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Abstract. In this paper, we characterize some algebraic and combinatorial

properties of spanning simplicial complex ∆s(Gl1, l2, ··· , ln ) of the n-cyclic

graphs Gl1, l2, ··· , ln with a common vertex. We show that ∆s(Gl1, l2, ··· , ln )

is pure simplicial complex of dimension
n∑

i=1
li − n − 1. We determine the

Stanley-Reisner ideal I∆s(Gl1, l2, ··· , ln ) of ∆s(Gl1, l2, ··· , ln ) and its primary

decomposition. Under the condition that the length of each cyclic graph is

t, we also give a formula for f -vector of ∆s(Gl1, l2, ··· , ln ) and consequently

a formula for Hilbert series of the Stanley-Reisner ring k[∆s(Gl1, l2, ··· , ln )],

where k is a field.
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1. Introduction

The note of spanning simplicial complex ∆s(G) on edge set E of a graph G =

G(V,E) was introduced in [1], the set of its facets is exactly the edge set s(G) of

all possible spanning trees of G, i.e.

∆s(G) = 〈Fi | Fi ∈ s(G) 〉.

Note that for a graph G, the problem of finding s(G) is not always easy to

handle. Anwar, Raza and Kashif [1] proved some algebraic and combinatorial

properties of spanning simplicial complex of the uni-cyclic graph Un (i.e., if the

vertex set of Un is V = {x1, . . . , xn}, then the edge set of Un is E = {xixi+1 | i =

1, . . . , n, and xn+1 = x1}). Zhu et al. [5] discussed some properties of the spanning

simplicial complexes of the n-cyclic graphs with a common edge. In this paper,
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our goal is to characterize some algebraic and combinatorial properties of spanning

simplicial complexes of some n-cyclic graphs Gl1, l2, ··· , ln with a common vertex,

which is obtained by joining n disjoint cycles Gl1 , . . . , Gln of length l1, . . . , ln at a

common vertex. For n = 2 and l1 = l2 = 3, the graph of G3, 3 is shown in Figure 1

of Section 2.

We give a brief overview of this paper. In Section 2, we recall some definitions

and results from commutative algebra and algebraic combinatorics. In Section 3,

we determine the Stanley-Reisner ideal I∆s(Gl1, l2, ··· , ln ) of ∆s(Gl1, l2, ··· , ln) and its

primary decomposition in Theorem 3.2. In Section 4, under the assumption that the

length of every cycle is t, we give a formula for f -vector of ∆s(Gl1, l2, ··· , ln) and con-

sequently a formula for Hilbert series of the Stanley-Reisner ring k[∆s(Gl1, l2, ··· , ln)].

2. Preliminaries

We firstly recall some definitions and basic facts about graph and simplicial

complex in order to make this paper self-contained.

Definition 2.1. A spanning tree of a simple connected finite graph G = G(V,E)

is a subgraph of G, which is a tree and contains all vertices of G. We denote the

collection of all edge sets of the spanning trees of G by s(G), i.e.

s(G) = {E(Ti) ⊂ E | Ti is a spanning tree of G} (See [3] for more details).

It is well known that for any simple connected finite graph, spanning trees always

exist. One can find a spanning tree systematically by the cutting-down method,

which says that a spanning tree is obtained by removing one edge from each cycle

appearing in the graph. For example, for the following graph G, we obtain that

s(G) = {{e2, e3, e5, e6}, {e2, e3, e4, e6}, {e2, e3, e4, e5}, {e1, e3, e5, e6}, {e1, e3,

e4, e6}, {e1, e3, e4, e5}, {e1, e2, e5, e6}, {e1, e2, e4, e6}, {e1, e2, e4, e5}}.
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Figure 1. 2-cyclic graph with a common vertex

Definition 2.2. A simplicial complex ∆ on a set of vertices [n] = {1, 2, . . . , n} is

a collection of subsets of [n] such that
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(1) {i} ∈ ∆ for each i ∈ [n];

(2) if F ∈ ∆ and G ⊆ F , then G ∈ ∆.

