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Abstract. Let (H,R) be a quasitriangular weak Hopf algebra, and A a quan-

tum commutative weak H-module algebra. We establish the relationship of

homological dimensions between weak smash product algebra A#H and A un-

der some conditions. As an application, we consider the case of twisted weak

Hopf algebra.
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1. Introduction

Weak Hopf algebras were introduced by Böhm et al. in [3], as a generalized

notation of Hopf algebras and groupoid algebras. Roughly speaking, a weak Hopf

algebra is an object which has both algebra and coalgebra structures with some

relations between them and that possesses an antipode which does not necessarily

satisfy the usual convolution equalities with the identity morphism.

The main difference between ordinary and weak Hopf algebras is that the comul-

tiplication of the latter is no longer required to preserve the unit, or equivalently,

the counit is not required to be an algebra homomorphism. The motivations to

study weak Hopf algebras mainly come from their connection with the theory of al-

gebra extensions, the applications in the study of dynamical twists of Hopf algebras

and their link with quantum field theories and operator algebras (see [13]).

The notion of quasitriangular weak Hopf algebras was introduced by Nikshych

and Vainerman in [13] and consequently studied in [12], where it was shown that

quasitriangular weak Hopf algebras play an important role in the quantum group

theory, particularly in knot theory. It is known that the R-matrix in a quasitri-

angular weak Hopf algebra can generate a solution for the quantum Yang-Baxter
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equation R12R13R23 = R23R13R12 which frequently appears in many contexts of

mathematical physics. From categorical point of view quasitriangular Hopf alge-

bras are characterized by the fact that its representation categories (categories of

modules having finite dimensional over ground field) are braided rigid tensor cate-

gories.

The relationship of homological dimensions between an algebra and its some sub-

algebra have been investigated in many papers up to now. For example, Auslander

proved in [1] that gl.dim(ΛG) = gl.dim(Λ) for a skew group algebra ΛG with the

order of G invertible in Λ. In [20] Yang established the relationship of homolog-

ical dimension between smash product algebra A#H and quantum commutative

H-module algebra A over a Hopf algebra H. It was shown that gl.dim(A#H) = n

if and only if gl.dim(A) = n and there exists an element c ∈ A such that t · c = 1A,

where t ∈ H is a left integral. Jia and Li proved that for a quantum commutative

weak H-module algebra A over a semisimple quasitriangular weak Hopf algebra H,

the global dimension of weak smash product A#H equals that of A in [8]. Let

H be a semisimple weak Hopf algebra, A a weak H-comodule algebra and B the

coinvariant subalgebra of A. If the algebra extension A/B is H-Galois, then it was

proved by Zhou in [22] the global dimension of A is no more than that of B.

Inspired by [20], in this paper we shall investigate the relationship of homological

dimensions between a quantum commutative weak H-module algebra A over a

quasitriangular weak Hopf algebra H and that of weak smash product A#H. As a

main result of Section 2, we show that gl.dim(A#H) = n if and only if gl.dim(A) =

n and there exists an element c ∈ A such that t · c = 1A, where t ∈ H is a left

integral. As an application, we consider the case of twisted weak Hopf algebra in

Section 3.

Throughout this paper, we always work over a fixed field k. Any unexplained

definitions and notations of algebras, coalgebras, modules and comodules may be

found in [10] or [16].

Definition 1.1. [3] Let H be both an algebra and a coalgebra. Then H is called

a weak bialgebra if it satisfies the following conditions:

∆(xy) = ∆(x)∆(y), (1)

ε(xyz) = Σε(xy1)ε(y2z) = Σε(xy2)ε(y1z), (2)

∆2(1H) = (∆(1H)⊗ 1H)(1H ⊗∆(1H)) (3)

= (1H ⊗∆(1H))(∆(1H)⊗ 1H), (4)

for any x, y, z ∈ H, where ∆(1H) = 11 ⊗ 12 and ∆2 = (∆⊗ idH) ◦∆.
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Moreover, if there exists a k-linear map S : H → H, called antipode, satisfying

the following axioms for all h ∈ H:

Σh1S(h2) = Σε(11h)12, ΣS(h1)h2 = Σε(h11)12, ΣS(h1)h2S(h1) = S(h), (5)

then the weak bialgebra H is called a weak Hopf algebra.

Definition 1.2. [12] A quasitriangular weak Hopf algebra is a pair (H,R), where

H is a weak Hopf algebra and R = R(1) ⊗R(2) ∈ ∆op(1)(H ⊗H)∆(1) satisfies the

following conditions:

∆op(h)R = R∆(h), (6)

Σ∆(R(1))⊗R(2) = ΣR(1) ⊗ r(1) ⊗R(2)r(2), (7)

ΣR(1) ⊗∆(R(2)) = ΣR(1)r(1) ⊗ r(2) ⊗R(2), (8)

for all h ∈ H, and such that there exists R−1 ∈ ∆(1)(H ⊗H)∆op(1) with

RR−1 = ∆op(1), R−1R = ∆(1), (9)

where R = ΣR(1) ⊗R(2) = Σr(1) ⊗ r(2), ∆op(h) = Σh2 ⊗ h1 for all h ∈ H.

For any weak bialgebra H, it is well known that the maps ΠL,ΠR,Π
L

and

Π
R

: H → H are projections. They are given by the formulas: ΠL(h) = Σε(11h)12,

Π
L

(h) = Σε(12h)11, ΠR(h) = Σε(h12)11 and Π
R

(h) = Σε(h11)12. Denote the

image of the map ΠL by HL and the image of the map ΠR by HR. Then we also

have HL = ImΠ
R

and HR = ImΠ
L

. Let t ∈ H. Then t is said to be a left integral,

if ht = ΠL(h)t for all h ∈ H.

Definition 1.3. [11] Let H be a weak bialgebra. An algebra A is called a weak

left H-module algebra if A is a left H-module via h⊗ a 7→ h · a such that

h · (ab) = Σ(h1 · a)(h2 · b), h · 1A = ΠL(h) · 1A, (10)

for all h ∈ H, a, b ∈ A.

