresponding variables.

We give an example of a modelled quiver associated with a seed of type D̃4.

Example 3.3. u1

  

u4

~~
For the following seed of type D̃4: u3 ,

u2

>>

u5

``

the frieze F has the form:

u5

��

(1+u3)
u5

��

.

��

.

��

.

��

.

��

. . .

u4

��

(1+u3)
u4

!!

.

��

.

��

.

��

.

��

. . .

u3

EE

##

��

;;

.

��

CC

��

II

.

II

��

��

CC

.

II

��

��

CC

.

��

��

CC

II

. . . .

u1

??

(1+u3)
u1

==

.

CC

.

CC

.

CC

.

CC

u2

HH

(1+u3)
u2

FF

.

II

.

II

.

II

.

II

. . .

and the modelled quiver F̄ has the form:

u4u5

!!

(1+u3)2

u4u5

""

.

��

.

��

.

��

.

��

. . .

u3

##

;;

.

CC

��

.

��

CC

.

��

CC

.

��

CC

. . . .

u1u2

==

(1+u3)2

u1u2

<<

.

CC

.

CC

.

CC

.

CC

. . .

Remark 3.4. All the squares of the form

b

��
a

@@

��

d

c

@@

in F̄ satisfy the relation ad − bc = 1 called the uni-modular rule, with a, b, c, d ∈
Q(u1, u2, ..., un+1). The values on the upper and bottom extreme lines in F̄ are

products of two cluster variables (products created by the passage from F to F̄ ).

Note that the pairs of cluster variables forming these products (in the case of both

arrows of a fork entering or leaving the joint) are given by fractions whose nu-

merators are equal and denominators coincide up to exchanging u1 and u2 (or un
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and un+1), which appear in denominators with exponent one (see [8, Section 1]).

Therefore, a product of these two variables is of the form
1

(u1u2)
φ2 for one fork

and
1

(unun+1)
ψ2 for the other fork, with φ, ψ ∈ Q(u1, u2, ..., un+1).

Then the two extreme lines in the modelled quiver F̄ contain the sequences of

variables of the form
1

(u1u2)
φ2
k for the horizontal line passing through the vari-

able u1u2 and of the form
1

(unun+1)
ψ2
k for the horizontal line passing through the

variable unun+1.

As a consequence of the definition of a frieze, we have the following relations for

all k ∈ N :

(1) [a(k, 3) + 1]2 =
1

(u1u2)2
φ2
kφ

2
k+1,

(2) [a(k, n− 1) + 1]2 =
1

(unun+1)2
ψ2
kψ

2
k−1.

3.2. Correspondence between a frieze of type D̃ and an SL2-tiling associ-

ated with a particular quiver of type Ã. Let Q be a quiver of type D̃n and Σ

be the full sub-quiver of Q generated by all points except the points 2, (n+ 1). We

agree to draw Σ from the left to the right in such a way that the vertices appear

in increasing order. Note that Σ is a quiver of type An−1. This leads to a way to

associate a quiver of type Ã2n−1 with a quiver of type D̃n, which, in turn, will allow

us to associate an admissible boundary with a quiver of type D̃n.

For a quiver Λ of type An (drawn from left to right), let us denote by tΛ the

transpose of Λ, that is, the quiver obtained by redrawing Λ from right to left.

With a quiver Q of type D̃n we associate the quiver Q′ of the form

Σ

��
Q′ : o

@@

o .

��
Σ

^^

We know that the boundary f = ∞ω∞ associated with a quiver Θ of type Ãr,s
is periodic and its period (r + s) corresponds to the length of a generator ω.

For the quiver Q′ of type Ã2n−1 there is a choice of 2n different generators

for its associated boundary f ′: one can cut at any of 2n points of Q′ to obtain

a generator. We are going to use only one of these generators to construct the

admissible boundary f̃ associated with a quiver of type D̃n.
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The generator ω1 of the boundary f ′ is obtained by cutting the quiver Q′ at

the point 1 of its arrow o // 1 and reading the quiver clockwise. Consider also

a generator ω2 of an boundary equivalent to f ′: ω2 is obtained by cutting Q′ at

the point n of its arrow o // n and reading the quiver anticlockwise (see Example

3.6). We get in this way two different generators associated with the quiver Q′,

that is, ω1 with the underlying quiver Σ // o // tΣ // o // 1 and ω2 with the

underlying quiver n ooo tΣoo ooo Σoo .

Let us denote by ω̄ the part of Q whose underlying quiver is Σ. Then we have

ω1 = ω̄xxtω̄xx and ω2 = yytω̄yyω̄.

Now we are in a position to associate an admissible boundary with a quiver of

type D̃n whose each fork consists of two arrows entering or leaving the joint.

Definition 3.5. LetQ be a quiver of type D̃n whose each fork consists of two arrows

both entering or both leaving the joint. The admissible boundary f̃ associated with

Q is of the form f̃ = ∞(ω1)ω̄(ω2)∞, where ω1 is repeated infinitely many times on

the left and ω2 is repeated infinitely many times on the right.