An element of ∆ is called a face of ∆, and the dimension of a face F of ∆ is

defined as |F | − 1, where |F | is the number of vertices of F and denoted by dimF .

The faces of dimension 0 and 1 are called vertices and edges, respectively, and

dim ∅ = −1.

The maximum faces of ∆ under inclusion are called facets of ∆. The dimension

of the simplicial complex ∆, which is denoted by dim∆, is the maximal dimension

of its facets, i.e.

dim∆ = max {dim F |F is a facet of ∆}.

We denote the simplicial complex ∆ with facets {F1, . . . , Fq} by

∆ = 〈F1, . . . , Fq〉.

Definition 2.3. A simplicial complex ∆ is pure if all of its facets have the same

dimension.

Definition 2.4. Given a simplicial complex ∆ of dimension d, we define its f -vector

to be the (d+ 1)-tuple f = (f0, f1, . . . , fd), where fi is the number of i-dimensional

faces of ∆.

Definition 2.5. For a simple connected finite graph G = G(V,E) with s(G) =

{E1, . . . , Es}, we define a simplicial complex ∆s(G) on E such that facets of

∆s(G) are precisely the elements of s(G), called the spanning simplicial complex of

G(V,E). In other words,

∆s(G) = 〈E1, . . . , Es〉.

As the number of elements of both Ei and Ej are |E| −m, where m denotes the

number of cycles in G, we have that Ei * Ej for i 6= j.

For example, the spanning simplicial complex of the graph G with edge set

E = {e1, e2, e3, e4, e5, e6} in Figure 1 is given by

∆s(G) = 〈{e2, e3, e5, e6}, {e2, e3, e4, e6}, {e2, e3, e4, e5}, {e1, e3, e5, e6}, {e1, e3,

e4, e6}, {e1, e3, e4, e5}, {e1, e2, e5, e6}, {e1, e2, e4, e6}, {e1, e2, e4, e5}〉.

Definition 2.6. An n-cyclic graph Gl1, l2, ··· , ln with a common vertex is a graph

which is obtained by joining n disjoint cycles Gl1 , Gl2 , . . . , Gln at a common vertex,

where Gli denotes the cycle of length li and li ≥ 3 for each i ∈ {1, 2, . . . , n}.

Remark 2.7. It is easy to see Gl1, l2, ··· , ln has
n∑

i=1

li−n+1 vertices and
n∑

i=1

li edges.
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3. Primary decomposition of I∆s(Gl1, l2, ··· , ln )

In this section, we will determine the Stanley-Reisner ideal I∆s(Gl1, l2, ··· , ln ) of

∆s(Gl1, l2, ··· , ln) and its primary decomposition.

We label the edge set of Gl1, l2, ··· , ln such that {ei1, ei2, . . . , ei li} is the edge set

of the cycle Gli for 1 ≤ i ≤ n. First, we have the following proposition.

Proposition 3.1. ∆s(Gl1, l2, ··· , ln) is a pure simplicial complex of dimension
n∑

i=1

li−

n− 1.

Proof. Let E = {e11, . . . , e1 l1 , e21, . . . , e2 l2 , . . . , en1, . . . , en ln} be the edge set of

the n-cyclic graph Gl1, l2, ··· , ln . As Gl1, l2, ··· , ln contains exactly n cycles of length

l1, l2, . . . , ln, by the cutting-down method, its spanning trees are obtained by re-

moving one edge from each cycle Gli , 1 ≤ i ≤ n. Hence, the subset E(Ti) ⊂ E is in

s(Gl1, l2, ··· , ln) if and only if E(Ti) = E\{e1 i1 , . . . , en in} for some ij ∈ {1, . . . , lj},
where j runs from 1 to n, i.e.

s(Gl1, l2, ··· , ln) = {E\{e1 i1 , . . . , en in} | ij ∈ {1, . . . , lj} and j ∈ {1, . . . , n}}.