Definition 1.4. [11] Let H be a weak Hopf algebra with bijective antipode S

and A a weak left H-module algebra. The smash product algebra A#H of A with

H is defined on the vector space A ⊗HL H, where A is a right HL-module via

a · z = S−1(z) · a = a(z · 1A), its multiplication is given by

(a#h)(b#g) = Σa(h1 · b)#h2g (11)

for all a ∈ A, z ∈ HL, and the unit of A#H is 1A#1H .
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By [8], we know that M is a left A#H-module via (a#h) ·m = a · (h ·m) if and

only if M is a left A-module and a left H-module such that

h · (a ·m) = Σ(h1 · a) · (h2 ·m). (12)

for all h ∈ H, a ∈ A,m ∈M . Hence, the weak left H-module algebra A is particu-

larly a left A#H-module via (a#h) · b = a(h · b) for all h ∈ H, a, b ∈ A.

Definition 1.5. [8] Let (H,R) be a quasitriangular weak Hopf algebra, and A a

weak left H-module algebra. We say that A is quantum commutative with respect

to (H,R) if

ab = Σ(R(2) · b)(R(1) · a), (13)

for all a, b ∈ A.

If A is quantum commutative with respect to (H,R), then for all a, b ∈ A,

ab = Σ(R(1) · b)(S−1(R(2)) · a). (14)

In fact, since (id⊗ S−1)(R) = R−1 by [12], we have

Σ(R(1) · b)(S−1(R(2)) · a) = Σ(R(2)S−1(r(2)) · a)(R(1)r(1) · b)
(9)
= Σ(11 · a)(12 · b) = ab.

Definition 1.6. [4] Let H be a weak bialgebra, and B a right H-comodule, which

is also an algebra with a unit, such that

ρ(ab) = ρ(a)ρ(b), (15)

Σa(0) ⊗ΠL(a(1)) = Σa1(0) ⊗ 1(1), (16)

for all a, b ∈ B. Then B is called a weak right H-comodule algebra.

Let H be a weak Hopf algebra, and B a weak right H-comodule algebra. We

define the subalgebra of coinvariants as C := BcoH = {x ∈ B| Σx(0) ⊗ x(1) =

Σx(0) ⊗ ΠL(x(1))}. By [15], we know that C = {x ∈ B| Σx(0) ⊗ x(1) = Σx1(0) ⊗
1(1)} = {x ∈ B| Σx(0) ⊗ x(1) = Σ1(0)x⊗ 1(1)}.

If the following canonical map

can : B ⊗C B → B ⊗HR H, can(a⊗ b) = Σab(0) ⊗ b(1), (17)

is bijective, then the extension B/C is called weak right H-Galois, where B is a right

HR-module via a · y = Σε(a(1)y)a(0), and H a left HR-module via y · h = hS−1(y),

for any a ∈ B, h ∈ H, y ∈ HR.

Define

can′ : B ⊗C B → B ⊗HR H, can′(a⊗ b) = Σa(0)b⊗ a(1),
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and

ψ : B ⊗HR H → B ⊗HR H, ψ(a⊗ h) = Σa(0) ⊗ a(1)S(h)

for all a ∈ B, h ∈ H. Then can′ = ψ ◦ can.

As a matter of fact, we have

Σ1(0) ⊗HR 1(1) = 1B ⊗HR 1H , (18)

since

Σ1(0) ⊗HR 1(1) = Σ1(0) ⊗ S(1(1)) · 1H = Σ1(0) · S(1(1))⊗ 1H

= Σε(1(1)S(1(2)))1(0) ⊗ 1H = Σε(ΠL(1(1)))1(0) ⊗ 1H

= 1B ⊗HR 1H .

Then for any a, b ∈ B, we have

ψ ◦ can(a⊗ b) = ψ(Σab(0) ⊗ b(1)) = Σa(0)b(0) ⊗ a(1)b(1)S(b(2))

= Σa(0)b(0) ⊗ a(1)Π
L(b(1))

(16)
= Σa(0)b1(0) ⊗ a(1)1(1)

(18)
= Σa(0)b⊗ a(1),

as required.

2. Homological dimensions over quasitriangular weak Hopf algebra

In this section, we always assume that (H,R) is a finite dimension quasitriangular

weak Hopf algebra. Then the antipode S of H is bijective by [3], and H has a dual

pair of left integrals (t, λ) by Theorem 4.1 in [17]. Let A be a quantum commutative

weak left H-module algebra, and A#H the weak smash product.

Lemma 2.1. Let M is left A#H-module. If there is a trace one element and M

is projective as an A-module, then M is also projective as an A#H-module.

Proof. Let M,N be left A#H-modules, and ω : M → N be an A-module mor-

phism. Denote the trace one element by c. Define the map ω̂ : M → N by

ω̂(m) = Σt2 · [(R(1) · c) · ω(S−1(t1R
(2)) ·m)], (19)

for all a ∈ A and m ∈M . Then, ω̂ is an A#H-module morphism.

For any a ∈ A, h ∈ H and m ∈M , on one hand, since ΣS−1(h2)h1 = Π
R

(h) and

Σh1 ⊗ΠL(h2) = Σ11h⊗ 12, ΣΠ
R

(h1)⊗ h2 = Σ12 ⊗ hS(11), (20)
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for h ∈ H by [18], we have

h · ω̂(m) = Σht2 · [(R(1) · c) · ω(S−1(t1R
(2)) ·m)]

= Σh12t2 · [(R(1) · c) · ω(S−1(11t1R
(2)) ·m)]

= Σh12t2 · [(R(1) · c) · ω(S−1(t1R
(2))S−1(11) ·m)]

= ΣhS(11)t2 · [(R(1) · c) · ω(S−1(t1R
(2))12 ·m)]

(20)
= Σh2t2 · [(R(1) · c) · ω(S−1(t1R

(2))Π
R

(h1) ·m)]

= Σh3t2 · [(R(1) · c) · ω(S−1(h2t1R
(2))h1 ·m)]