The boundary f̃ is obtained by gluing to ω̄ the generators ω1 periodically on the

left and ω2 periodically on the right. Note that ω̄ is also contained in ω1 and ω2.

However the decomposition of the boundary of the form f̃ = ∞(ω1)ω̄(ω2)∞ defines

a distinguished occurrence of ω̄ in f̃ . It is this occurrence of ω̄ which we call the

root of Q in f̃ .

We give an example showing how to associate an admissible boundary with a

quiver Q of type D̃n.

Example 3.6. 1

��

4

��
Consider the following quiver Q of type D̃4: 3 ,

2

AA

5

]]

we have Σ : 1 // 3 4oo and tΣ : 4 // 3 1.oo

The quiver Q′ of type Ã7 associated with Q is:

1 // 3 4

��

oo

Q’: o

@@

o

��

,

1

]]

// 3 4oo

This gives us two generators ω1 and ω2 associated with Q′ such that their underlying

quivers are respectively
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ω1 : 1 // 3 4oo // o // 4 // 3 1 //oo o // 1 and

ω2 : 4 ooo 4oo // 3 1oo ooo 1 //oo 3 4.oo

The generators ω1 and ω2 are obtained by cutting the quiver Q′ of type Ã7 at its

points 1 and 4 represented in bold characters on the picture of Q′, respectively.

The boundary f̃ associated with Q is:

f̃ = ∞(ω1)ω̄(ω2)∞ = ∞(xyxxxyxx)(xy)(yyxyyyxy)∞.

From an admissible boundary and given initial values it is always possible to

construct an SL2-tiling t, therefore we construct an SL2-tiling t from the boundary

f̃ (with all initial values equal one).

We now recall the notion of ray in a tiling t from [4, Section 6.1]. This notion

allows us to find the values of a frieze of type D̃n among values in the tiling t below

the boundary f̃ .

Given a mapping t : Z2 → K, a point M ∈ Z2 and a nonzero vector V ∈ Z2,

we consider the sequence an = t(M + nV ), n ∈ N. Such a sequence will be called a

ray associated with t. We call M the origin of the ray and V its directing vector.

The ray is horizontal if V = (1, 0), vertical if V = (0, 1) and diagonal if V = (1, 1).

Example 3.7. Let K = Q and consider the quiver Q of type D̃4 of Example 3.6.

The boundary f̃ associated with Q is f̃ = ∞(xyxxxyxx)(xy)(yyxyyyxy)∞. This

gives us the following SL2-tiling below the boundary f̃ :

1 3

1 1 4

1 2 9

1 3 14

1 1 4 19

1 2 9 43

1 3 14 67 ...

1 1 1 1 4 19 91

1 1 1 1 2 3 4 17 81 388 ...

1 1 1 1 2 3 4 9 14 19 81 386 1849

1 2 3 4 9 14 19 43 67 91 3881 1849 8857

... ...
The values represented in bold characters in the tiling are the vertical (diagonal ,

horizontal) rays with origin 2 ( 17, 3 respectively).
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Now we associate variables with the points of Σ as follows:

1. with vertices labelled by i = 1 and i = n we associate the products u1u2 and

unun+1 respectively,

2. with a vertex labelled by i /∈ {1, n} we associate the variable ui.

Remark 3.8. Starting with the quiver Σ with associated variables as above, we

can reconstruct the modelled quiver F̄ associated with the seed G by using the uni-

modular rule and formulas (1) and (2) of Remark 3.4.

If we associate also the vertex of Q′ labelled i = o with the variable u0 then the

result of this association is a seed which will be denoted by G′. Its underlying graph

with variables is:

u1u2 u3 . . . unun+1

u0 u0

u1u2 u3 . . . unun+1

Since u0 is not a cluster variable in G, in the rest of this paper we evaluate

u0 = 1.

Note that the generators ω̄, ω1 and ω2 are obtained from Q′ and thus our as-

sociation of variables with the points of Q′ naturally associates variables with the

vertices of ω̄, ω1 and ω2.

From now on, we denote by ω̄, ω1 and ω2 the corresponding generators with

variables.

We denote by f̃0 the admissible boundary f̃ with variables and the following

theorem establishes a link between the frieze F and the tiling associated with f̃0.

Theorem 3.9. Let n ≥ 4 be an integer, G a seed of type D̃n and F̄ the modelled

quiver associated with G. Then the horizontal lines in F̄ are the diagonal rays in

the SL2-tiling associated with f̃0 such that the origin of each ray is a vertex of the

root ω̄ in f̃0 = ∞(ω1)ω̄(ω2)∞.

Proof. Consider the admissible boundary

f̃0 = ∞(ω1)ω̄(ω2)∞ = ∞(ω̄xx tω̄xx)ω̄(yy tω̄yyω̄)∞.

