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Abstract. We introduce the notion of a triple coderivation, which is a triplet

of maps from a (C, C)-bicomodule to a coring C satisfying a certain condition

closely related to the definition of a coderivation. We determine the structure

of the module consisting of all triple coderivations.
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1. Introduction

Throughout this note, A represents an associative algebra with a unit over a

commutative ring R and C an A-coring with the coproduct ∆ and with the counit

ε. Notations are based on [2]. The category of unitary (A,A)-bimodules whose left

and right actions of R coincide is denoted by AMA, and the category of counitary

(C, C)-bicomodules is denoted by CMC . For M ∈ CMC , the right and left coactions

on M are denoted by ρM and Mρ, respectively. If M , N ∈ CMC , then CHomC(M,N),

AHomC(M,N), and CHomA(M,N) denote the set of all (C, C)-bicomodule maps,

the set of all right C-comodule left A-module maps, and the set of all left C-comodule

right A-module maps from M to N , respectively. If X, Y ∈ AMA, then the set of

all (A,A)-bimodule maps from X to Y is denoted by AHomA(X,Y ). The identity

map of a set X is denoted by IX .

The notion of a coderivation was introduced in the context of cohomology theory

of coalgebras in [3] and [7]. To state the definition of a coderivation, we prepare

the next notation.

Definition 1.1. For M ∈ CMC , we define the R-linear map

TM : AHomA(M, C)3 → AHomA(M, C ⊗A C)

by setting TM (f, g, h) = ∆ ◦ f − (g ⊗ IC) ◦ ρM − (IC ⊗ h) ◦Mρ.

According to [3], [7], and [4], a map f in AHomA(M, C) is called a coderiva-

tion if TM (f, f, f) = 0. The set of all coderivations from M to C is denoted by
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Coder(M, C). This notion was generalized in [9]. A map f in AHomA(M, C) is

called a generalized coderivation if TM (f, f, f) is a (C, C)-bicomodule map. The set

of all generalized coderivations from M to C is denoted by GCoder(M, C). It was

proved in [9, Lemma 2.2 (1)] that every generalized coderivation f induces coderiva-

tions d and d′ such that TM (f, f, d) = 0 and TM (f, d′, f) = 0. This situation led us

to study a triplet (f, g, h) satisfying TM (f, g, h) = 0.

Definition 1.2. For M ∈ CMC , a triplet (f, g, h) in AHomA(M, C)3 is called a

triple coderivation if TM (f, g, h) = 0. The set of all triple coderivations is denoted

by TCoder(M, C).

The purpose of this paper is to determine the structure of TCoder(M, C). The

next is the main result of this paper.

Theorem 1.3. Let C be an A-coring and M ∈ CMC. Then the R-linear map

ΦM : TCoder(M, C)→ Coder(M, C)× AHomC(M, C)× CHomA(M, C)

defined by ΦM (f, g, h) = (g + h − f, f − h, f − g) is an isomorphism, and the

inverse map is given by (ΦM )−1(d, ϕ, ψ) = (d+ ϕ+ ψ, d+ ϕ, d+ ψ).

This theorem yields that each component of a triple coderivation is a generalized

coderivation. As an application of Theorem 1.3, we investigate symmetrical prop-

erties of triple coderivations such as the condition for both (f, g, h) and (f, h, g)

to be triple coderivations. Furthermore we investigate the Lie algebra structure of

TCoder(C, C). In final section we represent triple coderivations by triple derivations

of algebras.

2. Proof of Theorem 1.3

We prepare some notations and some results to prove Theorem 1.3. Let C be an

A-coring and M ∈ CMC . Let εM denote the composition map

M ⊗A C
IM⊗ε−−−−→ M ⊗A A

canonical isom.−−−−−−−−−−−→ M

and Mε denote the composition map

C ⊗AM
ε⊗IM−−−−→ A⊗AM

canonical isom.−−−−−−−−−−−→ M.



ON TRIPLE CODERIVATIONS OF CORINGS 141

Usually εM and Mε are represented by IM⊗ε and ε⊗IM , respectively. The following

three R-isomorphisms are well-known.

RM : AHomA(M,A)→ AHomC(M, C)

LM : AHomA(M,A)→ CHomA(M, C)

TM : AHomA(M,A)→ CHomC(M, C ⊗A C)

For ξ ∈ AHomA(M,A), RM (ξ) is the composition map

M
ρM−−−−→ M ⊗A C

ξ⊗IC−−−−→ A⊗A C
canonical isom.−−−−−−−−−−−→ C,

LM (ξ) is the composition map

M
Mρ−−−−→ C ⊗AM

IC⊗ξ−−−−→ C ⊗A A
canonical isom.−−−−−−−−−−−→ C,

and TM (ξ) is the composition map

M
(Mρ⊗IC)◦ρM−−−−−−−−→ C ⊗AM ⊗A C

IC⊗ξ⊗IC−−−−−−→ C ⊗A A⊗A C
canonical isom.−−−−−−−−−−−→ C ⊗A C.

