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Abstract. Let a be an ideal of a commutative Noetherian ring R and M an

R-module. In this paper, it is shown that if ExtiR(R/a,M) is a-minimax for

all i ≥ 0, then M/anM is a-minimax for all n ≥ 0. Several applications of

this result are given. Among other things, we provide a proof of the equiva-

lence of the a-minimaxness of the R-modules ExtiR(R/a,M), TorRi (R/a,M)

and Hi(x1, . . . , xt;M), for all i ≥ 0, where x1, . . . , xt are generators for

a. Using this, we show that, if b ⊇ a is an ideal of R such that M is b-

minimax and cd(b, R) = 1, then for every finitely generated R-module L with

SuppL ⊆ V (b), the R-modules ExtjR(L,Hi
a(M)) are b-minimax for all i and j.

As a consequence, it follows that Hi
a(M)/bnHi

a(M) are b-minimax R-modules

for all i and n.
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1. Introduction

We continue the study of minimax modules with respect to an ideal a of a com-

mutative Noetherian ring R. In [6], H. Zöschinger, introduced the interesting class

of minimax modules, and he has in [6] and [7] given many equivalent conditions for

a module to be minimax. The R-module M is said to be a minimax module, if there

is a finitely generated submodule N of M , such that M/N is Artinian. The concepts

of a-minimax and a-cominimax modules were introduced in [1] as generalization of

minimax and a-cofinite modules. We say that an R-module M is a-minimax if the

a-relative Goldie dimension of any quotient module of M is finite. Recall that, an

R-module M is said to have finite Goldie dimension (written GdimM <∞), if M

does not contain an infinite direct sum of non-zero submodules, or equivalently the

injective hull E(M) of M decomposes as a finite direct sum of indecomposable (in-

jective) submodules. Also, an R-module M is said to have finite a-relative Goldie
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dimension if the Goldie dimension of the a-torsion submodule Γa(M) of M is finite.

It is known that if M is a-torsion, then M is a-minimax if and only if M is minimax

(see [1, Remark 2.2(ii)]). In addition, we say that an R-module M is a-cominimax

if the support of M is contained in V (a) and ExtiR(R/a,M) is a-minimax for all

i ≥ 0.

A brief summary of the contents of this paper will now be given. In Sec-

tion 2, it is shown that if M is an a-cominimax R-module, then the R-modules

M/anM are a-minimax for all n ∈ N (see Theorem 2.3). Several applications

of this result are given. Among other things, we provide a proof of the equiva-

lence of the a-minimaxness of the R-modules ExtiR(R/a,M), TorRi (R/a,M) and

Hi(x1, . . . , xt;M), for all i ≥ 0, in Theorem 2.7, where x1, . . . , xt are generators for

a and Hi(x1, . . . , xt;M) is the ith Koszul cohomology module of M with respect

to x1, . . . , xt. This theorem is then used to deduce the change of rings principle for

a-cominimax modules (see Theorem 2.10).

Moreover, in this section by using Theorems 2.3 and 2.7 we show that, if M

is an a-cominimax R-module, then for any finitely generated R-module L with

support in V (a), the R-modules ExtiR(L,M) and TorRi (L,M) are a-minimax, for

all i. Also, we give a sufficient condition for a-cominimax modules, and it is shown

that if for an R-module M with SuppM ⊆ V (a), there exists x ∈
√
a such that

0 :M x and M/xM are both a-minimax, then M is a-cominimax. Finally, we prove

that if b is a second ideal of R with b ⊇ a, cd(b, R) = 1, and M is a b-minimax

R-module, then for every finitely generated R-module L with SuppL ⊆ V (b), the

R-modules ExtjR(L,Hi
a(M)) are b-minimax for all i and j, and so the R-modules

Hi
a(M)/bnHi

a(M) are b-minimax for all i and n.

Throughout this paper, R will always be a commutative Noetherian ring with

non-zero identity, and a will be an ideal of R. The ith local cohomology module of

an R-module M with respect to a is defined by

Hi
a(M) = lim

−→
n≥1

ExtiR(R/an,M).

