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Abstract. The rings in the title are studied and related to right principally

injective rings. Many properties of these rings (called left pseudo-morphic by

Yang) are derived, and conditions are given that an endomorphism ring is left

pseudo-morphic. Some particular results: (1) Commutative pseudo-morphic

rings are morphic; (2) Semiprime left pseudo-morphic rings are semisimple;

and (3) A left and right pseudo-morphic ring satisfying (equivalent) mild

finiteness conditions is a morphic, quasi-Frobenius ring in which every one-

sided ideal is principal. Call a left ideal L a left principal annihilator if

L = l(a) = {r ∈ R | ra = 0} for some a ∈ R. It is shown that if R is left

pseudo-morphic, left mininjective ring with the ACC on left principal annihi-

lators then R is a quasi-Frobenius ring in which every right ideal is principal

and every left ideal is a left principal annihilator.
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1. Introduction

Unless otherwise noted, every ring R is associative with unity and all modules

are unitary. We write the Jacobson radical as J = J(R) and abbreviate to J when

no confusion can result, with a similar convention for the unit group U, the left and

right socles Sl and Sr, and the left and right singular ideals Zl and Zr of R. The

ring of n× n matrices over R will be denoted by Mn(R), and we write the left and

right annihilators of a set X as l(X) and r(X) respectively. We denote the ring

of integers by Z and write Zn for the ring of integers modulo n. The term “regular

ring” means von Neumann regular ring. We write A C R to indicate that A is

a two-sided ideal of R, and the notations N ⊆ess M, N ⊆⊕ M and N ⊆max M
signify that N is an essential submodule (respectively a direct summand, a maximal

submodule) of a module M. We write module morphisms opposite the scalars, and

we write M∗ = hom(M,R) for the dual of the module M. Maps given by right
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or left multiplication by w will be written ·w and w·, respectively. Given a ring-

theoretic condition c, a ring will be called a c-ring if it is both a left c-ring and a

right c-ring, with a similar convention for elements.

A left ideal L of a ring R will be called a left principal annihilator if L = l(b)

for some b ∈ R. In 2005, a ring R is called left morphic [9] if for all a ∈ R

there exists b ∈ R such that Ra = l(b) and l(a) = Rb. In 2007 R is called left

quasi-morphic [2] if the sets of left principal ideals and left principal annihilators

coincide: {Ra | a ∈ R} = {l(b) | b ∈ R}. That same year, the rings R for which

{Ra | a ∈ R} ⊇ {l(b) | b ∈ R} were called left generalized morphic rings by Zhu

and Ding [17]. Our interest here is in the rings R satisfying the other inclusion:

For all a ∈ R there exists b ∈ R such that Ra = l(b). These rings were called left

pseudo-morphic by Yang [15] who investigated them in 2010.

An outline of the paper is as follows: The general properties of left pseudo-

morphic rings are investigated in Section 2 (the commutative ones are morphic);

Their relation with right principally injective rings is outlined in Section 3; Pseudo-

morphic modules are considered in Section 4 (often with pseudo-morphic endomor-

phism rings); The semiprime pseudo-morphic rings are characterized in Section 5

(they are semisimple); and finally, in Section 6, it is proved that, in the presence if

one of several (equivalent) mild finiteness conditions, the following are equivalent

for a ring R : (1) R is a (left and right) pseudo-morphic ring, R is morphic and

quasi-Frobenius, and (3) R is an artinian principal ideal ring, (extending an earlier

characterization of these rings in [2, Theorem 19]). In fact we obtain a one-sided re-

sult: A left pseudo-morphic, left mininjective ring with the ACC on {l(a) | a ∈ R}
is a quasi-Frobenius ring in which every right ideal is principal and every left ideal

is a left principal annihilator.

2. Pseudo-morphic rings

We begin with a characterization of left pseudo-morphic elements.

Lemma 2.1. The following are equivalent for an element a in a ring R :

(1) Ra = l(b) for some b ∈ R.

(2) R/Ra embeds in RR.

Proof. (1) ⇒ (2) because R/l(b) ∼= Rb. Given (2), let σ : R/Ra → RR be an

R-monomorphism, and write (1 + Ra)σ = b. Then Ra = l(b) because σ is monic.

Hence (2) ⇒ (1). �

Call an element a ∈ R a left pseudo-morphic element if it satisfies these conditions.

Hence a ring R is left pseudo-morphic if every element has this property.
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Every regular element is left (and right) pseudo-morphic, so regular rings are

pseudo-morphic. However, as we shall see, Zn is pseudo-morphic for every n ≥ 2.

For another example, every classical artinian principal ideal ring is pseudo-morphic

[2, Theorem 19].

A ring R is left semi-hereditary (a left PP-ring) if every finitely generated (prin-

cipal) left ideal is projective. Lemma 2.1 gives:

Proposition 2.2. The following are equivalent for a ring R :

(1) R is regular.

(2) R is left pseudo-morphic and left semihereditary.

(3) R is left pseudo-morphic and left PP.

Proof. (1) ⇒ (2) by the above remarks, and (2) ⇒ (3) is clear. Given (3), let

a ∈ R. Then R/Ra embeds in RR by Lemma 2.1, and so is projective by (3).

Hence Ra ⊆⊕ RR, proving (1). �

As mentioned above, a ring R is called left quasi-morphic [2] if, for every a ∈ R,
we have Ra = l(b) and l(a) = Rc for some b and c in R. If b = c for each a, R

is called left morphic [9]. These rings are clearly left pseudo-morphic. A ring R is

called left special if it satisfies the following equivalent conditions [9, Theorem 9]:

(1) RR is uniserial of finite length.