By doing a translation of parentheses toward extremities, we can rewrite f̃0 as

follows:

f̃0 = ∞(xxω̄xx tω̄)xxω̄yy(tω̄yyω̄yy)∞.

Let us denote s = ∞(xxω̄xx tω̄) and s′ = (tω̄yyω̄yy)∞. The following figure

illustrates the admissible boundary f̃0 in its form f̃0 = sxxω̄yys′.
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.
s′

I ′

J ′

j′k

s

I J

ω̄

jk

Our aim is to prove that the horizontal lines in the modelled quiver F̄ coincide

with the diagonal rays with origins at the vertices of the root ω̄ in f̃0, that is, with

the oblique band delimited by the diagonal rays with origins J and J ′ (inclusively)

in the figure above. To this end, we first calculate variables lying at the points jk

and j′k and prove that they have the form of the variables on the top and bottom

horizontal lines of F̄ , see Remark 3.4.

Consider the transpose of s, which is ts = (ω̄yy tω̄yy)∞. By a translation of

parentheses toward the right, we can rewrite ts as follows:
ts = ω̄yy(tω̄yyω̄yy)∞ = ω̄yys′.

This allows us to rewrite the boundary in the form: f̃0 = sxx ts. Then the

embedding of f̃0 in the plane gives the following scheme:

C

ts

B I J

tλ

A

λ

s

jk

Let us write λ for the walk on the boundary from A to B and tλ for that from

J to C. Then the word associated with jk is of the form λxx tλ.
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By construction of f̃0, the end point of the walk λ is the variable u1u2, and

thus u1u2 is also the starting vertex of tλ. Computing the tiling function t from

Theorem 2.5 for the point jk, gives:

t(jk) =
1

(u1u2)2γ2
(a, b)

(
u1u2 1

0 1

)(
1 1

0 u1u2

)(
a

b

)
,

where γ is a product of the variables in λ except the variable u1u2, which are also by

transposition in tλ, and a, b ∈ Q(u1, u2, ..., un+1) arise from the product of matrices

corresponding to the walk λ.

The computation gives

(3) t(jk) =
1

u1u2

[
a+ b

γ

]2

.

Thus the value lying at the point jk on the diagonal ray with origin J is a perfect

square divided by u1u2.

To show that the value lying at a point j′k on the diagonal ray with origin J ′

is a perfect square divided by unun+1, we perform a similar calculation using the

following form of the boundary f̃0 = ts′yys′. This form is obtained by noticing

that the transpose of s′ is ts′ = ∞(xx tω̄xxω̄) and by a translation of parentheses

toward the left, we can rewrite ts′ as follows:
ts′ = ∞(xxω̄xx tω̄)xxω̄ = sxxω̄.

Since the tiling t (below f̃0) satisfies the uni-modular rule and since ω̄ with vari-

ables coincides with the quiver Σ with variables then by virtue of Remark 3.8 it

only remains to prove that the variables on the two diagonal rays with origins J

and J ′ satisfy relations of the form (1) and (2) from Remark 3.4.

Consider the following scheme which represents four adjacent points jk, jk+1, dk, ik+1

forming a square in the tiling below f̃0.

D

C

B I J

tλ

A

λ

jk dk

B′ ik+1 jk+1
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The words associated with the points jk, jk+1, dk and ik+1 are respectively of the

form λxxtλ, µxxtµ, λxxtµ and µxxtλ where λ is the walk on the boundary from A

to B and µ is that from B′ to B.

By definition of f̃0, the point dk is on the diagonal ray with origin u3. We need

to prove that each value t(dk) on this diagonal satisfies the relation:

(4) [t(dk) + 1]2 = t(jk)t(jk+1).

To this end, we compute the values lying at the points jk, jk+1, dk and ik+1.

Due to (3), we have:

t(jk) =
1

u1u2

[
a+ b

γ

]2

,

t(jk+1) =
1

u1u2

[
ã+ b̃

γ̃

]2

.

For the two remaining variables, the application of the map t gives:

t(dk) =
1

(u1u2)2γγ̃
(a, b)

(
u1u2 1

0 1

)(
1 1

0 u1u2

)(
ã

b̃

)

=
1

u1u2γγ̃

[
a(ã+ 2b̃) + bb̃

]
,

t(ik+1) =
1

(u1u2)2γγ̃

(
ã, b̃
)( u1u2 1

0 1

)(
1 1

0 u1u2

)(
a

b

)

=
1

u1u2γγ̃

[
ã(a+ 2b) + bb̃

]
.

Then we have t(jk)t(jk+1) − t(dk)t(ik+1) =
(ãb− ab̃)2

(u1u2γγ̃)2
. According to the uni-

modular rule in the tiling t(jk)t(jk+1)− t(dk)t(ik+1) = 1, therefore we get ãb−ab̃ =

u1u2γγ̃.