= Σ(h2t)2 · [(R(1) · c) · ω(S−1((h2t)1R
(2))h1 ·m)]

= ΣΠL(h2)2t2 · [(R(1) · c) · ω(S−1(ΠL(h2)1t1R
(2))h1 ·m)]

= Σ13t2 · [(R(1) · c) · ω(S−1(12t1R
(2))11h ·m)]

= Σt2 · [(R(1) · c) · ω(S−1(12t1R
(2))11h ·m)]

= Σt2 · [(R(1) · c) · ω(S−1(t1R
(2))h ·m)] = ω̂(h ·m),

on the other hand, since Σh2S
−1(h1) = Π

L
(h) and

ΣΠ
L

(h1)⊗ h2 = Σ11 ⊗ 12h, (21)

for h ∈ H also by [18], we have

ω̂(a ·m) = Σt2 · [(R(1) · c) · ω(S−1(t1R
(2)) · (a ·m))]

(12)
= Σt3 · [(R(1) · c) · ω((S−1(t2R

(2)
2 ) · a) · (S−1(t1R

(2)
1 ) ·m))]

(8)
= Σt3 · [(R(1)r(1) · c)(S−1(t2R

(2)) · a) · ω(S−1(t1r
(2)) ·m)]

= Σt3 · [(R(1)r(1) · c)(S−1(R(2))S−1(t2) · a) · ω(S−1(t1r
(2)) ·m)]

(14)
= Σt3 · [(S−1(t2) · a)(R(1) · c) · ω(S−1(t1R

(2)) ·m)]

= Σ[t3S
−1(t2) · a] · [t4 · ((R(1) · c) · ω(S−1(t1R

(2)) ·m))]

= Σ[Π
L

(t2) · a] · [t3 · ((R(1) · c) · ω(S−1(t1R
(2)) ·m))]

(21)
= Σ[11 · a] · [12t2 · ((R(1) · c) · ω(S−1(t1R

(2)) ·m))]

= Σa · [t2 · ((R(1) · c) · ω(S−1(t1R
(2)) ·m))] = a · ω̂(m).

Hence, ω̂ is an A#H-module morphism.

Now, we assume that P is a left A#H-module, which is projective as an A-

module. What we will do next is to show that P is projective as an A#H-module

as well. Let α : M → N be an A#H-epimorphism and β : P → N be an A#H-

module morphism. Then, there exists an A-module morphism ω : P → M such

that α ◦ ω = β since P is a projective A-module. Take the map ω̂ : P → M as in

(19). We claim that α ◦ ω̂ = β, which follows that P is a projective A#H-module.

Indeed, by Proposition 5.6 in [12], we have

ΣΠL(R(1))⊗R(2) = Σ12 ⊗ 11, (22)
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then for any p ∈ P , since α is A#H-linear and c is a trace one element, we obtain

α ◦ ω̂(p) = α(Σt2 · ((R(1) · c) · (ω(S−1(t1R(2)) · p)))) = Σt2 · [(R(1) · c) · α ◦ ω(S−1(t1R(2)) · p)]
= Σ[t2R(1) · c] · [t3 · β(S−1(t1R(2)) · p)] = Σ[t2R(1) · c] · β(t3S−1(t1R(2)) · p)
(6)
= Σ[R(1)t1 · c] · β(S−1(R(2)t2S(t3)) · p) = Σ[R(1)t1 · c] · β(S−1(R(2)ΠL(t2)) · p)

(20)
= Σ[R(1)11t · c] · β(S−1(R(2)12) · p) = Σ[R(1) · 1A] · β(S−1(R(2)) · p)

= Σ[ΠL(R(1)) · 1A] · β(S−1(R(2)) · p) (22)
= Σ[12 · 1A] · β(S−1(11) · p)

= Σ[ΠL(11) · 1A] · [12 · β(p)] = Σ[11 · 1A] · [12 · β(p)] = β(p).

Hence, we complete the proof of Lemma 2.1. �

Corollary 2.2. If H is semisimple and a left A#H-module M is projective as an

A-module, then M is also projective as an A#H-module.

Proof. Since H is semisimple, there is a left integral t ∈ H such that ΠL(t) = 1H

by [3]. Then t · 1A = ΠL(t) · 1A = 1A. If choose c = 1A as the trace one element,

then we have that M is a projective A#H-module by Lemma 2.1. �

Let B/C be a weak H-Galois extension. We use following formal notation for

the inverse of can: for any h ∈ H,

can−1(1B ⊗HR h) = Σli(h)⊗ ri(h) ∈ B ⊗C B,

such that

Σli(h)ri(h)(0) ⊗HR ri(h)(1) = 1B ⊗HR h,

by definition.

Lemma 2.3. Let H be a finite dimensional weak Hopf algebra with a dual pair

of left integrals (T, t), and B/C a weak right H-Galois extension. Define tr(a) =

a(0)T (a(1)) for all a ∈ B. Then, tr is a C-bimodule map from B onto C, and the

following formula holds:

Σli(S
−1(t))tr(ri(S

−1(t))) = 1B = Σtr(li(S
−1(t)))ri(S

−1(t)). (23)

Proof. Since T ∈ H∗ is a left integral, by [13] we have Σg1〈T, hg2〉 = ΣS(h1)〈T, h2g〉
for all h, g ∈ H. Then, for any a ∈ B,

Σρ(a(0)T (a(1))) = Σa(0) ⊗ a(1)T (a(2))

= Σa(0) ⊗ S(11)〈T, 12a(1)〉 ∈ B ⊗HL,

so tr(B) ⊆ C.
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For all a ∈ B, x ∈ C, since

tr(ax) = Σa(0)x(0)T (a(1)x(1)) = Σa(0)1(0)xT (a(1)1(1))

= Σa(0)xT (a(1)) = tr(a)x,

tr(xa) = Σx(0)a(0)T (x(1)a(1)) = Σx1(0)a(0)T (1(1)a(1))

= Σxa(0)T (a(1)) = xtr(a),

tr is a C-bimodule map.

