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Abstract. Let I = 〈f1, . . . , fk〉 be an ideal generated by homogeneous forms

fi of degree di for i = 1, . . . , k in the Z-graded ring K[x0, x1, . . . , xn] where

Char(K) = 0. It is well-known that there is an integer e(I) called Noether

exponent defined as e(I) = min{µ :
√
I
µ ⊂ I}. In this paper, we estimate the

regularity reg
(√

I
e(I)

)
in terms of reg (I) and e(I) in certain cases.
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1. Introduction

In Chapter 14 of [15] Mumford introduced the concept of regularity for a coherent

sheaf F on projective space Pn: F is p-regular if, for all i ≥ 1 we have vanishing

for the twists

Hi(Pn, F(k)) = 0, for all k + i = p.

This in turn implies the stronger condition of vanishing for k + i ≥ p. Regularity

was investigated later by several people, notably Bayer and Mumford [1], Bayer

and Stillman [2], Eisenbud and Goto [9], and Ooishi [16]. Let R = K[x0, ..., xn] be

the polynomial algebra in n + 1 variables over a field K, graded in the usual way.

If M is a finitely generated graded R-module, then the local cohomology groups

Hi
m(M) with respect to the ideal m = (x0, ..., xn) are graded in a natural way and

we say that M is p-regular if

Hi
m(M)k = 0 for all k + i ≥ p+ 1.

If F is the coherent sheaf on Pn associated with M in the usual way, we have

Hi+1
m (M)k = Hi(Pn, F(k)) for all i ≥ 1,

which shows the compatibility of these definitions.

An important result in this theory is the following: suppose K is a field and

I ⊂ R is a graded ideal, then I is p-regular if and only if the minimal free graded
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resolution of I has the form

0 −−−−→
rs⊕
α=1

Reα,s −−−−→ · · · −−−−→
r0⊕
α=1

Reα,0 −−−−→ I −−−−→ 0

where deg(eα,i) ≤ p + i for all i ≥ 0. Hence, one can obtain the regularity of an

ideal from the degree twists of its minimal free graded resolution, and vice versa.

In this short note we raise the general question: Is there any way to compare the

regularity of an ideal I with that of its radical
√
I?

Here is an example: Let I be a monomial ideal in a polynomial ring R =

K[x1, . . . , xn]. Then the primary decomposition of I has the form I = ∩si=1p
di
i ,

where each associated prime pi ∈ Ass(R/I) is generated by a subset of the the ele-

ments {x1, . . . , xn}. Derksen and Sidman [8] proved that reg (∩di=1Ii) ≤ d for any

set of ideals I1, · · · , Id generated by linear forms, which had been conjectured previ-

ously by Sturmfels. Therefore, reg (
√
I) = reg (∩si=1pi) ≤ s, where s is the number

of associated primes of R/I. Moreover, if I is a square-free monomial ideal, then

by [Remark 15, [11]] the primary decomposition of I has the shape I = ∩si=1p
di
i

with pi 6⊂ pj . Thus, if I is a square-free monomial ideal, then reg (
√
I) = s where

s is the number of associated primes of R/I.

Many studies have been done to understand the relationship between reg (I)

and reg (
√
I). The paper by Ravi [17] proved that reg (

√
I) ≤ reg (I) if R/I is a

Buchsbaum R-module, or if I is a monomial ideal, or in some cases
√
I defines a

non-singular curve in P3. But this is not true in general, for example, Chardin-

D’Cruz [6] considered the family of complete intersection ideals

Im,n = 〈xmt− ymz, zn+2 − xtn+1〉 ⊂ K[x, y, z, t].

Then for all m,n ≥ 1,

reg (Im,n) = m+ n+ 2, reg (
√
Im,n) = mn+ 2.

Hence regularity of the radical may be much larger than the regularity of the ideal

itself. To our knowledge, there is not yet a complete general answer to this question.

It is well-known that there is an integer e(I) = min{µ :
√
I
µ ⊂ I} called Noether

exponent, which is the smallest integer µ such that the (
√
I)µ is contained in I.

There are recent papers by Kollár [14], Jelonek [12], Sombra [18] and others on

effective versions of the Nullstellensatz that give quite good bounds on e(I). An

interesting question is to estimate the regularity of
√
I
e(I)

in terms of reg (I) and

e(I).

In this paper, our focus is to provide bound for the reg (
√
I
e(I)

) in terms of

reg (I) and e(I). Our approach is to study dimR/I, the Krull dimension of R/I.

In Section 2 we analyze the case when dimR/I ≤ 1. The case when dimR/I ≥ 2
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is extremely complicated, hence we focus our attention to irreducible projective

varieties of minimal degree in Section 3. Illustrative computational examples are

provided.