The inverse maps are given by (RM )−1(f) = ε ◦ f , (LM )−1(g) = ε ◦ g, and

(TM )−1(h) = ε(2) ◦ h, where ε(2) is the composition map

C ⊗A C
ε⊗ε−−−−→ A⊗A A

canonical isom.−−−−−−−−−−−→ A.

Usually, RM (ξ), LM (ξ), and TM (ξ) are represented by (ξ⊗ IC) ◦ ρM , (IC ⊗ ξ) ◦Mρ,

and (IC ⊗ ξ ⊗ IC) ◦ (Mρ⊗ IC) ◦ ρM , respectively.

Lemma 2.1. For any M ∈ CMC and f , g, h ∈ AHomA(M, C), the following hold.

(1) εC ◦ TM (f, g, h) = f − g − LM (ε ◦ h).

(2) Cε ◦ TM (f, g, h) = f −RM (ε ◦ g)− h.

(3) TM (f, f, 0) = 0 if and only if f ∈ AHomC(M, C).
(4) TM (f, 0, f) = 0 if and only if f ∈ CHomA(M, C).

(5) TM (0, f,−f) = 0 if and only if f ∈ CHomC(M, C).

Proof. (1) We can see that εC ◦∆ ◦ f = f , εC ◦ (g ⊗ IC) ◦ ρM = g ◦ εM ◦ ρM = g,

and εC ◦ (IC ⊗ h) ◦Mρ = LM (ε ◦ h). Hence εC ◦ TM (f, g, h) = f − g − LM (ε ◦ h).

(2) is similar to (1).

(3) and (4) are clear by definition.

(5) If f ∈ CHomC(M, C), then we have

TM (0, f,−f) = TM (f, f, 0)− TM (f, 0, f) = 0

by (3) and (4). Conversely suppose that TM (0, f,−f) = 0. Then by (1) we have

0 = εC ◦ TM (0, f,−f) = −f + LM (ε ◦ f),
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and hence f ∈ CHomA(M, C). Similarly we have f ∈ AHomC(M, C) by (2). �

The following two lemmas were proved in [9] for coalgebras. For the sake of

completeness we give proofs.

Lemma 2.2. For any M ∈ CMC and f ∈ AHomA(M, C), the following conditions

are equivalent.

(1) f ∈ GCoder(M, C)
(2) TM (f, f, f) + TM (ε ◦ f) = 0

(3) f −RM (ε ◦ f) ∈ Coder(M, C)
(4) f − LM (ε ◦ f) ∈ Coder(M, C)

Proof. (1) ⇒ (2) It is easy to see that

ε(2) ◦∆ = ε and ε(2) ◦ (f ⊗ IC) ◦ ρM = ε(2) ◦ (IC ⊗ f) ◦Mρ = ε ◦ f.

It follows that (TM )−1
(
TM (f, f, f)

)
= −ε ◦ f . Hence, TM (f, f, f) = −TM (ε ◦ f).

(2) ⇒ (1) is clear.

(2) ⇔ (3) We set ϕ = RM (ε ◦ f) and d = f − ϕ. Since ϕ ∈ AHomC(M, C), we

have TM (ϕ,ϕ, 0) = 0. By the definitions of RM and TM , we have

TM (ε ◦ f) =
(
IC ⊗ ϕ) ◦Mρ = −TM (0, 0, ϕ).

Therefore we see that

TM (f, f, f) = TM (d, d, d) + TM (ϕ,ϕ, 0) + TM (0, 0, ϕ) = TM (d, d, d)− TM (ε ◦ f).

Hence TM (f, f, f) + TM (ε ◦ f) = 0 is equivalent to d ∈ Coder(M, C).
(2) ⇔ (4) is similar to (2) ⇔ (3). �

Lemma 2.3. For any M ∈ CMC, the following hold.

(1) Coder(M, C) =
{
f ∈ GCoder(M, C)

∣∣ ε ◦ f = 0
}

(2) GCoder(M, C) = Coder(M, C)⊕ AHomC(M, C)
(3) GCoder(M, C) = Coder(M, C)⊕ CHomA(M, C)

Proof. (1) Since Coder(M, C) ⊆ GCoder(M, C), the assertion is clear by the con-

dition (2) of Lemma 2.2.