Furthermore, since the following diagrams

B ⊗C B
can //

idB⊗tr ##

B ⊗HR H

idB⊗Tzz
B

B ⊗C B
can′

//

tr⊗idB ##

B ⊗HR H

idB⊗Tzz
B

commute, and T (S−1(t)) = 1k by the proof of Theorem 6.4 in [17], we have

(idB ⊗ T ) ◦ can = idB ⊗C tr

=⇒ (idB ⊗ T ) ◦ can(Σli(S
−1(t))⊗C ri(S

−1(t))) = (idB ⊗C tr)(Σli(S
−1(t))⊗C ri(S

−1(t)))

=⇒ 1BT (S−1(t)) = Σli(S
−1(t))tr(ri(S

−1(t)))

=⇒ 1B = Σli(S
−1(t))tr(ri(S

−1(t))),

and on the other hand,

(idB ⊗ T ) ◦ can′ = tr ⊗C idB

=⇒ (idB ⊗ T ) ◦ ψ ◦ can(Σli(S
−1(t))⊗C ri(S

−1(t))) = (tr ⊗C idB)(Σli(S
−1(t))⊗C ri(S

−1(t)))

=⇒ (idB ⊗ T ) ◦ ψ(1B ⊗HR S−1(t)) = Σtr(li(S
−1(t)))ri(S

−1(t))

=⇒ (idB ⊗ T )(Σ1(0) ⊗HR 1(1)t) = Σtr(li(S
−1(t)))ri(S

−1(t))
(18)
=⇒ (idB ⊗ T )(1B ⊗HR t) = Σtr(li(S

−1(t)))ri(S
−1(t))

=⇒ 1BT (t) = Σtr(li(S
−1(t)))ri(S

−1(t))

=⇒ 1B = Σtr(li(S
−1(t)))ri(S

−1(t)). �

The following proposition extends Theorem 5 in [5].

Proposition 2.4. Let H be a finite dimensional weak Hopf algebra with a dual

pair of left integrals (T, t), and B/C a weak right H-Galois extension. Let V be a

left B-module and W a left C-module. Then there exists a space isomorphism

γ : CHom(V,W )→ BHom(V,B ⊗C W ), γ(f)(v) = Σli(S
−1(t))⊗C f(ri(S

−1(t))v).
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In particular, the map γ : CHom(B,W ) → BHom(B,B ⊗C W ) ∼= B ⊗C W,

is left B-linear isomorphic, where the B-module structures of CHom(B,W ) and

BHom(B,B ⊗C W ) are induced by the right multiplication of B, respectively.

Proof. For any b ∈ B, we have

Σbli(S
−1(t))⊗C ri(S

−1(t)) = Σli(S
−1(t))⊗C ri(S

−1(t))b. (24)

Indeed, since S−1(t) is the right integral of H and Σb(0) ⊗ ΠR(b(1)) = Σb1(0) ⊗
ΠR(1(1)) for all b ∈ B (cf. [19]), applying can to the both sides of above equation,

we obtain

can(Σbli(S
−1(t))⊗C ri(S

−1(t))) = Σbli(S
−1(t))ri(S

−1(t))(0) ⊗HR ri(S
−1(t))(1)

= b⊗HR S−1(t)

can(Σli(S
−1(t))⊗C ri(S

−1(t))b) = Σli(S
−1(t))ri(S

−1(t))(0)b(0) ⊗HR ri(S
−1(t))(1)b(1)

= Σb(0) ⊗HR S−1(t)b(1) = Σb(0) ⊗HR S−1(t)ΠR(b(1))

= Σb1(0) ⊗HR S−1(t)ΠR(1(1)) = Σb1(0) ⊗HR S−1(t)1(1)

= (b⊗HR S−1(t))(Σ1(0) ⊗HR 1(1))

= b⊗HR S−1(t).

Next, we show that the map γ is well-defined. For any b ∈ B, v ∈ V and

f ∈ CHom(V,W ),

γ(f)(bv) = Σli(S
−1(t))⊗C f(ri(S

−1(t))bv)
(24)
= Σbli(S

−1(t))⊗C f(ri(S
−1(t))v)

= bγ(f)(v).

Hence, the map γ(f) is left B-linear.

For any g ∈ BHom(V,B ⊗C W ), define

η : BHom(V,B ⊗C W )→ CHom(V,W ), η(g) = (tr ⊗C idW ) ◦ g.

It is obvious that η(g) are left C-linear because of the C-linearity of tr and g.

Now by Lemma 2.3, we have for all v ∈ V ,

η(γ(f))(v) = (tr ⊗C idW )(Σli(S
−1(t))⊗C f(ri(S

−1(t))v))

= Σtr(li(S
−1(t)))f(ri(S

−1(t))v)

= f(Σtr(li(S
−1(t)))ri(S

−1(t))v)

= f(v).
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On the other hand, let v ∈ V and denote g(v) = Σbi ⊗C wj , then for all b ∈ B we

have g(bv) = Σbbj ⊗C wj . It follows that

γ(η(g))(v) = Σli(S
−1(t))⊗C η(g)(ri(S

−1(t))v)

= Σli(S
−1(t))⊗C (tr ⊗C idW ) ◦ g(ri(S

−1(t))v)

= Σli(S
−1(t))⊗C tr(ri(S

−1(t))bj)wj

= Σli(S
−1(t))tr(ri(S

−1(t))bj)⊗C wj

(24)
= Σbj li(S

−1(t))tr(ri(S
−1(t)))⊗C wj

= Σbj ⊗C wj = g(v).

This shows that η ◦ γ and γ ◦ η are identities, so that we have our desired isomor-

phism. �

Lemma 2.5. For any left A#H-module M , define a right A-action on M by

ϕ : M ⊗A→M, m⊗ a 7→ m↼ a := Σ(R(1) · a) · (S−1(R(2)) ·m). (25)

for all a ∈ A and m ∈ M . Then M becomes an (A,A)-bimodule and an (HL, A)-

bimodule.