We refer the reader to [4] or [2] for the basic properties of local cohomology.

2. The results

The purpose of this section is to prove if a is an ideal of a commutative Noetherian

ring R and M is an a-cominimax module over R, then the R-modules M/anM are

a-minimax for all n ∈ N (see Theorem 2.3). Further, several applications of this

result are given.
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The following lemmas are needed in the proof of Theorem 2.3

Lemma 2.1. Let M be an R-module such that HomR(R/a,M) is an a-minimax

R-module. Then HomR(R/an,M) is a-minimax for all n ∈ N.

Proof. We use induction on n. When n = 1, there is nothing to prove. Now, let

n > 1 and suppose that the result has been proved for n − 1. Consider the exact

sequence

0 −→ 0 :M a −→ 0 :M an
f−→ a1(0 :M an)⊕ · · · ⊕ at(0 :M an),

where a = (a1, . . . , at) and f(x) = (a1x, . . . , atx). As, ai(0 :M an) is a submodule

of 0 :M an−1, it follows from [1, Proposition 2.3] that ai(0 :M an) is a-minimax

for all i = 1, . . . , t. Now the result follows from [1, Corollary 2.4 and Proposition

2.3]. �

Lemma 2.2. Let M be an R-module such that M/aM is a-minimax. Then M/anM

is a-minimax for all n ∈ N.

Proof. We use induction on n. The case n = 1 is true by hypothesis. Now, let

n > 1 and suppose that the result has been proved for n− 1. By [1, Corollary 2.4]

and induction hypothesis, (M/an−1M)k is a-minimax, for all integers k ≥ 0. Now

consider the exact sequence

(M/an−1M)t
f→M/anM

g→M/aM → 0,

where a = (a1, . . . , at) and

f(m1 + an−1M, . . . ,mt + an−1M) = a1m1 + · · ·+ atmt + anM.

Therefore, by [1, Proposition 2.3], M/anM is a-minimax. �

Now, we are prepared to present the following theorem which plays a key role in

this paper.

Theorem 2.3. Let M be an R-module such that ExtiR(R/a,M) is an a-minimax

R-module for all i ≥ 0. Then M/anM is a-minimax for all n ∈ N.

Proof. In view of Lemma 2.2, it is enough to prove that M/aM is a-minimax. To

do this, let a = (x1, . . . , xn). Then

M/aM ' Hn(x1, . . . , xn;M),

where Hn(x1, . . . , xn;M) denotes the nth Koszul cohomology module. Consider

the co-Koszul complex K•(x,M) as the following:

0→ HomR(K0(x),M)→ HomR(K1(x),M)→ · · · → HomR(Kn(x),M)→ 0.
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ThenHi(x1, . . . , xn;M) = Zi/Bi, whereBi and Zi are the modules of coboundaries

and cocycles of the complex K•(x,M), respectively. Put

C = {N | ExtiR(R/a, N) is a-minimax for all i ≥ 0}.

By induction we claim that Bj ∈ C for all j. We have B0 = 0 ∈ C. Now, let Bt ∈ C.
Put Ci = HomR(Ki(x),M)/Bi. Since Kt(x) is a finitely generated free R-module,

it follows from [1, Corollary 2.4] that HomR(Kt(x),M) ∈ C. Now, since Bt ∈ C
and HomR(Kt(x),M) ∈ C, we have Ct ∈ C by [1, Proposition 2.3]. Hence