(2) If ϕ ∈ AHomC(M, C), then

TM (ϕ,ϕ, ϕ) = TM (ϕ,ϕ, 0) + TM (0, 0, ϕ) = −(IC ⊗ ϕ) ◦Mρ

is a (C, C)-bicomodule map, and hence ϕ ∈ GCoder(M, C). Therefore we have

Coder(M, C) + AHomC(M, C) ⊆ GCoder(M, C). By (3) of Lemma 2.2 we have

GCoder(M, C) = Coder(M, C) + AHomC(M, C).



ON TRIPLE CODERIVATIONS OF CORINGS 143

Let d ∈ Coder(M, C) ∩ AHomC(M, C). Then, using Lemma 2.1, we see that

0 = Cε ◦
(
TM (d, d, d)− TM (d, d, 0)

)
= Cε ◦ TM (0, 0, d) = −d.

Hence, Coder(M, C) ∩ AHomC(M, C) = 0.

(3) is similar to (2). �

Proof of Theorem 1.3. Let (f, g, h) ∈ TCoder(M, C). By (1) and (2) of Lemma 2.1

we have

f = g + LM (ε ◦ h), and (2.1)

f = h+ RM (ε ◦ g). (2.2)

Therefore we see that

TM (f, f, f) = TM (f, g, h) + TM
(
0, LM (ε ◦ h), RM (ε ◦ g)

)
= −

(
LM (ε ◦ h)⊗ IC

)
◦ ρM −

(
IC ⊗RM (ε ◦ g)

)
◦Mρ.

It follows that TM (f, f, f) is a (C, C)-bicomodule map, and hence f ∈ GCoder(M, C).
By the equation (2.1), g also belongs to GCoder(M, C). By the equation (2.2), we

have g + h − f = g − RM (ε ◦ g), which belongs to Coder(M, C) by Lemma 2.2.

Together this result with equations (2.1) and (2.2), we can define the R-linear map

ΦM : TCoder(M, C)→ Coder(M, C)× AHomC(M, C)× CHomA(M, C)

by setting ΦM (f, g, h) = (g + h− f, f − h, f − g).

Conversely, for any d ∈ Coder(M, C), ϕ ∈ AHomC(M, C), and ψ ∈ CHomA(M, C),
we see that

TM (d+ ϕ+ ψ, d+ ϕ, d+ ψ) = TM (d, d, d) + TM (ϕ,ϕ, 0) + TM (ψ, 0, ψ) = 0,

and hence (d+ϕ+ψ, d+ϕ, d+ψ) ∈ TCoder(M, C). Thus we can define the map

ΨM : Coder(M, C)× AHomC(M, C)× CHomA(M, C)→ TCoder(M, C)

by setting ΨM (d, ϕ, ψ) = (d + ϕ + ψ, d + ϕ, d + ψ). It is easy to see that ΨM is

the inverse map of ΦM . Hence ΦM is an isomorphism. �

The proof of Theorem 1.3 shows the next.

Corollary 2.4. The map ΦM given in Theorem 1.3 satisfies

ΦM (f, g, h) =
(
f −RM (ε ◦ g)− LM (ε ◦ h), RM (ε ◦ g), LM (ε ◦ h)

)
and f −RM (ε ◦ g)− LM (ε ◦ h) = g −RM (ε ◦ g) = h− LM (ε ◦ h).
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Corollary 2.5. The R-module TCoder(M, C) is a subdirect product of three copies

of GCoder(M, C), i.e., all components of a triple coderivation are generalized coderi-

vations and every generalized coderivation appears in each component of triple

coderivations.

Proof. By Theorem 1.3 all components of triple coderivations belong to

Coder(M, C) + AHomC(M, C) + CHomA(M, C).

Hence they are generalized coderivations by Lemma 2.3. Conversely let f ∈
GCoder(M, C). Then, by Lemma 2.3, f can be written as f = d + ϕ = d′ + ψ

with some d, d′ ∈ Coder(M, C), ϕ ∈ AHomC(M, C), and ψ ∈ CHomA(M, C). Theo-

rem 1.3 shows that (f, f, d) = (ΦM )−1(d, ϕ, 0) and (f, d′, f) = (ΦM )−1(d′, 0, ψ) are

triple coderivations. �

Finally we characterize a triplet (f, g, h) such that TM (f, g, h) is a (C, C)-bico-

module map.

Proposition 2.6. Let C be an A-coring, M ∈ CMC, and f , g, h ∈ AHomA(M, C).

Then TM (f, g, h) is a (C, C)-bicomodule map if and only if f ∈ GCoder(M, C),

f − g ∈ CHomA(M, C), and f − h ∈ AHomC(M, C) hold. When this is the case, g

and h also belong to GCoder(M, C).