Proof. M is a right A-module. For any a, b ∈ A and m ∈M , we have

m ↼ 1A = Σ(R(1) · 1A) · (S−1(R(2)) ·m) = Σ(ΠL(R(1)) · 1A) · (S−1(R(2)) ·m)
(22)
= Σ(12 · 1A) · (S−1(11) ·m) = Σ(S(11) · 1A) · (12 ·m)

= Σ(11 · 1A) · (12 ·m) = m,

(m ↼ a) ↼ b = Σ(R(1) · b) · (S−1(R(2)) · (m ↼ a))

= Σ(R(1) · b) · (S−1(R(2)) · ((r(1) · a) · (S−1(r(2)) ·m)))

= Σ(R(1) · b)(S−1(R
(2)
2 )r(1) · a) · (S−1(r(2)R

(2)
1 ) ·m)

(8)
= Σ(R(1)R̆(1) · b)(S−1(R(2))r(1) · a) · (S−1(r(2)R̆(2)) ·m)

(14)
= Σ(r(1) · a)(R̆(1) · b) · (S−1(r(2)R̆(2)) ·m)
(7)
= Σ(R

(1)
1 · a)(R

(1)
2 · b) · (S−1(R(2)) ·m)

= Σ(R(1) · (ab)) · (S−1(R(2)) ·m) = m ↼ (ab).

What we next do is to prove that ϕ indeed makes M into an (A,A)-bimodule.

(a ·m) ↼ b = Σ(R(1) · b) · (S−1(R(2)) · (a ·m))

= Σ(R(1) · b)(S−1(R
(2)
2 ) · a) · (S−1(R

(2)
1 ) ·m)

(8)
= Σ(R(1)r(1) · b)(S−1(R(2)) · a) · (S−1(r(2)) ·m)

(14)
= Σa(r(1) · b) · (S−1(r(2)) ·m)

= a · (m↼ b).

For any a ∈ A, h ∈ H and m ∈M , we have

h · (m↼ a) = Σ(h1 ·m) ↼ (h2 · a). (26)
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In fact, by (6) we have R−1∆op(h) = ∆(h)R−1, that is,

ΣS(R(1))h2 ⊗R(2)h1 = Σh1S(R(1))⊗ h2R
(2),

ΣR(1)h2 ⊗ S−1(R(2))h1 = Σh1R
(1) ⊗ h2S

−1(R(2)).

Hence

h · (m↼ a) = Σh · [(R(1) · a) · (S−1(R(2)) ·m)]

= Σ(h1R
(1) · a) · (h2S

−1(R(2)) ·m)

= Σ(R(1)h2 · a) · (S−1(R(2))h1 ·m)

= Σ(h1 ·m) ↼ (h2 · a).

Now, for any x ∈ HL, since ∆(x) = Σ11x⊗ 12, we compute

x · (m↼ a) = Σ(x1 ·m) ↼ (x2 · a)

= Σ(11x ·m) ↼ (12 · a)
(29)
= (x ·m) ↼ a.

It follows that M is an (HL, A)-bimodule. �

Now, we are ready to give a necessary and sufficient condition of the global di-

mension of weak smash product A#H equals to that of its subalgebra A, which is

quantum commutative as a weak H-module algebra, as the main result of this sec-

tion. In the following, we denote gl.dim(A) (proj.dim(A)) by the global dimension

(projective dimension) of an algebra A, respectively.

Theorem 2.6. Let (H,R) be a finite dimension quasitriangular weak Hopf algebra,

and A a quantum commutative weak left H-module algebra. Then gl.dim(A#H) =

n if and only if gl.dim(A) = n and there exists a trace one element c ∈ A.

Proof. “ =⇒ ” Suppose that gl.dim(A#H) = n < ∞. Let M be an arbitrary

left A#H-module. There is an A#H-epimorphism (A#H) ⊗A M → M given by

(a#h)⊗Am 7→ (a#h)·m. In view of the fact that AHom(A#H,M) ∼= (A#H)⊗AM

as A#H-modules by Proposition 2.4 since the extension A#H/A is weak right H-

Galois (see [14]), we have an epimorphism

AHom(A#H,M)→M → 0. (27)

Let m = p.dimA#HA, then m ≤ n. Applying the functor A#HHom(A,−) to

(27), we get a long exact sequence

· · · → A#HExt
m(A,AHom(A#H,M))→ A#HExt

m(A,M)→ 0.

Since

A#HExt
t(A,AHom(A#H,M)) ∼= A#HExt

t(A, (A#H)⊗A M) ∼= AExt
t(A,M),
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AExt
t(A,M) = 0 for all t > 0, and so m = 0. Hence A is projective as an A#H-

module. Then there exists some c ∈ A such that t · c = 1A by Proposition 3

in [21], and we claim that the map ξ : A#H → A, a#h 7→ a · ΠL(h) is a split

A#H-epimorphism.

It is obvious that ξ is both well-defined from the fact that ΠL is a left HL-

linear map by [3], and a split epimorphism. Hence it suffices to show that ξ is an

A#H-linearity.

In fact, since ∆(x) = Σx11 ⊗ 12 for x ∈ HL, and

Σε(h2g)h1 = hS−1ΠL(g) (28)

for h, g ∈ H, we obtain

ξ[(a#h)(b#g)] = ξ[Σa(h1 · b)#h2g] = Σ[a(h1 · b)] ·ΠL(h2g)

= ΣS−1ΠL(h2g) · [a(h1 · b)] = Σ[S−1(ΠL(h2g)2) · a][S−1(ΠL(h2g)1)h1 · b]
= Σ[S−1(12) · a][S−1(ΠL(h2g)11)h1 · b] = Σ[11 · a][12S

−1(ΠL(h2g))h1 · b]
= a[Σε(11h2g)S−1(12)h1 · b] = a[Σε(111′2h2g)S−1(12)1′1h1 · b]
= a[Σε(12h2g)S−1(13)11h1 · b] = a[ΣS−1(12)11hS

−1(ΠL(g) · b]
= a[hS−1(ΠL(g) · b] = (a#h) · [S−1(ΠL(g) · b]
= (a#h) · [b ·ΠL(g)] = (a#h) · ξ(b#g).