Let us compute now t(dk) + 1.

t(dk) + 1 =
1

u1u2γγ̃

[
a(ã+ 2b̃) + bb̃

]
+ 1

=
1

u1u2γγ̃

[
a(ã+ 2b̃) + bb̃+ u1u2γγ̃

]
=

1

u1u2γγ̃

[
a(ã+ 2b̃) + bb̃+ (ãb− ab̃)

]
=

(a+ b)(ã+ b̃)

u1u2γγ̃
.
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Then we have

[t(dk) + 1]2 =
(a+ b)2

u1u2γ2
× (ã+ b̃)2

u1u2γ̃2

= t(jk)t(jk+1).

We prove in the same way that the sequence of the points d′k lying on the diagonal

ray with origin un−1 satisfies the relation:

(5) [(d′k) + 1]2 = t(j′k)t(j′k−1).

All the squares in the oblique band delimited by the diagonal rays with origins

J and J ′ satisfy the uni-modular rule due to properties of the SL2-tiling t. This

and relations (4) and (5), by virtue of Remark 3.8, allows us to conclude that

the diagonal rays with origins at the vertices of the root ω̄ of the quiver Q in f̃0

coincide with horizontal lines of the modelled quiver F̄ associated with the seed

G = (Q,χ). �

Remark 3.10. We proved Theorem 3.9 for a seed G whose associated quiver has

forks composed by two arrows both entering (or both leaving) the joint. For a seed

G2 whose associated quiver Q2 has at least one fork consisting of one arrow entering

and one arrow leaving the joint there are two possibilities.

One possibility is to perform a mutation on one of the fork vertices and thus

reduce this case to the one considered in the proof.

Another possibility is to work directly with the seed G2 = (Q2, χ). In this case the

given proof can easily be modified, namely one has to associate with the vertex la-

belled by i = 1 (or i = n) in Σ2 the variable

(
u2(1 + u3)

u1

)
(or

(
un+1(1 + un−1)

un

)
)

and to consider the following underlying graph for Σ2 with variables:(
u2(1 + u3)

u1

)
u3 u4 . . . un−1 unun+1

or

u1u2 u3 u4 . . . un−1

(
un+1(1 + un−1)

un

)
,

respectively .

4. Computation of cluster variables: case D̃n

Let G = (Q, {u1, ..., un+1}) be a seed with Q of type D̃n with forks composed by

two arrows both entering or both leaving the joint.

In this section we compute cluster variables of the cluster algebra A(G) of type

D̃n by an explicit formula using matrix product (from Theorem 2.5) and by using

signed continuant polynomials.
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There are two kinds of cluster variables of a cluster algebra A(G) of type D̃n.

Cluster variables of A(G) either are transjective and correspond to those lying in the

translation quiver ZQ as embedded in the Auslander-Reiten quiver of the cluster

category or are nontransjective and correspond to those lying on the tubes (see [22,

Chapter X.1]).

4.1. Computation of transjective cluster variables of a cluster algebra

of type D̃n. It is well-known, see [4] and also [1] that for a(0, i) = ui, i ∈ (D̃n)0,

the values contained in the frieze F give all transjective cluster variables of A(G).

Therefore the values of the frieze at the points of the modelled quiver F̄ associated

with the seed G are either transjective cluster variables of A(G) or products of two

transjective cluster variables of A(G).

According to Theorem 3.9 the modelled quiver F̄ associated with the seed G is

contained in the SL2-tiling below the boundary f̃0.

Therefore to compute transjective cluster variables of the cluster algebra A(G)

of type D̃n, we proceed as follows:

In the SL2-tiling t, the variables lying on diagonal rays with origins ui,

i = 3, 4, ..., n− 1, respectively, which are vertices of the root ω̄ in f̃0, are the tran-

sjective cluster variables. Their computation is obtained by applying the formula

of Theorem 2.5.

The variables lying on the diagonal rays with origins u1u2 or unun+1, respec-

tively, which are extreme vertices of the root ω̄ in f̃0, are products of two transjective

cluster variables (products created by the passage from F to F̄ ). Recall that the

pairs of cluster variables forming these products are given by fractions whose nu-

merators are equal and denominators coincide up to exchanging u1 and u2 (or un

and un+1), which appear in denominators with exponent one (see [9, Section 1]).

Therefore, a product of these two transjective variables is a perfect square divided

by u1u2 (or unun+1, respectively).

Corollary 4.1. Each value t(u, v) lying on the diagonal rays with origins u1u2 or

unun+1 gives rise to two transjective cluster variables U and V as follows:

t(u, v) = UV where U =
(u1u2t(u, v))

1
2

u1
and V =

(u1u2t(u, v))
1
2

u2
for the diagonal

ray with origin u1u2 or U =
(unun+1t(u, v))

1
2

un
and V =

(unun+1t(u, v))
1
2

un+1
for the

diagonal ray with origin unun+1.