Proof. Suppose that TM (f, g, h) is a (C, C)-bicomodule map. Then by Lemma 2.1

(1) we have εC ◦TM (f, g, h) = f −g−LM (ε◦h). Since εC is a left C-comodule map,

so is f − g. Similarly f − h is a right C-comodule map. Therefore

TM (0, f − g, f − h) = −
(
(f − g)⊗ IC

)
◦ ρM −

(
IC ⊗ (f − h)

)
◦Mρ

is a (C, C)-bicomodule map. Hence TM (f, f, f) = TM (f, g, h) + TM (0, f − g, f − h)

is a (C, C)-bicomodule map, which means that f ∈ GCoder(M, C). Since f −
g ∈ CHomA(M, C), g belongs to GCoder(M, C) by Lemma 2.3 (3). Similarly h

belongs to GCoder(M, C). Conversely if f ∈ GCoder(M, C), f −g ∈ CHomA(M, C),
and f − h ∈ AHomC(M, C), then TM (f, f, f) and TM (0, f − g, f − h) are (C, C)-
bicomodule maps, and hence TM (f, g, h) = TM (f, f, f) − TM (0, f − g, f − h) is a

(C, C)-bicomodule map. �

3. Symmetrical properties of triple coderivations

In this section we investigate symmetrical properties of triple coderivations. First

we introduce the next.
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Definition 3.1. Let M ∈ CMC . A map f in AHomA(M, C) is called a symmetric

generalized coderivation if there exists ϕ ∈ CHomC(M, C) such that TM (f, f, f) =

∆ ◦ ϕ. The set of all symmetric generalized coderivations from M to C is denoted

by SGCoder(M, C).

Obviously every symmetric generalized coderivation is a generalized coderivation.

Lemma 3.2. For any M ∈ CMC and f ∈ GCoder(M, C), the following conditions

are equivalent.

(1) f ∈ SGCoder(M, C)
(2) There exists ϕ ∈ CHomC(M, C) such that ε ◦ f = ε ◦ ϕ.

(3) RM (ε ◦ f) = LM (ε ◦ f)

Proof. (1)⇒ (2) There exists ϕ ∈ CHomC(M, C) such that TM (f, f, f) = ∆◦ϕ. It

follows that εC ◦ TM (f, f, f) = ϕ. On the other hand, by Lemma 2.1 (1), we have

εC ◦ TM (f, f, f) = f − f − LM (ε ◦ f) = −LM (ε ◦ f).

It follows that ϕ = −LM (ε ◦ f). Hence ε ◦ f = ε ◦ LM (ε ◦ f) = ε ◦ (−ϕ).

(2) ⇒ (3) There exists ϕ ∈ CHomC(M, C) such that ε ◦ f = ε ◦ϕ. Hence we have

RM (ε ◦ f) = ϕ = LM (ε ◦ f).

(3) ⇒ (1) By definition we have TM (ε ◦ f) =
(
IC ⊗ RM (ε ◦ f)

)
◦ Mρ. Since

RM (ε◦f) = L(ε◦f) ∈ CHomC(M, C), we have
(
IC⊗RM (ε◦f)

)
◦Mρ = ∆◦RM (ε◦f).

By Lemma 2.2 we have TM (f, f, f) = ∆ ◦ (−RM (ε ◦ f)). �

In virtue of Lemmas 2.2, 2.3, and 3.2, we get the next.

Corollary 3.3. SGCoder(M, C) = Coder(M, C)⊕ CHomC(M, C) for all M ∈ CMC.

Theorem 3.4. Let C be an A-coring, M ∈ CMC, and (f, g, h) ∈ TCoder(M, C).

Then the following hold.

(1) (f, h, g) ∈ TCoder(M, C) if and only if g, h ∈ SGCoder(M, C). When this

is the case, f also belongs to SGCoder(M, C).
(2) (h, g, f) ∈ TCoder(M, C) if and only if g ∈ SGCoder(M, C) and 2f = 2h.

(3) (g, f, h) ∈ TCoder(M, C) if and only if h ∈ SGCoder(M, C) and 2f = 2g.

(4) (h, f, g) ∈ TCoder(M, C) if and only if g, h ∈ SGCoder(M, C) and 2f = 2h.

When this is the case, f also belongs to SGCoder(M, C).

(5) (g, h, f) ∈ TCoder(M, C) if and only if g, h ∈ SGCoder(M, C) and 2f = 2g.

When this is the case, f also belongs to SGCoder(M, C).
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Proof. Set d = g + h − f , ϕ = f − h, and ψ = f − g. Then by Theorem 1.3

we have d ∈ Coder(M, C), ϕ ∈ AHomC(M, C), ψ ∈ CHomA(M, C), and (f, g, h) =

(d+ ϕ+ ψ, d+ ϕ, d+ ψ).