We claim that A is an (A,A)-bimodule direct summand of A#H. Indeed, A and

A#H are (A,A)-bimodules via left multiplication and the action ϕ defined in (25).

Since A is H-quantum commutative, a ↼ b = ab for all a, b ∈ A. Furthermore, ξ is

an (A,A)-bimodule homomorphism. For any a, b ∈ A and h ∈ H, by

ξ((a#h) ↼ b) = ξ[Σ(R(1) · b)(S−1(R(2)) · (a#h))]

= Σξ[(R(1) · b)(S−1(R
(2)
2 ) · a)#S−1(R

(2)
1 )h)]

= Σ[(R(1) · b)(S−1(R
(2)
2 ) · a)] ·ΠL(S−1(R

(2)
1 )h)

= Σε(11S
−1(R

(2)
1 )h)[(R(1) · b)(S−1(R

(2)
2 ) · a)] · 12

= Σε(Π
R

(11)S−1(R
(2)
1 )h)S−1(12) · [(R(1) · b)(S−1(R

(2)
2 ) · a)]

= Σε(S−1(11)S−1(R
(2)
1 )h)(S−1(13)R(1) · b)(S−1(R

(2)
2 12) · a)

= Σε(S−1(R
(2)
1 11)h)(S−1(1′2)R(1) · b)(S−1(R

(2)
2 121′1) · a)

= Σε(S−1(R
(2)
1 )h)(S−1(12)R(1) · b)(S−1(R

(2)
2 11) · a)

= Σε(S−1(R
(2)
1 )h)(R(1) · b)(S−1(R

(2)
2 ) · a)

(27)
= Σ(R(1) · b)(S−1(R(2))S−1ΠL(h) · a)

= (S−1ΠL(h) · a)b = (a ·ΠL(h))b = ξ(a#h) ↼ b.

Therefore, for any left A-module N , the map ξ ⊗ idN : (A#H) ⊗A N → N is

a split A-epimorphism (the left A-action of (A#H)⊗A N via the left component).
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Hence, N is a direct summand of (A#H)⊗A N . It follows that

proj.dimA(N) ≤ proj.dimA((A#H)⊗A N).

We now consider the left A#H-module (A#H) ⊗A N . Since its any projective

A#H-module resolution is also a projective resolution over A, we have

proj.dimA((A#H)⊗A N) ≤ proj.dimA#H((A#H)⊗A N).

Thus gl.dim(A) ≤ gl.dim(A#H) <∞.

“⇐= ” We assume that gl.dim(A) = n <∞ and t · c = 1A for some c ∈ A. Let

M be any left A#H-module. If M is projective as an A-module, then M is also

projective as an A#H by Lemma 2.1. Let N be an A#H-module. Consider an

exact sequence of A#H-modules

0→ X → Pn−1 → · · · → P0 → N → 0,

where A#HPi(i = 0, . . . , n − 1) is projective, we have AX is projective since

gl.dim(A) = n. Hence A#HX is projective and proj.dimA#H(N) ≤ n =

proj.dimA(N). It follows that gl.dim(A#H) ≤ gl.dim(A). The proof is com-

pleted. �

As a consequent of Theorem 2.6 and Proposition 3 in [21], we have

Corollary 2.7. Let (H,R) be a finite dimension quasitriangular weak Hopf algebra,

and A a quantum commutative weak left H-module algebra. Then

(1) gl.dim(A#H) = n if and only if gl.dim(A) = n and A is a projective left

A#H-module.

(2) If H is furthermore semisimple, then gl.dim(A#H) = gl.dim(A). Hence,

A is semisimple if and only if A#H is semisimple, and A is hereditary if

and only if A#H is hereditary.

Let us recall from [2] that the finitistic dimension of an algebra A is defined by

the formula

fin.dim(A) = sup{proj.dim(A) <∞| M is a left A-module and proj.dim(M) <∞}.

In the following, we shall investigate the relation between the finitistic dimension

of a quantum commutative weak H-module algebra A and that of weak smash

product A#H.
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Proposition 2.8. Suppose that (H,R) is a finite dimension quasitriangular weak

Hopf algebra, its dual H∗ is semisimple, and let A be a quantum commutative

weak left H-module algebra. If there exists a trace one element c ∈ A, then

fin.dim(A#H) = fin.dim(A).

Proof. By Theorem 2.6, for any left A#H-module M , we have proj.dimA#HM =

proj.dimAM . This implies that fin.dim(A#H) ≤ fin.dim(A).

Since A#H is a left H∗-module algebra in a natural way by [11], we can form a

weak smash product (A#H)#H∗. SinceH∗ is semisimple, fin.dim((A#H)#H∗) ≤
fin.dim(A#H) by Lemma 6.2 in [9]. By Proposition 6.3 in [9], we know (A#H)#H∗

is Morita equivalent to A, then fin.dim((A#H)#H∗) = fin.dim(A). Hence,

fin.dim(A) = fin.dim((A#H)#H∗) ≤ fin.dim(A#H) ≤ fin.dim(A).

Therefore fin.dim(A#H) = fin.dim(A). �

Corollary 2.9. Suppose that (H,R) is a finite dimension semisimple quasitri-

angular weak Hopf algebra, its dual H∗ is semisimple, and let A be a quantum

commutative weak left H-module algebra. Then fin.dim(A#H) = fin.dim(A).

3. In the case of twisted weak Hopf algebra

In this section, we always assume that the weak Hopf algebra H is finite dimen-

sional.