It is easily seen that each spanning tree of ∆s(Gl1, l2, ··· , ln) has
n∑

i=1

(li−1) =
n∑

i=1

li−n

edges, thus the result follows. �

Let E = {e11, . . . , e1 l1 , e21, . . . , e2 l2 , . . . , en1, . . . , en ln} be the edge set of the n-

cyclic graph Gl1, l2, ··· , ln , and let ∆s(Gl1, l2, ··· , ln) be the spanning simplicial complex

of Gl1, l2, ··· , ln . We can assume that S = k[x11, . . . , x1 l1 , x21, . . . , x2 l2 , . . . , xn1, . . . ,

xn ln ] is a polynomial ring in
n∑

i=1

li variables over a field k, I∆s(Gl1, l2, ··· , ln ) is the

Stanley-Reisner ideal of ∆s(Gl1, l2, ··· , ln), which is a squarefree monomial ideal.

The standard graded algebra k[∆s(Gl1, l2, ··· , ln)] = S/I∆s(Gl1, l2, ··· , ln ) is called the

Stanley-Reisner ring of ∆s(Gl1, l2, ··· , ln). We can give a primary decomposition of

ideal I∆s(Gl1, l2, ··· , ln ), Hilbert series and h-vector of k[∆s(Gl1, l2, ··· , ln)]. We refer

readers to [2] and [4] for detailed information about the Stanley-Reisner ideal,

primary decomposition and Hilbert series.

Now, we give a primary decomposition of the Stanley-Reisner ideal I∆s(Gl1, l2, ··· , ln)

of ∆s(Gl1, l2, ··· , ln).

Theorem 3.2. Let ∆s(Gl1, l2, ··· , ln) be the spanning simplicial complex of the n-

cyclic graph Gl1, l2, ··· , ln . Then the Stanley-Reisner ideal I∆s(Gl1, l2, ··· , ln ) of
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∆s(Gl1, l2, ··· , ln) is given by

I∆s(Gl1, l2, ··· , ln ) =
⋂

ij ∈ {1, 2, . . . , lj}
j ∈ {1, 2, . . . , n}

(x1i1 , x2i2 , . . . , xnin)

= (x11x12 · · ·x1l1 , x21x22 · · ·x2l2 , . . . , xn1xn2 · · ·xnln).

Proof. As each of facets of ∆s(Gl1, l2, ··· , ln) is obtained by removing exactly one

edge from each cycle Gli , 1 ≤ i ≤ n. From [4, Proposition 5.3.10], we get that

I∆s(Gl1, l2, ··· , ln ) =
⋂

ij ∈ {1, 2, . . . , lj}
j ∈ {1, 2, . . . , n}

(x1i1 , x2i2 , . . . , xnin)

= (x11x12 · · ·x1l1 , x21x22 · · ·x2l2 , . . . , xn1xn2 · · ·xnln).

�

As corollaries, we obtain the following two results.

Corollary 3.3. Let ∆s(Gl1, l2, ··· , ln) be the spanning simplicial complex of the

n-cyclic graph Gl1, l2, ··· , ln . Then the Stanley-Reisner ring S/I∆s(Gl1, l2, ··· , ln ) is

Gorenstein.

Proof. By the above theorem, we have that

I∆s(Gl1, l2, ··· , ln ) = (x11x12 · · ·x1l1 , x21x22 · · ·x2l2 , . . . , xn1xn2 · · ·xnln).

It is clear that x11x12 · · ·x1l1 , x21x22 · · ·x2l2 , . . . , xn1xn2 · · ·xnln is a regular se-

quence in any order. As S is Gorenstein, the Stanley-Reisner ring S/I∆s(Gl1, l2, ··· , ln )

is Gorenstein by [2, Proposition 3.1.19]. �

Corollary 3.4. Let ∆s(Gl1, l2, ··· , ln ) be the spanning simplicial complex of the n-

cyclic graph Gl1, l2, ··· , ln . Then the Stanley-Reisner ideal I∆s(Gl1, l2, ··· , ln ) is unmixed

of height n.