(1) Suppose that (f, h, g) ∈ TCoder(M, C). Then by Theorem 1.3 we have

ψ = f − g ∈ AHomC(M, C) and ϕ = f − h ∈ CHomA(M, C). It follows that ϕ,

ψ ∈ CHomC(M, C). Hence f , g, h ∈ SGCoder(M, C) by Corollary 3.3. Conversely

suppose that g, h ∈ SGCoder(M, C). Since g = d + ϕ and h = d + ψ, both ϕ

and ψ belong to CHomC(M, C) by Corollary 3.3 and Lemma 2.3. Hence (f, h, g) =

(ΦM )−1(d, ψ, ϕ) ∈ TCoder(M, C).
(2) Suppose that (h, g, f) ∈ TCoder(M, C). Then by Theorem 1.3 we have

d′ = g + f − h ∈ Coder(M, C), ϕ′ = h − f ∈ AHomC(M, C), and ψ′ = h − g ∈
CHomA(M, C). Since ϕ = f − h = ψ − ψ′, we have ϕ ∈ CHomC(M, C). Hence

g ∈ SGCoder(M, C). Furthermore d′−d = 2(f −h) = 2ϕ belongs to Coder(M, C)∩

AHomC(M, C). By Lemma 2.3 (2) we have 2ϕ = 0, and hence 2f = 2h. Conversely

suppose that g ∈ SGCoder(M, C) and 2f = 2h. Then we have ϕ ∈ CHomC(M, C)
and 2ϕ = 0. Hence (h, g, f) = (ΦM )−1(d, ϕ, ϕ+ ψ) ∈ TCoder(M, C).

(3) is similar to (2).

(4) Suppose that (h, f, g) ∈ TCoder(M, C). Then we have d′ = f + g − h ∈
Coder(M, C), ϕ′ = h − g ∈ AHomC(M, C), and ψ′ = h − f ∈ CHomA(M, C). Since

ϕ = f − h = −ψ′ and ψ = f − g = ϕ + ϕ′, we have ϕ, ψ ∈ CHomC(M, C).
Hence f , g, h ∈ SGCoder(M,C). Furthermore d′ − d = 2(f − h) = 2ϕ belongs

to Coder(M, C) ∩ AHomC(M, C). By Lemma 2.3 (2) we have 2ϕ = 0, and hence

2f = 2h. Conversely suppose that g, h ∈ SGCoder(M, C) and 2f = 2h. Then we

have ϕ, ψ ∈ CHomC(M, C) and 2ϕ = 0. Hence (h, f, g) = (ΦM )−1(d, ϕ + ψ, ϕ) ∈
TCoder(M, C).

(5) is similar to (4). �

Corollary 3.5. For any M ∈ CMC and f , g ∈ AHomA(M, C), the following hold.

(1) (f, g, g) ∈ TCoder(M, C) if and only if g ∈ SGCoder(M, C) and f = g +

RM (ε ◦ g). When this is the case, f also belongs to SGCoder(M, C).

(2) (f, g, f) ∈ TCoder(M, C) if and only if g ∈ Coder(M, C) and f − g ∈
CHomA(M, C).

(3) (f, f, g) ∈ TCoder(M, C) if and only if g ∈ Coder(M, C) and f − g ∈

AHomC(M, C).

Proof. (1) If (f, g, g) ∈ TCoder(M, C), then we have f , g ∈ SGCoder(M, C) by

Theorem 3.4 (1) and f − RM (ε ◦ g) − g = 0 by Lemma 2.1 (2). Conversely if

g ∈ SGCoder(M, C) and f = g + RM (ε ◦ g), then we have ϕ = RM (ε ◦ g) ∈
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CHomC(M, C) by Lemma 3.2 and d = g − ϕ ∈ Coder(M, C) by Lemma 2.2, and

hence (f, g, g) = (ΦM )−1(d, ϕ, ϕ) ∈ TCoder(M, C).
(2) If (f, g, f) ∈ TCoder(M, C), then we have f ∈ GCoder(M, C) by Corol-

lary 2.5 and f − g − LM (ε ◦ f) = 0 by Lemma 2.1 (1), and hence g ∈ Coder(M, C)
by Lemma 2.2. Conversely if g ∈ Coder(M, C) and f − g ∈ CHomA(M, C), then we

have (f, g, f) = (ΦM )−1(g, 0, f − g) ∈ TCoder(M, C).
(3) is similar to (2). �

4. Triple inner coderivations

Let M ∈ CMC . According to [3], [7] and [4], a map in AHomA(M, C) of the form

RM (ξ)− LM (ξ) with some ξ ∈ AHomA(M, C) is called an inner coderivation. The

set of all inner coderivations from M to C is denoted by InCoder(M, C). According

to [9], an element of AHomC(M, C) + CHomA(M, C) is called a generalized inner

coderivation. We set GInCoder(M, C) = AHomC(M, C) + CHomA(M, C).