0 :Ct a ' HomR(R/a, Ct)

is a-minimax. Because of aHt(x1, . . . , xn;M) = 0, it follows that

Ht(x1, . . . , xn;M) ⊆ 0 :Ct a,

and so Ht(x1, . . . , xn;M) is a-minimax. Consequently, from the short exact se-

quence

0→ Ht(x1, . . . , xn;M)→ Ct → Bt+1 → 0

and [1, Proposition 2.3] we deduce that Bt+1 ∈ C. Hence by induction we have

proved that Bj ∈ C for all j. Now, since Bn ∈ C and Hom(Kn(x),M) ∈ C, we

obtain that Cn ∈ C by [1, Proposition 2.3]. Hence 0 :Cn a ' HomR(R/a, Cn) is

a-minimax. Thus Hn(x1, . . . , xn;M) ⊆ 0 :Cn a implies that Hn(x1, . . . , xn;M) is

a-minimax. On the other hand, since M/aM = Hn(x1, . . . , xn;M), it follows that

M/aM is a-minimax. �

Remark 2.4. We note that if dim R = 0, then each a-cominimax R-module M

is a-minimax. In fact, as SuppM ⊆ V (a) and R is Artinian, it follows that M =

0 :M an, and so M is a-minimax by Lemma 2.1.

In general, we have the following.

Corollary 2.5. Let M be an a-cominimax R-module. Then M/anM is a-minimax

for all n ∈ N.

Proof. The assertion follows from the definition and Theorem 2.3. �

Corollary 2.6. Let a be an ideal of R, and let M be an R-module such that Hi
a(M)

is a-cominimax for all i. Then M/anM is a-minimax for all n ∈ N.

Proof. Since Hi
a(M) is a-cominimax for all i, in view of [1, Proposition 3.7] the R-

module ExtiR(R/a,M) is a-minimax for all i. Now the result follows from Theorem

2.3. �
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The next theorem provides a proof of the equivalence of the a-minimaxness of

the R-modules ExtiR(R/a,M), TorRi (R/a,M) and Hi(x1, . . . , xt;M), for all i ≥ 0.

Theorem 2.7. Let a = (x1, . . . , xt) be an ideal of R, and let M be an R-module.

Then the following statements are equivalent:

(i) ExtiR(R/a,M) is an a-minimax R-module for all i.

(ii) TorRi (R/a,M) is an a-minimax R-module for all i.

(iii) The Koszul cohomology modules Hi(x1, . . . , xt;M) are a-minimax R-modules

for all i.

Proof. (i) =⇒ (ii) Let

F• : · · · → F2 → F1 → F0 → R/a→ 0

be a free resolution of finitely generated R-modules for R/a. Then it follows that

TorRi (R/a,M) = Zi/Bi, where Bi and Zi are the modules of boundaries and cycles

of the complex F• ⊗RM , respectively. Put

C = {N | ExtiR(R/a, N) is a-minimax for all i ≥ 0}.

By induction we claim that Zj ∈ C for all j. We have Z0 = F0 ⊗RM ∈ C. Now let

Zt ∈ C. Consider the exact sequence

0→ Ci+1 → Zi → TorRi (R/a,M)→ 0, (†)

where Ci = (Fi ⊗RM)/Zi. Hence we obtain the exact sequence

Zi/aZi → TorRi (R/a,M)→ 0.

Therefore, TorRt (R/a,M) is a homomorphic image of Zt/aZt. Now, since Zt ∈ C,
it follows from Theorem 2.3 that Zt/aZt is a-minimax, and so TorRt (R/a,M) is

a-minimax. Hence, we deduce from (†) that Ct+1 ∈ C, and so Zt+1 ∈ C. Hence by

induction we have proved that Zj ∈ C for all j. It follows from Theorem 2.3 that

Zi/aZi is a-minimax for all i, and so TorRi (R/a,M) is a-minimax for all i.

To prove the implication (ii) =⇒ (iii), as

Hi(x1, . . . , xt;M) ' Hn−i(x1, . . . , xt;M),

it is sufficient to show that Hi(x1, . . . , xt;M) is a-minimax for all i. Let x =

x1, . . . , xn. Consider the Koszul complex

K•(x) : 0→ Kn(x)→ Kn−1(x)→ · · · → K1(x)→ K0(x)→ 0.
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Then Hi(x1, . . . , xt;M) = Zi/Bi, where Bi and Zi are the modules of boundaries

and cycles of the complex K•(x)⊗RM , respectively. Put

C = {N | TorRi (R/a, N) is a-minimax for all i ≥ 0}.