4. The computation of f-vector of ∆s(Gl1, l2, ··· , ln)

In this section, we will give a formula for f -vector of ∆s(Gl1, l2, ··· , ln) and conse-

quently a formula for Hilbert series of the Stanley-Reisner ring k[∆s(Gl1, l2, ··· , ln)]

under the assumption that the length of every cycle Gli is t for 1 ≤ i ≤ n. But

before this we need the following proposition, its proof can be seen in Proposition

2.2 of [1].

Proposition 4.1. For a simplicial complex ∆ on [n] of dimension d, if ft =
(

n
t+1

)
for some t ≤ d, then fi =

(
n

i+1

)
for all 0 ≤ i < t.
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Now, under the assumption that the length of every cycle Gli is t for 1 ≤ i ≤ n,

we give the formula to compute the f -vector of ∆s(Gl1, l2, ··· , ln).

Theorem 4.2. Let li = t for any 1 ≤ i ≤ n. Then the f -vector of ∆s(Gl1, l2, ··· , ln)

is given by f = (f0, f1, . . . , fd), where d = n(t− 1)− 1 and

fj =

k∑
i=0

(−1)i
(
n

i

)(
nt− it

j − it + 1

)
,

where 0 ≤ j ≤ d, k = [ j+1
t ] and symbol [a], a ∈ Q denotes the maximum integer not

exceeding a.

Proof. As li = t for any 1 ≤ i ≤ n, we can set E = {e11, . . . , e1 t, e21, . . . , e2 t, . . . ,

en1, . . . , en t} be the edge set of the n-cyclic graph Gl1, l2, ··· , ln . By the definition

of f -vector of ∆s(Gl1, l2, ··· , ln), fj is the number of all those subsets of the edge set

E of the graph Gl1, l2, ..., ln with j + 1 elements, that do not contain these cycles

{ei11, . . . , ei1 t | 1 ≤ i1 ≤ n}, {ei11, . . . , ei1 t, ei21, . . . , ei2 t | 1 ≤ i1 < i2 ≤ n}, . . . ,
{ei11, . . . , ei1 t, . . . , eik1, . . . , eik t | 1 ≤ i1 < · · · < ik ≤ n}.

By Remark 2.7, Gl1, l2, ··· , ln has nt edges, thus there are
(
n
k

)(
nt−kt
j−kt+1

)
subsets of E

with j+1 elements, which contain the edge set {ei11, ei12, . . . , ei1 t, . . . , eik1, . . . , eik t |
1 ≤ i1 < · · · < ik ≤ n}. Similarly, there are

(
n

k−1

)
[
(

nt−(k−1)t
j−(k−1)t+1

)
−
(
n−(k−1)

1

)(
nt−kt
j−kt+1

)
]

=
(

n
k−1

)(
nt−kt+t
j−kt+t+1

)
−
(

n
k−1

)(
n−k+1

1

)(
nt−kt
j−kt+1

)
=

1∑
i=0

(−1)i
(

n
k−1

)(
n−k+1

i

)(
nt−(k−1+i)t
j−(k−1+i)t+1

)
subsets of E with j+1 elements, containing the edge set {ei11, . . . , ei1 t, . . . , eik−11, . . . ,

eik−1 t | 1 ≤ i1 < · · · < ik−1 ≤ n}. By analogy, there are(
n

k − 2

)
{
(

nt− (k − 2)t

j − (k − 2)t + 1

)
−
(
n− (k − 2)

1

)
[

(
nt− (k − 1)t

j − (k − 1)t + 1

)
−

(
n− (k − 1)

1

)(
nt− kt

j − kt + 1

)
]−
(
n− (k − 2)

2

)(
nt− kt

j − kt + 1

)
}

=

(
n

k − 2

)(
nt− kt + 2t

j − kt + 2t + 1

)
−
(

n

k − 2

)(
n− k + 2

1

)(
nt− kt + t

j − kt + t + 1

)
+

(
n

k − 2

)
[

(
n− k + 2

1

)(
n− k + 1

1

)
−
(
n− k + 2

2

)
]