2. The case for dimR/I ≤ 1

In this section, we study the case when the Krull dimension dimR/I ≤ 1. To

do this, let us recall some useful definitions and results.

Recall basic definitions: An ideal I ⊂ R is called a primary ideal, if whenever

ab ∈ I then either a ∈ I or b ∈
√
I for all a, b ∈ R. An ideal I is a p-primary ideal,

if
√
I = p for a prime ideal p. Any ideal has an irredundant primary decomposition,

I =
⋂k
i=1 qi, where qi is a pi-primary ideal, and the pi’s are called associated primes

of I. Moreover, if pi does not properly contain any other associated prime, then

it is called a minimal associated primes of I. The non-minimal associated primes

are called embedded associated primes. For example, I = 〈x2, xy〉 = 〈x〉 ∩ 〈x2, y〉
is a primary decomposition, where the minimal associated prime is 〈x〉 and the

embedded associated prime is 〈x, y〉.

Definition 2.1. Let I ⊂ R = K[x0, . . . , xn], be a graded ideal. Then the saturation

of the ideal I is defined as

Isat = {r ∈ R | mkr ⊂ I for some k}.

Theorem 2.2. Let R = K[x0, . . . , xn], and I be a homogeneous graded ideal. If the

Krull dimension dimR/I = 0, then e(I) = reg I, and reg (
√
I)e(I) = reg I.

Proof. First, we note that if Krull dimension dimR/I = 0, then V(I) = ∅ in

Pn(K) (K = algebraic closure of K), and
√
I = m = 〈x0, . . . , xn〉, i.e., I is a graded

m-primary ideal. It is well-known that if dimR/I = 0, then Ii = Ri for all i ≥ p if

and only if reg I = p. By definition, e(I) = min{µ ∈ Z | (
√
I)µ = mµ ⊂ I}. Since

mµ is generated by Rµ we see that e(I) = min{µ ∈ Z | Rµ = Iµ} = reg I. Moreover,

(
√
I
e(I)

)µ = (me(I))µ = Rµ for µ ≥ e(I) = reg I, but (
√
I
e(I)

)µ = (me(I))µ = 0 for

µ < e(I) = reg I. Therefore, reg (
√
I)e(I) = reg I. This completes the proof of the

theorem.

For convenience we recall the proof of the implication: dimR/I = 0, then Ii = Ri

for all i ≥ p if and only if reg I = p. First note that mk ⊆ I for some positive integer

k, and for any r ∈ R we have rmµ ⊆ I for some µ. Hence Isat = R. If dimR/I = 0,

then Hi
m(R/I) = 0 for i ≥ 1. Consider the following exact sequence:

0 −−−−→ I −−−−→ R −−−−→ R/I −−−−→ 0.
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The cohomology sequence will be:

Hi−1
m (R/I) −−−−→ Hi

m(I) −−−−→ Hi
m(R) −−−−→ Hi

m(R/I).

If i ≥ 2, then Hi
m(I) = Hi

m(R). If i = 1, then H1
m(I) = Isat/I = R/I. If i = 0, then

H0
m(I) = 0. Since R is 0-regular, we have Hi

m(I)k = Hi
m(R)k = 0 for all k ≥ 0. I

is p-regular, H1
m(I)k = Rk/Ik = 0 for all k ≥ p. Therefore, we have the following:

Hi
m(I)k = 0,

for all k ≥ p. Thus, I is p-regular. �

Example 2.3. Let R = K[x, y, z, t], and I = 〈x2, y, z, t〉. Then

V(I) = ∅ ⊂ P3,
√
I = m, e(I) = reg (I) = 2, reg (

√
I)e(I) = 2.

We also observe that (
√
I)
e(I)
µ = (

√
I)2µ = Rµ, for all µ ≥ 2.

Remark 2.4. Isat is the largest ideal that defines the same closed subscheme of

Pn as I does. Every closed subscheme of Pn is defined by some homogeneous ideal,

and there is a bijection between closed subschemes of Pn and homogeneous saturated

ideals. A radical ideal is saturated. Furthermore, given a homogeneous ideal I ⊂ R,

the subscheme of Pn defined by I is reduced if and only if Isat is a radical ideal.

Remark 2.5. Let I ⊂ R = K[x0, . . . , xn] be a graded ideal such that the Krull

dimension dimR/I = 1. Then I has an irredundant primary decomposition, I =

(∩si=1qi)
⋂
J , where the

√
qi = pi correspond to the distinct points in Pn, and√

J = m = 〈x0, . . . , xn〉.