We compute the transjective cluster variables by this method. We give later an

example to illustrate the above results.
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4.2. Computation of nontransjective cluster variables of cluster algebra

of type D̃. According to Theorem 3.9 the correspondence between a frieze associ-

ated with a seed G of type D̃n and an SL2-tiling associated with a particular seed

of type Ã2n−1, allows us to regard transjective variables of the cluster algebra A(G)

of type D̃n as those of a particular type Ã2n−1. This suggests the idea of looking for

nontransjective variables of the cluster algebra A(G) also among cluster variables

of the same cluster algebra of type Ã2n−1. To this end we introduce a property of

SL2-tilings from [9, formula (5)].

Proposition 4.2. Given three successive columns C0, C1 and C2 of an SL2-tiling

t, there is a unique coefficient α ∈ K such that C0 + C2 = αC1.

We call α the linearization coefficient of column C1. There is a similar property

and definition for three successive rows L0, L1 and L2.

Let a1, ..., an be elements of some ring R, the signed continuant polynomials (see

[3, Section 2.1]) are defined recursively as follows:

qn(a1, .., an) = qn−1(a1, .., an−1)an − qn−2(a1, .., an−2), n ≥ 1,

setting q−1 = 0 and q0 = 1.

It is known according to [3, Theorem 4.4] that cluster variables of a cluster

algebra of type Ã either appear as elements of the corresponding SL2-tiling, or as

continuant polynomials of the linearization coefficients of the SL2-tiling. We recall

here the technique of computation of the nontransjective cluster variables of cluster

algebra of type Ã according to [3]. We use the linearization coefficients of columns,

the case of rows being analogous. We need a new concept of word associated with

a set of successive columns.

Definition 4.3. Let S = {Ci, ..., Cj} be a finite set of successive columns of the

tiling t associated with a boundary f . We call word associated with the set S, the

portion of the boundary f between its intersections with the columns Ci, ..., Cj

augmented with one step to the left and one to the right.

Example 4.4. Consider the scheme of Example 2.4 and let S be the set of succes-

sive columns containing the variables from c0 to c1. The word associated with this

set S of columns is: c−1xc0xc1yc2yc3xc4.

The next theorem from [3, Theorem 4.8] gives an expression for the signed con-

tinuant polynomial of the linearization coefficients of the tiling.
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Theorem 4.5. Consider an SL2-tiling t associated with some boundary f with

variables in K. Let C1, ..., Ck be k successive columns of the tiling t, with lineariza-

tion coefficients α1, ..., αk. Let m = b0x1b1x2...bnxn+1bn+1, n ≥ 1, xi ∈ {x, y},
bi ∈ K be the word associated with this set of columns. Then the signed continuant

polynomial qk(α1, ..., αk) is equal to

1

b1b2...bn
(b0, 1)

n∏
i=2

M(bi−1, xi, bi)

(
1

bn+1

)
.

Proof. See [3, Theorem 4.8]. �

We recall that in the case Ãr,s with r clockwise oriented arrows and s anti-

clockwise oriented arrows, the nontransjective cluster variables are lying on two

tubes of rank r and s (see [22, Chapter XIII.2.2]). In case D̃n nontransjective

variables lie on three tubes such that two are of rank 2 and the third one is of rank

(n− 2) (see [22, Chapter XIII.2.2]).

Consider our quiver Q′ of type Ã2n−1 = Ãr,s, with r + s = 2n, which is of the

form:

Σ

��
Q′ : o

@@

o .

��
Σ

^^

The analysis of orientation of arrows of Q′ gives us the equation r = s + 4. From

this and the equation r + s = 2n we obtain 2s + 4 = 2n and then s = n − 2. We

shall prove that the tube of rank s in a particular case Ã2n−1 corresponding to the

seed G′ with u0 = 1 can be identified with the tube of rank (n− 2) in the case D̃n.

According to [15, Theorem 5.1], it is enough to know the variables lying on the

mouth of a tube to determine all the variables lying on this tube.

We prove the following theorem which allows us to compute the (n−2) nontran-

sjective cluster variables lying on the mouth of the tube of rank (n− 2) in the case

D̃n.

Theorem 4.6. Let n ≥ 4 be an integer, G a seed of type D̃n and G′ the seed of type

Ã2n−1 associated with G. The tube of rank s = (n − 2) containing nontransjective

variables of the cluster algebra A(G′) with u0 = 1 coincides with the tube of rank

(n − 2) containing nontransjective cluster variables of the cluster algebra A(G) of

type D̃n.

Before the proof of Theorem 4.6, we recall formula (1.1) from [2, Section 1.3],

which we are going to use to compute variables lying on the mouths of tubes. For

any locally finite quiver Q with variables (here Q is a quiver of type D̃n), we define
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a family of matrices with coefficients in Z[ui|i ∈ Q0] as follows:

for any arrow s(ε)
ε→ t(ε) in Q1 we set:

M(ε) =

(
ut(ε) 0

1 us(ε)

)
and M(ε−1) =

(
ut(ε) 1

0 us(ε)

)
.