Consider the exact sequence

0→ Ci+1 → Zi → Hi(x1, . . . , xt;M)→ 0,

where Ci = (Ki(x)⊗RM)/Zi. Hence we obtain the exact sequence

Zi/aZi → Hi(x1, . . . , xt;M)→ 0.

Now, analogous to the proof of the implication (i) =⇒ (ii), Zi ∈ C for all i. It follows

that Zi/aZi = TorR0 (R/a, Zi) is a-minimax for all i, and so Hi(x1, . . . , xt;M) is a-

minimax for all i.

Finally, to prove the implication (iii) =⇒ (i), let

F• : · · · → F2 → F1 → F0 → R/a→ 0

be a free resolution of finitely generated R-modules for R/a. Then it follows that

ExtiR(R/a,M) = Zi/Bi, where Bi and Zi are the modules of coboundaries and

cocycles of the complex HomR(F•,M), respectively. Put

C = {N | Hi(x1, . . . , xt;N) is a-minimax for all i ≥ 0}.

Consider the short exact sequence

0→ ExtiR(R/a,M)→ Ci → Bi+1 → 0,

where Ci = HomR(Fi,M)/Bi. Then in view of the proof of Theorem 2.3, Bi ∈ C
for all i. Thus Ci ∈ C for all i. Now, since

ExtiR(R/a,M) ⊆ 0 :Ci a ' HomR(R/a, Ci) ' H0(x1, . . . , xt;C
i)

and H0(x1, . . . , xt;C
i) is a-minimax, we see that ExtiR(R/a,M) is a-minimax for

all i. �

The following result is an extension of Theorem 2.3.

Theorem 2.8. Let M be an R-module such that ExtiR(R/a,M) is an a-minimax

R-module for all i ≥ 0. Then for any finitely generated R-module L with support

in V (a), the R-modules ExtiR(L,M) and TorRi (L,M) are a-minimax for all i.
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Proof. Since V (AnnR L) ⊆ V (a), there exists n ∈ N such that anL = 0. Hence

anExtiR(L,M) = 0 and anTorRi (L,M) = 0 for all i. Let

F• : · · · → F2 → F1 → F0 → L→ 0

be a free resolution of finitely generated R-modules for L. Then ExtiR(L,M) =

Zi/Bi, where Bi and Zi are the modules of coboundaries and cocycles of the

complex HomR(F•,M), respectively. Put

C = {N | ExtiR(R/a, N) is a-minimax for all i ≥ 0},

and consider the short exact sequence

0→ ExtiR(L,M)→ Ci → Bi+1 → 0,

where Ci = HomR(Fi,M)/Bi. Then in view of the proof of Theorem 2.3 and

Lemma 2.1, we have that Bi ∈ C for all i. (Note that ExtiR(L,M) ⊆ 0 :Ci an.)

Thus Ci ∈ C for all i. Hence 0 :Ci a is a-minimax for all i, and so it follows from

Lemma 2.1 that 0 :Ci an is a-minimax for all i. Now, as ExtiR(L,M) ⊆ 0 :Ci an, it

follows that ExtiR(L,M) is a-minimax for all i.

Also, we have TorRi (L,M) = Zi/Bi, where Bi and Zi are the modules of bound-

aries and cycles of the complex F• ⊗RM , respectively. Put

C′ = {N | TorRi (R/a, N) is a-minimax for all i ≥ 0}.

In view of Theorem 2.7 and assumption, M ∈ C′. Consider the exact sequence

0→ Ci+1 → Zi → TorRi (L,M)→ 0,

where Ci = (Fi ⊗R M/Zi). As anTorRi (L,M) = 0 for all i, we obtain the exact

sequence

Zi/a
nZi → TorRi (L,M)→ 0.