Lemma 2.6. Let R = K[x0, . . . , xn], and I a homogeneous graded ideal. If the

Krull dimension dimR/I = 1, then
√
I = Isat.

Proof. Since Isat is the largest ideal that defines the same closed subscheme of Pn

as I does, both Isat and
√
I define the same subset of Pn(K), we have

√
I ⊂ Isat

because
√
I is the largest ideal defining V(I). On the other hand r ∈ Isat implies

that

mkr ⊂ I ⊂
√
I =

√
∩si=1qi

⋂√
J = ∩si=1pi

⋂
m = ∩si=1pi.

We claim that r ∈ ∩si=1pi, otherwise, if r /∈ pj for some j, then rxki ∈ pj for

i = 0, . . . , n implies that xki ∈ pj for i = 0, . . . , n, hence m ⊂ pj , contradicting the

condition that each pi for i = 1, . . . , s corresponds to point in Pn, i.e., ht(pj) = n−1.

Therefore, r ∈ ∩si=1pi =
√
I. Thus,

√
I = Isat as claimed. �
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Theorem 2.7. Let R = K[x0, . . . , xn], and I = 〈f1, . . . , fk〉 a homogeneous graded

ideal generated by fi with d1 ≥ · · · ≥ dk where di = deg fi for i = 1, . . . , k. If the

Krull dimension dimR/I = 1 with irredundant primary decomposition of the form

I = (∩si=1qi)
⋂
J where

√
J = m = 〈x0, . . . , xn〉, then

reg (
√
I)e(I) ≤ e(I) · s, where e(I) ≤ max{e(q1), . . . , e(qs), e(J)},

and s is the number of the associated primes of I.

Proof. First, we note that it is proved by Chandler [4] and Chardin [5] that

reg (Ik) ≤ k · reg I if dimR/I ≤ 1. By Lemma 2.6, we have that
√
I = ∩si=1pi

is a saturated ideal, and each pi is generated by linear forms. By Derksen and

Sidman [8],

reg (
√
I) = reg (∩si=1pi) ≤

s∑
i=1

reg (pi) = s,

where s is the number of the associated primes of I. Since we are assuming

dimR/I ≤ 1, the above inequality is an equality. This follows from the main

result of [11] already mentioned in the introduction to this paper, since there are

no inclusion relations among the ideals pi.

Therefore,

reg (
√
I)e(I) ≤ e(I) · reg

√
I = e(I) · s, where e(I) ≤ max{e(q1), . . . , e(qs), e(J)},

where the last inequality follows easily from the definition of the Noether exponent.

�

Example 2.8. Let R = K[x, y, z, t], I = 〈x2, xt, y, z〉. Then

I = 〈x, y, z〉 ∩ 〈x2, y, z, t〉,
√
I = 〈x, y, z〉 ∩ 〈x, y, z, t〉 = 〈x, y, z〉,

and

e(I) = 2, reg (
√
I)e(I) ≤ e(I) · reg (

√
I) = 2 · 1 = 2.

We also observe that
√
I = Isat.

3. The case for dimR/I ≥ 2

The results for dimR/I ≤ 1 are no long true in higher dimensions. When I ⊂ R
is a homogeneous ideal, it is known from the work of Cutkosky, Herzog, Trun [7]

and Kodiyalam [13] that the regularity of Ik is asymptotically a linear function in

k. Many authors have studied the the function reg (Ik) from various perspectives.

When I is generated by forms of a given degree, say d, and all its powers have a

linear resolution, which implies reg (Ik) = dk for all k, we say that this ideal is

an ideal with linear powers. Similarly, we say that a projective variety has linear

powers when its defining ideal has linear powers.
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Assume a variety V ⊂ Pn is irreducible. It is well-known that deg(V ) ≥ n −
dimV + 1, and when deg(V ) = n − dim +1, we obtain the �irreducible varieties of

minimal degrees. It is known that the irreducible varieties of minimal degree are the

rational normal scrolls, the quadric hypersurfaces and the cone over the Veronese

surface in P5 (see [Theorem 2, [19]]).

Theorem 3.1. Let I be an ideal such that V(I) is an irreducible variety in Pn of

minimal degree, and spanning Pn. Then reg (
√
I)k = 2k.

Proof. It is proven in [3] that the ideal I(V ) of an irreducible variety V of minimal

degree has linear powers. By the Nullstellensatz, we are assuming that
√
I = I(V )

for a minimal variety V . As mentioned above, this shows that reg (
√
I)k = dk for all

k, where d is the common degree of the generators of
√
I. From the classification

of varieties of minimal degree, we have d = 2. This shows in particular that

reg (
√
I) = 2, which also follows from the results in [10]. �
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