Definition 3.1. [13] A twist for H is a pair (Θ,Θ−1), with

Θ ∈ ∆(1H)(H ⊗H), Θ−1 ∈ (H ⊗H)∆(1H), and ΘΘ−1 = ∆(1H), (29)

satisfying the following axioms:

(ε⊗ id)(Θ) = (id⊗ ε)(Θ) = (ε⊗ id)(Θ−1) = (id⊗ ε)(Θ−1) = 1H , (30)

(∆⊗ id)(Θ)(Θ⊗ 1H) = (id⊗∆)(Θ)(Θ⊗ 1H), (31)

(Θ−1 ⊗ 1H)(∆⊗ id)(Θ−1) = (1H ⊗Θ−1)(id⊗∆)(Θ−1), (32)

(∆⊗ id)(Θ−1)(id⊗∆)(Θ) = (Θ⊗ 1H)(1H ⊗Θ−1), (33)

(id⊗∆)(Θ−1)(∆⊗ id)(Θ) = (1H ⊗Θ)(Θ−1 ⊗ 1H). (34)

Lemma 3.2. Let (Θ,Θ−1) be a twist for H. Then there is a weak Hopf algebra

HΘ having the same algebra structure and counit as H with a comultiplication and

antipode given by

∆Θ(h) := ΣhΘ
1 ⊗ hΘ

2 = Θ−1∆(h)Θ, SΘ(h) = v−1S(h)v, (35)
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for all h ∈ HΘ, where v = ΣS(Θ(1))Θ(2) is invertible with inverse v−1 = ΣΘ−(1)

S(Θ−(2)) in HΘ. The counital maps of HΘ are

ΠL
Θ(h) = Σε(Θ(1)h)Θ(2), ΠR

Θ(h) = Σε(hΘ−(2))Θ−(1),

for all h ∈ HΘ.

Proof. See Proposition 3.1.2 in [6] and Proposition 6.1.2 in [13]. �

Lemma 3.3. Let (Θ,Θ−1) be a twist for H, and A a weak left H-module algebra.

Define the operation ∗ on A by a ∗ b = Σ(Θ(1) · a)(Θ(2) · b), Then A becomes a weak

left HΘ-module algebra, which we denote by AΘ.

Proof. First, AΘ is an associative algebra with unit 1A. Since ΣS(11) ⊗ 12 is a

separability element of HL by [3], for any x ∈ HL,

ΣxS(11)⊗ 12 = ΣS(11)⊗ 12x. (36)

Meanwhile, by [6]

ΣΠL(Θ(1))Θ(2) = 1H , (37)

ΣS−1ΠL(Θ(2))Θ(1) = 1H . (38)

Then for any a ∈ AΘ, we have

1A ∗ a = Σ(11Θ(1) · 1A)(12Θ(2) · a) = Σ(11ΠL(Θ(1)) · 1A)(12Θ(2) · a)

= Σ(ΠL(Θ(1))11 · 1A)(12Θ(2) · a) = Σ(ΠL(Θ(1))S(11) · 1A)(12Θ(2) · a)
(36)
= Σ(S(11) · 1A)(12ΠL(Θ(1))Θ(2) · a) = Σ(11 · 1A)(12 · a)

(37)
= a,

a ∗ 1A = Σ(Θ(1) · a)(Θ(2) · 1A) = Σ(11Θ(1) · a)(12ΠL(Θ(2)) · 1A)
(36)
= Σ(11S

−1ΠL(Θ(2))Θ(1) · a)(12 · 1A) = Σ(11 · a)(12 · 1A)
(38)
= a.

Hence, 1A is the unit of AΘ. Moreover, for any a, b, c ∈ AΘ,

(a ∗ b) ∗ c = Σ[(Θ(1) · a)(Θ(2) · b)] ∗ c
= ΣΘ̄(1) · [(Θ(1) · a)(Θ(2) · b)](Θ̄(2) · c)
= Σ(Θ̄

(1)
1 Θ(1) · a)(Θ̄

(1)
2 Θ(2) · b)(Θ̄(2) · c)

(31)
= Σ(Θ̄(1) · a)(Θ̄

(2)
1 Θ(1) · b)(Θ̄(2)

2 Θ(2) · c)
= Σ(Θ̄(1) · a)Θ̄(2) · [(Θ(1) · b)(Θ(2) · c)] = a ∗ (b ∗ c).

That is AΘ is associative, where Θ = ΣΘ(1) ⊗ Θ(2) = ΣΘ̄(1) ⊗ Θ̄(2). Hence, AΘ

is an associative algebra with unit 1A. Furthermore, it is obvious that AΘ is an

HΘ-module since HΘ has the same algebra structure as H by Lemma 3.2.
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Now, for any a, b ∈ AΘ and h ∈ HΘ,

h · (a ∗ b) = h · [Σ(Θ(1) · a)(Θ(2) · b)] = Σ(h1Θ(1) · a)(h2Θ(2) · b)
= Σ(11h1Θ(1) · a)(12h2Θ(2) · b) = Σ(Θ̄(1)Θ−(1)h1Θ(1) · a)(Θ̄(2)Θ−(2)h2Θ(2) · b)
= Σ(Θ−(1)h1Θ(1) · a) ∗ (Θ−(2)h2Θ(2) · b)
= Σ(hΘ

1 · a) ∗ (hΘ
2 · b).

It follows that AΘ is a weak left HΘ-module algebra. �

We have the following which extends Theorem 1.7 in [7].

Proposition 3.4. Let (Θ,Θ−1) be a twist for H, and A a weak left H-module

algebra. Then left A#H-module category A#HM and left AΘ#HΘ-module category

AΘ#HΘ
M are equivalent.

Proof. Let M be an A#H-module. Define an AΘ#HΘ-action by for all a ∈
AΘ, h ∈ HΘ

(a#h) ⇀m = [Σ(Θ(1) · a)#Θ(2)h] ·m. (39)

Then, M is an AΘ#HΘ-module.

The above action (39) is well defined, since for any a ∈ AΘ, h ∈ HΘ and x ∈ HL
Θ,

and followed by the fact that ΣSΘ(Θ(1))⊗Θ(2) is a separability element of HL
Θ, we

have

(a · x#h) ⇀m = Σ[(Θ(1)S−1
Θ (x) · a)#Θ(2)h] ·m

= Σ[(Θ(1) · a)#Θ(2)xh] ·m
= (a#xh) ⇀m.

Moreover, (1A#1H) ⇀m = m for all m ∈M .