Consider now, for all k ∈ {0, 1, ...n}, a reduced walk c = v1

d1
− . . .

dm
− vm+1 from

a vertex v1 to a vertex vm+1 in Q (for the notion of reduced walk, we refer to [5,

Chapter II.1.1]), here dl, are arrows.

We define

Vc(k) =



∏
ut(ε)

ε∈Q1(vk,−)

ε 6=d±1
k

,d
±1
k−1

0

0

∏
us(ε)

ε∈Q1(−,vk)

ε 6=d±1
k

,d
±1
k−1

 ,
where Q1(vk,−) = {ε ∈ Q1|s(ε) = vk}, Q1(−, vk) = {ε ∈ Q1|t(ε) = vk}. The

empty product is equal to 1.

There is [2, Section 4.1] a unique cluster variable of A(G) corresponding to every

reduced walk c of length m in Q. This cluster variable is given by ([2, Section 1.3]):

(6)
1∏m

k=0 ut(dk)
[1, 1]

(
m∏
k=0

M(dk)Vc(k + 1)

)[
1

1

]
where M(d0) is the identity matrix by convention.

Proof of Theorem 4.6

We give the proof for the quiver Q with the following orientation:

1

$$

n

3 // 4 // · · · // n− 1

66

((

.

2

::

n+ 1

Due to the fact that all other orientations of the D̃n diagram are mutation-

equivalent to the chosen one (because of Lemma 3.1), the proof for other orienta-

tions can be reduced to this case.

It is enough to prove, according to [15, Theorem 5.1], that the variables lying

on the mouth of the tube of rank s = (n − 2) in case Ã2n−1 corresponding to the

seed G′ with u0 = 1 are all the (n−2) nontransjective cluster variables lying on the

mouth of the tube of rank (n− 2) in the case of the seed G of type D̃n.

According to [1, Section 1.3], the nontransjective cluster variables of cluster

algebra of type D̃n lying on the mouth of the tube of rank (n − 2) correspond
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to simple KQ-modules Si associated with points between the two joints of forks

inclusively, that is with the points i = 3, ..., n − 1. Then we obtain (n − 3) simple

KQ-modules lying on the mouth of the tube.

To compute the cluster variables of the cluster algebra A(G) of type D̃n corre-

sponding to these simple modules, we identify each point with a walk of length 0

and apply formula (6). It is easy to see that the obtained variables are equal to

the linearization coefficients of columns of the tiling t passing through the vertices

u3, ..., un−1 of the root ω̄ for our orientation of Q. On the other hand we know

[3] that the linearization coefficients of rows and columns of the SL2-tiling t below

the boundary f̃0 are the variables lying on the mouths of tubes of rank r and s,

respectively, of the Auslander-Reiten quiver corresponding to Q′ of type Ã2n−1.

Therefore we conclude that the (n − 3) cluster variables of cluster algebra of type

D̃n obtained on the mouth of the tube of rank (n − 2) coincide with the (n − 3)

variables on the mouth of the tube of rank s = (n − 2) in case Ã2n−1 and are set

in the same order.

Thus we have found (n−3) out of (n−2) cluster variables lying on the mouth of

the tube in the case A(G) of type D̃n. To compute the (n−2)th cluster variable we

use the existence of linear recurrence relations between the corresponding values of

the frieze F at a joint of a fork and its neighbours from [18, Section 6].

Namely, we denote by τ the Auslander-Reiten translation (see [5, Chapter IV.2.3]),

Xi
k = a(k, i) and by XτkSi (note that all cluster variables lying on the mouth of a

tube of rank (n−2) are of this form) the image by the Caldero-Chapoton map (see

[11]) of the KQ-module τkSi. Corresponding to the sequence X3
k associated with

the joint 3 of the quiver Q, we get the following relation:

X4
k = X3

kXτkS4
−X2

kX
1
k .

Rewriting this relation as follows: X3
kXτkS4

= X4
k + X2

kX
1
k , one can see that

each variable XτkS4
lying on the mouth of the tube is the linearization coefficient

of a column passing through the variable X3
k in the SL2-tiling t defined by the

boundary f̃0. This allows us to conclude that the (n − 2)th cluster variable also

corresponds to a linearization coefficient in the SL2-tiling t.

Thus the (n − 2) cluster variables of the cluster algebra A(G) of type D̃n lying

on the mouth of the tube of rank (n− 2) are equal to the linearization coefficients

of columns passing through the points in the tiling below the boundary f̃0 which

correspond to the joints of the forks in the quiver F . (Recall [3] that the sequence of

linearization coefficients of the columns of the SL2-tiling corresponding to a quiver

of type Ãr,s is periodic with the period s. Since in our case s = n − 2, there are

only (n− 2) such coefficients.)
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Thus we identify the tube of rank s = (n− 2) in the case Ã2n−1 (corresponding

to the cluster algebra A(G′) with u0 = 1) with the tube of rank (n− 2) in case D̃n
(corresponding to the cluster algebra A(G)). �

Remark 4.7. Let qn be the signed continuant polynomial, ak,n with k, n ∈ N, be

a variable of depth n on the tube and ak,1 be a variable lying on the mouth of the

tube. According to [1, Theorem 3.5] the variables lying on a tube with rank p ≥ 1

are related by the following relation ai,n = qn (ai,1, ..., ai+n−1,1).