Now, using the proof of Theorem 2.7((i)⇒ (ii)) and Lemma 2.2, we see that Zi ∈ C
for all i. Therefore, it follows from Lemma 2.2 that Zi/a

nZi is a-minimax for all i,

and so TorRi (L,M) is a-minimax for all i. �

To prove the change of rings principle for cominimaxness, we need to the follow-

ing lemma. Before presenting it, recall that (cf. [3]), for any ideal a of R and any

R-module M , the a-relative Goldie dimension of M is defined as

GdimaM :=
∑

p∈V (a)

µ0(p,M),

where µ0(p,M) denotes the 0-th Bass number of M with respect to prime ideal p.
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Lemma 2.9. Let the ring T be a homomorphic image of R, and let M be an

T -module. Then

GdimaT M = GdimaM.

In particular, M is an aT -minimax T -module if and only if M is an a-minimax

R-module.

Proof. Assume that T = R/I for some ideal I of R. Then

AssT M ∩ V (aT ) = {p/I | p ∈ AssRM ∩ V (a)}.

On the other hand, for any p ∈ AssRM ∩ V (a) we have

HomTp̄
(k(p),Mp̄) ∼= HomRp

(k(p),Mp)

as k(p)-vector spaces, where p̄ = p/I and k(p) = Rp/pRp. Therefore µ0(p,M) =

µ0(p/I,M) and this completes the proof. �

We are now ready to state and prove the change of rings principle for comini-

maxness of modules.

Theorem 2.10. Let the ring T be a homomorphic image of R, and let M be an

T -module. Then M is an aT -cominimax as a T -module if and only if M is an

a-cominimax as an R-module.

Proof. Assume that T = R/I for some ideal I of R. Then we have

SuppT M = {p/I | p ∈ SuppRM}.

Therefore, SuppT M ⊆ V (aT ) if and only if SuppRM ⊆ V (a). Let a = (x1, . . . , xt)

and let ϕ : R → T be the natural epimorphism. As aT = (ϕ(x1), . . . , ϕ(xt)), it

follows from Theorem 2.7 that ExtiT (T/aT,M) is an aT -minimax T -module for all

i if and only if the Koszul cohomology modules Hi(ϕ(x1), . . . , ϕ(xt);M) are aT -

minimax T -modules for all i. But, in view of Lemma 2.9, Hi(ϕ(x1), . . . , ϕ(xt);M)

is aT -minimax if and only if Hi(ϕ(x1), . . . , ϕ(xt);M) is a-minimax. Now the result

follows from

Hi(ϕ(x1), . . . , ϕ(xt);M) ∼= Hi(x1, . . . , xt;M).

and Theorem 2.7. �

Theorem 2.11. Let f : M → N be an R-homomorphism such that ExtiR(R/a,Ker f)

and ExtiR(R/a,Coker f) are both a-minimax for all i. Then Ker ExtiR(idR/a, f) and

Coker ExtiR(idR/a, f) are also a-minimax for all i.
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Proof. The exact sequences

0→ Kerf →M
g→ Imf → 0 and 0→ Imf

ι→ N → Cokerf → 0,

where ι ◦ g = f , provides the following two exact sequences

· · · → ExtiR(R/a,Ker f)→ ExtiR(R/a,M)→ ExtiR(R/a, Im f)→ · · · (†)

and

· · · → ExtiR(R/a, Im f)→ ExtiR(R/a, N)→ ExtiR(R/a,Coker f)→ · · · . (‡)

Now, since Exti+1
R (R/a,Ker f) is a-minimax, it follows from the exact sequence (†)

that Coker ExtiR(idR/a, g) and Ker Exti+1
R (idR/a, g) are both a-minimax for all i.

Also, as ExtiR(R/a,Coker f) is a-minimax, the exact sequence (‡) implies that the

R-modules Coker ExtiR(idR/a, ι) and Ker Exti+1
R (idR/a, ι) are a-minimax for all i.

Now, the assertion follows from the exact sequences

0→ Ker ExtiR(idR/a, g)→ Ker ExtiR(idR/a, f)→ Ker ExtiR(idR/a, ι)

Coker ExtiR(idR/a, g)→ Coker ExtiR(idR/a, f)→ Coker ExtiR(idR/a, ι)→ 0. �

Corollary 2.12. Let M be an R-module with SuppM ⊆ V (a). Suppose that x ∈ a

such that 0 :M x and M/xM are both a-cominimax. Then M is also a-cominimax.