(
nt− kt

j − kt + 1

)
=

(
n

k − 2

)(
nt− kt + 2t

j − kt + 2t + 1

)
−
(

n

k − 2

)(
n− k + 2

1

)(
nt− kt + t

j − kt + t + 1

)
+

(
n

k − 2

)(
n− k + 2

2

)(
nt− kt

j − kt + 1

)
=

2∑
i=0

(−1)i
(

n

k − 2

)(
n− k + 2

i

)(
nt− (k − 2 + i)t

j − (k − 2 + i)t + 1

)
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subsets of E with j + 1 elements, containing the edge set {ei11, ei12, . . . , ei1 t, . . . ,

eik−21, eik−22, . . . , eik−2 t | 1 ≤ i1 < · · · < ik−2 ≤ n} and so on. Therefore, the

number of all subsets of E, which have j + 1 elements and contain the edge set

{ei11, . . . , ei1 t, . . . , eik−m,1, . . . , eik−m, t | 1 ≤ i1 < · · · < im ≤ n}, is

m∑
i=0

(−1)i
(

n

k −m

)(
n− k + m

i

)(
nt− (k −m + i)t

j − (k −m + i)t + 1

)
.

Therefore, by inclusion exclusion principle, we have

fj =

(
nt

j + 1

)
−
(
n

k

)(
nt− kt

j − kt + 1

)
−

1∑
i=0

(−1)i
(

n

k − 1

)(
n− k + 1

i

)(
nt− (k − 1 + i)t

j − (k − 1 + i)t + 1

)

−
2∑

i=0

(−1)i
(

n

k − 2

)(
n− k + 2

i

)(
nt− (k − 2 + i)t

j − (k − 2 + i)t + 1

)
− · · ·

−
m∑
i=0

(−1)i
(

n

k −m

)(
n− k + m

i

)(
nt− (k −m + i)t

j − (k −m + i)t + 1

)
− · · ·

−
k−1∑
i=0

(−1)i
(
n

1

)(
n− 1

i

)(
nt− (1 + i)t

j − (1 + i)t + 1

)

=

(
nt

j + 1

)
− [

k∑
j=1

(−1)k−j

(
n

j

)(
n− j

k − j

)
]

(
nt− kt

j − kt + 1

)

− [

k−1∑
j=1

(−1)k−1−j

(
n

j

)(
n− j

k − 1− j

)
]

(
nt− (k − 1)t

j − (k − 1)t + 1

)
− · · ·

− [

2∑
j=1

(−1)2−j

(
n

j

)(
n− j

2− j

)
]

(
nt− 2t

j − 2t + 1

)
−
(
n

1

)(
nt− t

j − t + 1

)

=

k∑
i=0

(−1)i
(
n

i

)(
nt− it

j − it + 1

)
,

where the last equality holds by combinatorial formula

k∑
j=0

(−1)k−j

(
n

j

)(
n− j

k − j

)
= 0. �

We can now give a formula for Hilbert series of k[∆s(Gl1, l2, ··· , ln)] under the

condition that the length of every cycle Gli is t for 1 ≤ i ≤ n.

Theorem 4.3. Let ∆s(Gl1, l2, ··· , ln) be the spanning simplicial complex of the n-

cyclic graph Gl1, l2, ··· , ln , where li = t for every 1 ≤ i ≤ n. Then Hilbert series of
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the Stanley-Reisner ring k[∆s(Gl1, l2, ··· , ln)] is given by

H(k[∆s(Gl1, l2, ··· , ln)], z) = 1 +

d∑
i=0

k∑
l=0

(−1)l
(
n

l

)(
nt− lt

j − lt + 1

)
.

Proof. From [4, Corollary 5.4.5], we know that if ∆ is a simplicial complex and

f(∆) = (f0, . . . , fd) is its f -vector, then the Hilbert series of the Stanley-Reisner

ring k[∆] is given by

H(k[∆], z) =

d∑
i=−1

fiz
i+1

(1− z)i+1
, d = dim∆.

The desired formula follows from the theorem above at once. �
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