Lemma 4.1. For any M ∈ CMC, the following hold.

(1) GInCoder(M, C) ∩ Coder(M, C) = InCoder(M, C)
(2) GCoder(M, C)/GInCoder(M, C) ' Coder(M, C)/InCoder(M, C)

Proof. (1) It is clear that InCoder(M, C) ⊆ GInCoder(M, C)∩Coder(M, C). Con-

versely let d ∈ GInCoder(M, C)∩Coder(M, C). Then there exist ϕ ∈ AHomC(M, C)
and ψ ∈ CHomA(M, C) such that d = ϕ + ψ. By Lemma 2.3 (1), we have

ε◦ϕ+ ε◦ψ = ε◦d = 0. Since (RM )−1(ϕ) = ε◦ϕ and (LM )−1(ψ) = ε◦ψ = −ε◦ϕ,

we have d = RM (ε ◦ ϕ)− LM (ε ◦ ϕ). Hence d ∈ InCoder(M, C).
(2) Lemma 2.3 (2) implies that GCoder(M, C) = GInCoder(M, C)+Coder(M, C).

Using this and (1), we get the assertion. �

Definition 4.2. For M ∈ CMC , we set

TInCoder(M, C) = TCoder(M, C) ∩GInCoder(M, C)3.

An element in TInCoder(M, C) is called a triple inner coderivation.

Theorem 4.3. Let C be an A-coring and M ∈ CMC. Then the map ΦM given in

Theorem 1.3 induces the R-isomorphism

TInCoder(M, C) ' InCoder(M, C)× AHomC(M, C)× CHomA(M, C).

Proof. Let (f, g, h) ∈ TCoder(M, C) and set (d, ϕ, ψ) = ΦM (f, g, h). Then by The-

orem 1.3 we have (f, g, h) = (d+ϕ+ψ, d+ϕ, d+ψ). Since ϕ, ψ ∈ GInCoder(M, C),
(f, g, h) ∈ TInCoder(M, C) is equivalent to d ∈ GInCoder(M, C), which is equiva-

lent to d ∈ InCoder(M, C) by Lemma 4.1 (1). Hence we get the assertion. �
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By Theorems 1.3 and 4.3, we get the next.

Corollary 4.4. For any M ∈ CMC,

TCoder(M, C)/TInCoder(M, C) ' Coder(M, C)/InCoder(M, C)

as R-modules.

Remark 4.5. Let M ∈ CMC. The kernel of the R-linear map

AHomA(M,A) 3 ξ 7→ RM (ξ)− LM (ξ) ∈ InCoder(M, C)

coincides with ε ◦ CHomC(M, C). It follows that

InCoder(M, C) ' AHomA(M,A)/ε ◦ CHomC(M, C)

as R-modules. Hence the following conditions are equivalent.

(1) InCoder(M, C) = 0

(2) AHomC(M, C) = CHomC(M, C)
(3) CHomA(M, C) = CHomC(M, C)
(4) GInCoder(M, C) = CHomC(M, C)
(5) GCoder(M, C) = SGCoder(M, C)

5. Lie algebra structure of TCoder(C, C)

In [9] it was proved that Coder(C, C) and GCoder(C, C) are Lie subalgebras of

the Lie algebra gl(C) consisting of all R-endomorphisms of C. In this section, we

investigate a Lie algebra structure of TCoder(C, C).
We abbreviate Coder(C, C) as Coder(C). Similarly we use the abbreviations

InCoder(C), GCoder(C), GInCoder(C), SGCoder(C), TCoder(C), and TInCoder(C).
We set AEndC(C) = AHomC(C, C), CEndA(C) = CHomA(C, C), and CEndC(C) =
CHomC(C, C).

Lemma 5.1. TCoder(C) is a Lie subalgebra of the product Lie algebra gl(C)3.

Proof. Let (f, g, h), (f ′, g′, h′) ∈ TCoder(C). We see that

∆ ◦ f ◦ f ′ = (g ⊗ IC + IC ⊗ h) ◦∆ ◦ f ′

= (g ⊗ IC + IC ⊗ h) ◦ (g′ ⊗ IC + IC ⊗ h′) ◦∆

=
(
(g ◦ g′)⊗ IC + g ⊗ h′ + g′ ⊗ h+ IC ⊗ (h ◦ h′)

)
◦∆.

Similarly we have

∆ ◦ f ′ ◦ f =
(
(g′ ◦ g)⊗ IC + g′ ⊗ h+ g ⊗ h′ + IC ⊗ (h′ ◦ h)

)
◦∆.
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It follows that

∆ ◦ [f, f ′] =
(
[g, g′]⊗ IC + IC ⊗ [h, h′]

)
◦∆.