It remains now to determine the nontransjective cluster variables lying on the

mouths of the two tubes of rank 2.

We do this by interpreting the results on quiver representations from [22, Chapter

XIII-2.6-a and b] in terms of cluster variables. This gives that the nontransjective

cluster variables on the mouth of each tube of rank 2 correspond to reduced walks

in the seed G as follows:

(1) For the first tube

(a) the unique reduced walk from u1 to un+1

(b) the unique reduced walk from u2 to un

(2) For the second tube

(a) the unique reduced walk from u1 to un

(b) the unique reduced walk from u2 to un+1

Then the nontransjective cluster variables of cluster algebra of type D̃n lying on

the tubes of rank 2 are obtained by applying to these walks formula (6).

We are now able to compute the transjective and nontransjective cluster variables

of cluster algebra of type D̃n.

We give now an example to illustrate the above results.

Example 4.8. Consider the quiver Q of type D̃4 of Example 3.6. We have

Σ : 1 // 3 4oo and tΣ : 4 // 3 1oo .

The root ω̄ of Q with variables is: ω̄ = u1u2xu3yu4u5. The boundary f̃0 associated
with Q is: f̃0 =∞ (u1u2xu3yu4u5x1xu4u5xu3yu1u2x1x)(u1u2xu3yu4u5)y1
yu4u5xu3yu1u2y1yu1u2xu3yu4u5)∞, this gives the following SL2-tiling below the
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boundary f̃0:

u4u5

u1u2 u3 ...

1
1 + u3

u1u2

u1u2 2 + u3 ...

u4u5 u3
(1 + u3)2

u1u2

1
1 + u3

u4u5
...

u4u5 2 + u3 ...

u1u2 1 u1u2 u3 V3

u4u5 1 u4u5 u3
1 + u3

u1u2
2 + u3 V1 V2 ...

u1u2 1 u1u2 u3
1 + u3

u4u5
2 + u3 ...

u3
1 + u3

u1u2
2 + u3 ... ...

... ...

The oblique band delimited by the diagonal rays with origins u1u2 and u4u5

corresponds, according to Theorem 3.9, to the modelled quiver F̄ and contains the

transjective cluster variables of cluster algebra of type D̃4.

The variables V1 and V3 represent the products of two cluster variables on the

bottom and upper lines in the modelled quiver F̄ and V2 represents some cluster

variable in F̄ .

The cluster variables in these three positions are computed as follows.

The words associated with V1, V2 and V3 are u3yu1u2x1xu1u2xu3,

u3yu1u2x1xu1u2xu3yu4u5y1yu4u5xu3 and u3yu4u5y1yu4u5xu3.

Then we have, by applying Theorem 2.5, the following results:

V1 =
1

u2
1u

2
2

(1, u3)

(
u1u2 1

0 1

)(
1 1

0 u1u2

)(
1

u3

)

=
(1 + u3)2

u1u2

=
1 + u3

u1
× 1 + u3

u2
.

V3 =
1

u2
4u

2
5

(1, u3)

(
1 0

1 u4u5

)(
u4u5 0

1 1

)(
1

u3

)

=
(1 + u3)2

u4u5

=
1 + u3

u4
× 1 + u3

u5
.
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V1 and V3 being placed on the bottom and upper lines in F̄ , we write these values

in the form of a product of two transjective cluster variables as in Corollary 4.1

above. The other position corresponds to the following transjective cluster variable

of type D̃4:

V2 =
1

(u1u2)2u3(u4u5)2
(1, u3)

(
u1u2 1

0 1

)(
1 1

0 u1u2

)(
u1u2 1

0 u3

)
×

×

(
u4u5 0

1 u3

)(
1 0

1 u4u5

)(
u4u5 0

1 1

)(
1

u3

)

=
1

(u1u2)2u3(u4u5)2
(1, u3)

(
(u1u2)2 u1u2(1 + 2u3)

0 u1u2u3

)
×

×

(
(u4u5)2 0

u4u5(1 + 2u3) u3u4u5

)(
1

u3

)

=
1

(u1u2)2u3(u4u5)2

(
(u1u2)2, u1u2(1 + u3)2

)( (u4u5)2

u4u5(1 + u3)2

)

=
u1u2u3u4u5 + (1 + u3)4

u1u2u3u4u5
.

We compute thus all transjective cluster variables of cluster algebra of type D̃4

by this method.

We compute now nontransjective cluster variables of cluster algebra of type D̃4.

Because n = 4, these cluster variables all lie in tubes of rank 2.