(1A#1H) ⇀m = [Σ(Θ(1) · 1A)#Θ(2)] ·m
= [Σ(ΠL(Θ(1)) · 1A)#Θ(2)] ·m
= [Σ(1A ·ΠL(Θ(1)))#Θ(2)] ·m
= [Σ1A#ΠL(Θ(1))Θ(2)] ·m

(37)
= (1A#1H) ·m = m.

At the same time, for any a, b ∈ AΘ, h, g ∈ HΘ, we have

[(a#h)(b#g)] ⇀m = [Σa ∗ (hΘ
1 · b)#hΘ

2 g] ⇀m

= [Σa ∗ (Θ−(1)h1Θ(1) · b)#Θ−(2)h2Θ(2)g] ⇀m

= [Σ(Θ̄(1) · a)(Θ̄(2)Θ−(1)h1Θ(1) · b)#Θ−(2)h2Θ(2)g] ⇀m
(39)
= [Σ(Θ̆

(1)
1 Θ̄(1) · a)(Θ̆

(1)
2 Θ̄(2)Θ−(1)h1Θ(1) · b)#Θ̆(2)Θ−(2)h2Θ(2)g] ·m
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(33)
= [Σ(Θ̆

(1)
1 Θ

−(1)
1 Θ̄(1) · a)(Θ̆

(1)
2 Θ

−(1)
2 Θ̄

(2)
1 h1Θ(1) · b)#Θ̆(2)Θ−(2)Θ̄

(2)
2 h2Θ(2)g] ·m

(29)
= [Σ(111Θ̄(1) · a)(112Θ̄

(2)
1 h1Θ(1) · b)#12Θ̄

(2)
2 h2Θ(2)g] ·m

= [Σ(11Θ̄(1) · a)(121Θ̄
(2)
1 h1Θ(1) · b)#122Θ̄

(2)
2 h2Θ(2)g] ·m

= [Σ(Θ̄(1) · a)(Θ̄
(2)
1 h1Θ(1) · b)#Θ̄

(2)
2 h2Θ(2)g] ·m

= [Σ(Θ̄(1) · a#Θ̄(2)h)(Θ(1) · b#Θ(2)g)] ·m
= Σ(Θ̄(1) · a#Θ̄(2)h) · [(Θ(1) · b#Θ(2)g) ·m]

= (a#h) ⇀ [(b#g) ⇀m].

Hence, M is a left AΘ#HΘ-module.

Conversely, let N be an AΘ#HΘ-module. Define an A#H-action by for all

a ∈ A, h ∈ H

(a#h) ⇁ n = Σ[(Θ−(1) · a)#Θ−(2)h] · n. (40)

Then, N is an A#H-module.

The well-definition of the above action (40) can be similarly checked as before.

For any a, b ∈ A, h, g ∈ H and n ∈ N , it follows (1A#1H) ⇁ n = n from the

equality ΣΠL(Θ−(1))Θ−(2) = 1H , and we have

(a#h) ⇁ [(b#g) ⇁ n] = (a#h) ⇁ [Σ(Θ−(1) · b#Θ−(2)g) · n]

= Σ(Θ−(1) · a#Θ−(2)h) · (Θ̆−(1) · b#Θ̆−(2)g) · n
= [Σ(Θ−(1) · a) ∗ (Θ̂−(1)Θ

−(2)
1 h1Θ(1)Θ̆−(1) · b)#Θ̂−(2)Θ

−(2)
2 h2Θ(2)Θ̆−(2)g] · n

= [Σ(Θ−(1) · a) ∗ (Θ̆−(1)Θ
−(2)
1 h1 · b)#Θ̆−(2)Θ

−(2)
2 h2g] · n

= [Σ(Θ(1)Θ−(1) · a)(Θ(2)Θ̆−(1)Θ
−(2)
1 h1 · b)#Θ̆−(2)Θ

−(2)
2 h2g] · n

(32)
= [Σ(Θ(1)Θ−(1)Θ̆

−(1)
1 · a)(Θ(2)Θ−(2)Θ̆

−(1)
2 h1 · b)#Θ̆−(2)h2g] · n

= [Σ(Θ̆
−(1)
1 · a)(Θ̆

−(1)
2 h1 · b)#Θ̆−(2)h2g] · n

= [ΣΘ̆−(1) · (a(h1 · b))#Θ̆−(2)h2g] · n
= [Σa(h1 · b)#h2g] ⇁ n

= [(a#h)(b#g)] ⇁ n.

Hence, N is a left A#H-module.

Define the functor F : A#HM→ AΘ#HΘM by F(M) := M as a k-space with the

AΘ#HΘ-module structure defined in (39), and the functor G : AΘ#HΘ
M→ A#HM

by G(N) := N as a k-space with the A#H-module structure defined in (40). Then

(F ,G) are equivalent functors. Hence, the categories A#HM and AΘ#HΘ
M are

equivalent. �

Since a twisting of the weak quasitriangular Hopf algebra (H,R) is again qua-

sitriangular with the structure given by (HΘ,Θ
−1
21 RΘ) (see Remark 6.1.3 in [13]),

we have the following.

Theorem 3.5. Let (H,R) be a finite dimension quasitriangular weak Hopf algebra

with a twist (Θ,Θ−1), and A a quantum commutative weak left H-module algebra.

Then the following assertions are equivalent:
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(1) gl.dim(A#H) = n.

(2) gl.dim(AΘ#HΘ) = n.

(3) gl.dim(A) = n and t · c = 1A for some c ∈ A.

(4) gl.dim(AΘ) = n and t · c = 1A for some c ∈ A.

Proof. (1) and (3) are equivalent followed by Theorem 2.6. Since A#H and

AΘ#HΘ are Morita equivalent by Proposition 3.4, gl.dim(A#H) = gl.dim(AΘ#HΘ).

Now to show (2) and (4) are equivalent, it suffices to show that if A is quantum

H-commutative, then AΘ is quantum HΘ-commutative. That is to show that

a ∗ b = Σ(Θ−(1)R(2)Θ(2) · b) ∗ (Θ−(2)R(1)Θ(1) · a)

for all a, b ∈ AΘ, which can be easily checked. �
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