Hence
(
[f, f ′], [g, g′], [h, h′]

)
∈ TCoder(C). �

The next corollary can be proved directly from definition. Here we give a proof

using Theorem 1.3 and Lemma 5.1.

Corollary 5.2. In the Lie algebra gl(C), the following hold.

(1) Coder(C) is a Lie subalgebra of gl(C).

(2)
[
Coder(C), AEndC(C)

]
⊆ AEndC(C)

(3)
[
Coder(C), CEndA(C)

]
⊆ CEndA(C)

(4)
[
AEndC(C), CEndA(C)

]
= 0

Proof. (1) Let d, d′ ∈ Coder(C). Using the map ΦC given in Theorem 1.3, we can

easily see that

ΦC
([

(ΦC)
−1(d, 0, 0), (ΦC)

−1(d′, 0, 0)
])

=
(
[d, d′], 0, 0

)
.

Hence [d, d′] ∈ Coder(C).
(2) For any d ∈ Coder(C) and ϕ ∈ AEndC(C), we can see that

ΦC
([

(ΦC)
−1(d, 0, 0), (ΦC)

−1(0, ϕ, 0)
])

= (0, [d, ϕ], 0),

and hence [d, ϕ] ∈ AEndC(C).
(3) is similar to (2).

(4) Let ϕ ∈ AEndC(C) and ψ ∈ CEndA(C). We can see that

ΦC
([

(ΦC)
−1(0, ϕ, 0), (ΦC)

−1(0, 0, ψ)
])

=
(
−[ϕ,ψ], [ϕ,ψ], [ϕ,ψ]

)
.

It follows that [ϕ,ψ] ∈ Coder(C) ∩ AEndC(C) = 0 by Lemma 2.3 (2). �

Lemma 2.3 and Corollaries 3.3 and 5.2 immediately imply the next.

Corollary 5.3. The following hold.

(1) GCoder(C) and SGCoder(C) are Lie subalgebras of gl(C).
(2) GCoder(C) is the semidirect product of the Lie subalgebra Coder(C) by the

ideal AEndC(C).
(3) GCoder(C) is the semidirect product of the Lie subalgebra Coder(C) by the

ideal CEndA(C).
(4) SGCoder(C) is the semidirect product of the Lie subalgebra Coder(C) by the

ideal CEndC(C).

Corollary 5.4. GCoder(C)/GInCoder(C) ' Coder(C)/InCoder(C) as Lie algebras.
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Proof. By Corollary 5.2, GInCoder(C) is an ideal of GCoder(C). By Lemma 4.1

we get the assertion. �

The next is an immediate consequence of Theorems 1.3 and 4.3 and Corollary 4.4.

Corollary 5.5. TInCoder(C) is an ideal of the Lie algebra TCoder(C) and

TCoder(C)/TInCoder(C) ' Coder(C)/InCoder(C)

as Lie algebras.

Theorem 5.6. Let C be an A-coring. Then TCoder(C) is a Lie subalgebra of the

product Lie algebra GCoder(C)3, the R-module

L = Coder(C)× AEndC(C)× CEndA(C)

is a Lie algebra by the Lie bracket[
(d, ϕ, ψ), (d′, ϕ′, ψ′)

]
=
(
[d, d′], [d, ϕ′] + [ϕ, d′] + [ϕ,ϕ′], [d, ψ′] + [ψ, d′] + [ψ,ψ′]

)
,

and the map ΦC : TCoder(C) → L given in Theorem 1.3 is a Lie algebra isomor-

phism.

Proof. By Lemma 5.1 and Corollaries 2.5 and 5.3, TCoder(C) is a Lie subalgebra

of GCoder(C)3. Using Corollary 5.2, it is easy to see that

(ΦC)
−1([x, y]

)
=
[
(ΦC)

−1(x), (ΦC)
−1(y)

]
(x, y ∈ L).

Hence L is a Lie algebra and ΦC is a Lie algebra isomorphism. �

In virtue of Theorem 5.6 we can define Lie algebra maps

λ : AEndC(C)× CEndA(C) 3 (ϕ,ψ) 7→ (ϕ+ ψ, ϕ, ψ) ∈ TCoder(C) and

µ : TCoder(C) 3 (f, g, h) 7→ g + h− f ∈ Coder(C),

where AEndC(C)× CEndA(C) is the Lie subalgebra of gl(C)× gl(C). It is easy to see

that the Lie algebra L defined in Theorem 5.6 is a semidirect product of the Lie

subalgebra Coder(C)× 0× 0 by the ideal 0× AEndC(C)× CEndA(C). Therefore we

get the next.