For one of these tubes, say T1, we have two nontransjective cluster variables α1

and α′1 on the mouth. These variables are given by the linearization coefficients

of columns of the SL2-tiling passing through points corresponding to the joints of

forks in F . These cluster variables can also be obtained by applying the formula of

Theorem 4.5.

We choose to use Theorem 4.5 to compute the linearization coefficient α1 of the

column passing through the vertex u3 of the root ω̄ and to use Proposition 4.2 to

compute the linearization coefficient α′1 of the column passing through V2.

For the computation of α1 we apply Theorem 4.5. That is, first we need to

determine the word associated with the column containing the vertex u3 of the

root ω̄. According to the embedding of the boundary f̃0 in the plane, this word

is: u1u2xu3yu4u5y1yu4u5xu3. Applying the formula of Theorem 4.5 to this word
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we obtain:

α1 =
1

u3(u4u5)2
(u1u2, 1)

(
u4u5 0

1 u3

)(
1 0

1 u4u5

)(
u4u5 0

1 1

)(
1

u3

)

=
1

u3(u4u5)2
(1 + u1u2u4u5, u3)

(
1 0

1 u4u5

)(
u4u5

1 + u3

)

=
1

u3(u4u5)2
(1 + u1u2u4u5, u3)

(
u4u5

u4u5(2 + u3)

)

=
u1u2u4u5 + (1 + u3)2

u3u4u5
.

We apply Proposition 4.2 to compute the linearization coefficient α′1 of the col-

umn passing through the variable V2. Let us calculate α′1 at the vertex u3 at the

intersection of the column containing V2 with the boundary f̃0. Then we have:

α′1 =
1

u3

[
(1 + u3)2

u1u2
+ u4u5

]
=
u1u2u4u5 + (1 + u3)2

u1u2u3
.

Thus, α1 and α′1 are nontransjective cluster variables lying on the mouth of the

tube T1.

For the second tube T2, we associate the modules lying on the mouth with the fol-

lowing reduced walks from u1 to u5 and from u2 to u4: u1xu3yu5 and u2xu3yu4. By

applying formula (6), we obtain the corresponding nontransjective cluster variables

α2 and α′2:

α2 =
1

u1u3u5
(1, 1)

(
1 0

0 1

)(
u3 0

1 u1

)(
1 0

0 u2u4

)
×

×

(
u3 1

0 u5

)(
1 0

0 1

)(
1

1

)

=
1

u1u3u5
(1 + u3, u1)

(
1 0

0 u2u4

)(
1 + u3

u5

)

=
1

u1u3u5
(1 + u3, u1)

(
1 + u3

u2u4u5

)

=
u1u2u4u5 + (1 + u3)2

u1u3u5
.
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α′2 =
1

u2u3u4
(1, 1)

(
1 0

0 1

)(
u3 0

1 u2

)(
1 0

0 u1u5

)
×

×

(
u3 1

0 u4

)(
1 0

0 1

)(
1

1

)

=
1

u2u3u4
(1 + u3, u2)

(
1 0

0 u1u5

)(
1 + u3

u4

)

=
1

u2u3u4
(1 + u3, u2)

(
1 + u3

u1u4u5

)

=
u1u2u4u5 + (1 + u3)2

u2u3u4
.

Thus α2 and α′2 are the nontransjective cluster variables lying on the mouth of

T2.

For the third tube T3, we associate the modules lying on the mouth with the fol-

lowing reduced walks from u1 to u4 and from u2 to u5: u1xu3yu4 and u2xu3yu5. By

applying formula (6), we obtain the corresponding nontransjective cluster variables

α3 and α′3:

α3 =
1

u1u3u4
(1, 1)

(
1 0

0 1

)(
u3 0

1 u1

)(
1 0

0 u2u5

)
×

×

(
u3 1

0 u4

)(
1 0

0 1

)(
1

1

)

=
1

u1u3u4
(1 + u3, u1)

(
1 0

0 u2u5

)(
1 + u3

u4

)

=
1

u1u3u4
(1 + u3, u1)

(
1 + u3

u2u4u5

)

=
u1u2u4u5 + (1 + u3)2

u1u3u4
.

α′3 =
1

u2u3u5
(1, 1)

(
1 0

0 1

)(
u3 0

1 u2

)(
1 0

0 u1u4

)
×

×

(
u3 1

0 u5

)(
1 0

0 1

)(
1

1

)

=
1

u2u3u5
(1 + u3, u2)

(
1 0

0 u1u4

)(
1 + u3

u5

)

=
1

u2u3u5
(1 + u3, u2)

(
1 + u3

u1u4u5

)
=
u1u2u4u5 + (1 + u3)2

u2u3u5
.
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Thus α3 and α′3 are the nontransjective cluster variables lying on the mouth of

the tube T3.

Remark 4.9. Now there is a question arising: Can the same technique be applied

to initial quiver with forks composed by more than two arrows? That is, if we take

a quiver of type D̃n and add more arrows to its fork(s)? Can we use the algorithm

from this paper to compute at least all transjective variables of the new cluster

algebra?
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