Proof. Put f = x1M . Then Ker f = 0 :M x and Coker f = M/xM . Hence in view

of Theorem 2.11, the R-module Ker ExtiR(1R/a, f) is a-minimax. Now, it follows

from ExtiR(1R/a, f) = 0 that Ker ExtiR(1R/a, f) = ExtiR(R/a,M). This completes

the proof. �

Corollary 2.13. Let M be an R-module. Suppose that x ∈
√
a such that 0 :M x

and M/xM are both a-minimax. Then ExtiR(R/a,ΓRx(M)) is also a-minimax for

all i.

Proof. We have xn ∈ a for some n ∈ N. Put f = xn1ΓRx(M). Then, we have

Ker f = 0 :ΓRx(M) x
n = 0 :M xn,

and Coker f = Γx(M)/xnΓx(M). Now, it follows from the exact sequence

0 −→ Coker f −→M/xnM,

and Lemma 2.2 that M/xnM is a-minimax. Thus Coker f is also a-minimax.

Therefore, in view of [1, Corollary 2.5] and Theorem 2.11, Ker ExtiR(1R/a, f) is

a-minimax. But x ∈
√
a implies that ExtiR(1R/a, f) = 0, and so

Ker ExtiR(1R/a, f) = ExtiR(R/a,ΓRx(M)).
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This completes the proof. �

Corollary 2.14. Let M be an R-module with support in V (a). Suppose that x ∈
√
a

such that 0 :M x and M/xM are both a-minimax. Then M is a-cominimax.

Proof. The result follows from the Corollary 2.13. �

Before bringing the next result we recall that, for an R-module M , the cohomo-

logical dimension of M with respect to an ideal a of R is defined as

cd(a,M) = sup{i ∈ Z | Hi
a(M) 6= 0}.

Lemma 2.15. Let cd(a, R) = 1, and let M be an a-minimax R-module. Then

Hi
a(M) is a-cominimax for all i.

Proof. Since H0
a(M) is a submodule of M , it follows that H0

a(M) is a-cominimax.

Also, cd(a, R) = 1 implies that Hi
a(M) = 0 for all i > 1. Therefore, the result

follows from [1, Corollary 3.9]. �

Lemma 2.16. Let b be an ideal of R with b ⊇ a, cd(b, R) = 1, and let M be an

R-module with Γa(M) = 0. Then

Hj
b(Hi

a(M)) ∼=

{
H1

b(M), if j = 0, i = 1,

0, otherwise.

Proof. The assertion follows from the proof of [5, Proposition 3.15]. �

Corollary 2.17. Let b be an ideal of R with b ⊇ a, cd(b, R) = 1, and M a

b-minimax R-module. Then Hj
b(Hi

a(M)) is b-cominimax for all i and j.

Proof. Since cd(b, R) = 1, it follows from Lemma 2.15 that Hj
b(Γa(M)) is b-

cominimax for all j. Now, let i > 0. As Hi
a(M) ∼= Hi

a(M/Γa(M)), we may

therefore assume that Γa(M) = 0. Thus, the result follows from Lemmas 2.15 and

2.16. �

Corollary 2.18. Let b be an ideal of R with b ⊇ a, cd(b, R) = 1, and M a b-

minimax R-module. Then for every finitely generated R-module L with SuppL ⊆
V (b), the R-modules ExtjR(L,Hi

a(M)) are b-minimax for all i and j. In particular,

the R-modules Hi
a(M)/bnHi

a(M) are b-minimax for all i and n.

Proof. By Corollary 2.17, Hj
b(Hi

a(M)) is b-cominimax for all i and j. Therefore,

it follows from [1, Proposition 3.7] that the R-modules ExtjR(R/b, Hi
a(M)) are b-

minimax for all i and j. Thus, the result follows from Theorems 2.7 and 2.3. �
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