Corollary 5.7. Under the above notations, the sequence of Lie algebra maps

AEndC(C)× CEndA(C) λ−−−−→ TCoder(C) µ−−−−→ Coder(C)

is a split extension.
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6. Triple derivations and triple coderivations

Let A be an associative R-algebra with a unit 1 and X ∈ AMA. A map f in

HomR(A,X ) is called a derivation if f(αβ) = f(α)β + αf(β) for all α, β ∈ A.

A map f in HomR(A,X ) is called a generalized derivation if f(αβ) = f(α)β +

αf(β) − αf(1)β for all α, β ∈ A. A triplet (f, g, h) in HomR(A,X )3 is called

a triple derivation if f(αβ) = g(α)β + αh(β) for all α, β ∈ A. A generalized

derivation was introduced in [1] and [8], and a triple derivation was introduced in

[6] and studied in [5].

We define the R-linear map

tX : HomR(A,X )3 → HomR(A⊗R A, X )

by setting tX (f, g, h)(α⊗ β) = f(αβ)− g(α)β − αh(β). Then

(1) f is a derivation if and only if tX (f, f, f) = 0.

(2) f is a generalized derivation if and only if tX (f, f, f) ∈ AHomA(A⊗RA, X ).

(3) (f, g, h) is a triple derivation if and only if tX (f, g, h) = 0.

(1) and (3) are obvious. (2) follows from the fact that

tX (f, f, f)(α⊗ β)− α tX (f, f, f)(1⊗ 1)β = f(αβ)− f(α)β − αf(β) + αf(1)β

for all α, β ∈ A.

Let C be an A-coring and B an A-ring, i.e., B is an R-algebra with an R-algebra

map η : A → B which maps a unit to a unit. Then C∗ = AHomA(C, B) is an

R-algebra by the convolution product α ∗β = µ◦ (α⊗β)◦∆ for α, β ∈ C∗ with the

unit η ◦ ε, where µ is the product of B. If M ∈ CMC , then M∗ = AHomA(M,B) is

a right C∗-module by the convolution product ξ ∗ α = µ ◦ (ξ ⊗ α) ◦ ρM for ξ ∈M∗

and α ∈ C∗. Symmetrically M∗ has a left C∗-module structure, and then M∗ is a

(C∗, C∗)-bimodule. For f ∈ AHomA(M, C), we set f∗ = AHomA(f,B) : C∗ → M∗.

By definition, for any f , g, h ∈ AHomA(M, C), we can see that

tM∗(f
∗, g∗, h∗)(α⊗ β) = µ ◦ (α⊗ β) ◦ TM (f, g, h) (α, β ∈ C∗). (6.1)

Therefore if (f, g, h) ∈ TCoder(M, C), then (f∗, g∗, h∗) is a triple derivation. Fur-

thermore using the equation (6.1), we can see that

tM∗(f
∗, g∗, h∗)(α⊗ β ∗ γ) = µ ◦ (IB ⊗ µ) ◦ (α⊗ β ⊗ γ) ◦ (IC ⊗∆) ◦ TM (f, g, h),

tM∗(f
∗, g∗, h∗)(α⊗ β) ∗ γ = µ ◦ (µ⊗ IB) ◦ (α⊗ β ⊗ γ) ◦

(
TM (f, g, h)⊗ IC

)
◦ ρM

for all α, β, γ ∈ C∗. Therefore if TM (f, g, h) is a right C-comodule map, then

tM∗(f
∗, g∗, h∗) is a right C∗-module map. Similarly if TM (f, g, h) is a left C-

comodule map, then tM∗(f
∗, g∗, h∗) is a left C∗-module map.
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Now suppose that B is the tensor A-ring of the (A,A)-bimodule C, i.e., B =

A ⊕
∞⊕
n=1
C ⊗A · · · ⊗A C︸ ︷︷ ︸

n

, and suppose that α, β, and γ are the canonical injection

C → B. Then µ ◦ (α ⊗ β) and µ ◦ (µ ⊗ IB) ◦ (α ⊗ β ⊗ γ) are monomorphisms.

Therefore if (f∗, g∗, h∗) is a triple derivation, then (f, g, h) ∈ TCoder(M, C), and if

tM∗(f
∗, g∗, h∗) is a (C∗, C∗)-bimodule map, then TM (f, g, h) is a (C, C)-bicomodule

map. Thus we get the next.

Theorem 6.1. Let C be an A-coring, M ∈ CMC, and f , g, h ∈ AHomA(M, C).
Then the following hold.

(1) f ∈ Coder(M, C) if and only if for any A-ring B, AHomA(f,B) is a deriva-

tion.

(2) f ∈ GCoder(M, C) if and only if for any A-ring B, AHomA(f,B) is a

generalized derivation.

(3) (f, g, h) ∈ TCoder(M, C) if and only if for any A-ring B, the triplet(
AHomA(f,B), AHomA(g,B), AHomA(h,B)

)
is a triple derivation.
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