(2) R is local and J = Rc where c ∈ R is nilpotent.

(3) R is left morphic, local and J is nilpotent.

These rings are all left pseudo-morphic by (3). However, if we drop “local” or

“J = Rc” in (2) then R need not be left pseudo-morphic, even if it is artinian (see

Examples 2.3 and 2.4 below).

Question 1. Let R be a local, left pseudo-morphic ring with J nilpotent. Is R left

special? Equivalently is J = Rc for some c ∈ R?

Example 2.3. Let R =

[
D D

D

]
where D is a division ring. Then R is artinian

with J2 = 0, and J = Rγ for some γ ∈ R, but R is neither left nor right pseudo-

morphic by Proposition 2.6 below. However, R is not local.

Example 2.4. Let R =


 a x y

a z

a


∣∣∣∣∣∣∣ a, x, y, z ∈ D

 where D is a division

ring. Then R is a local, artinian ring that is neither left nor right pseudo-morphic.

However, J 6= Rγ for any γ ∈ R.
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Proof. The ring R is clearly local and artinian with J3 = 0. And J 6= Rγ for any

γ ∈ R because, as γ is not a unit, it is impossible that the matrix units e12 and e23

are both in Rγ.

To see that R is not left pseudo-morphic, let α =

 0 1 1

0 0

0

 and assume that

Rα = l(β) for some β ∈ R. Because αβ = 0 we have β =

 0 p q

0 0

0

 , p, q ∈ D,
so

 0 D D

0 D

0

 ⊆ l(β) = Rα. But Rα =


 0 a a

0 0

0


∣∣∣∣∣∣∣ a ∈ D

, so R is not

left pseudo-morphic. Using α′ =

 0 0 1

0 1

0

 a similar argument shows that R is

not right pseudo-morphic. �

Example 2.5. Let Λ =

[
R V

0 S

]
be the split-null extension of rings R and S by

a bimodule V =RVS .

(1) If V contains an element w such that lR(w) = 0, then R is not left pseudo-

morphic.

(2) If V contains an element w such that rS(w) = 0, then R is not right

pseudo-morphic.

Proof. We prove (1); the proof of (2) is similar. As to (1), let α =

[
0 w

0 0

]
, and

suppose αΛ = rΛ(β) for some β ∈ R. Then βα = 0 so, by hypothesis, β has the

form β =

[
0 v

0 s

]
. But then we have

[
S V

0 0

]
⊆ rΛ(β) = αΛ =

[
0 wS

0 0

]
.

This contradiction proves (1). �

Proposition 2.6. No upper-triangular matrix ring is left or right pseudo morphic.

Example 2.7. (Björk Example) [1, Page 70] Let F be a field with an isomor-

phism a 7→ ā from F to a proper subfield F̄ ⊂ F, and let S = {a+ bt | a, b ∈ F} be

the F -algebra on basis {1, t} where t2 = 0 and ta = āt for each a ∈ F. It is easy to

see that S has a unique proper left ideal Ft = St = J(S), so S is left special (and

so local and left artinian). Moreover, S may be taken to be right artinian by making

the following choices: If p ∈ Z is a prime, take F = Zp(x) to be the field of rational

functions, and define ā = ap for all a ∈ F.
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Yang [15, Example 8] proves (1) of the next theorem; we include a proof for

completeness.

Theorem 2.8. Let S denote the Björk example. Then:

(1) S is left pseudo-morphic but not right pseudo-morphic.

(2) S is left pseudo-morphic but M2(S) is not left pseudo-morphic.

Proof. We use the notation of Example 2.7.

(1) The ring S is left special (and so left pseudo-morphic) because 0, J and R are

the only left ideals. To see that S is not right pseudo-morphic we show that tS

is not a right principal annihilator. Observe first that tS = {ta | a ∈ F} = F̄ t.

Suppose on the contrary that tS = r(x) for some 0 6= x ∈ S, say x = a+bt, a, b ∈ F.
Then 0 = xt = at so a = 0. Thus F̄ t = tS = r(x) = r(bt) = {p+ qt | bp̄ = 0} = Ft,

a contradiction because F 6= F̄ .

(2) Write R = M2(S), choose d ∈ F r F̄ , and let λ =

[
t dt

0 0

]
in R.

Claim: rR(λ) =

[
Ft Ft

F t F t

]
.

Proof. If µ =

[
x y

z w

]
∈ rR(λ) then tx + dtz = 0. Writing x = a + bt and

z = a1 + b1t in S, we obtain ta + dta1 = 0. This implies that (ā + d a1)t = 0, so

ā + d a1 = 0. Because d /∈ F̄ this gives a1 = 0. Hence z ∈ Ft and ta = 0. Thus

a = 0 so x ∈ Ft too. Similarly y, w ∈ Ft, proving that

[
Ft Ft

F t F t

]
. As the other

inclusion is clear, the Claim follows.

We complete the proof by showing that Rλ = l(µ) with µ ∈ R is impossible.

Indeed, it implies that µ ∈ rR(λ). If we write ρ =

[
t 0

0 0

]
then (by the Claim)

ρ ∈ l(µ) = Rλ, say ρ = βλ where β ∈ R. If β =

[
u v

w z

]
, we obtain t = ut and

0 = udt. Writing u = m + nt, m, n ∈ F, these become t = mt and 0 = mdt. But

then m = 1, so dt = 0, a contradiction since d 6= 0. �

Theorem 2.8 leads to the question whether the other “half” of Morita invariance

is true for the left pseudo-morphic rings.

Question 2. If R is left pseudo-morphic and e2 = e ∈ R, is eRe left pseudo-

morphic? What if ReR = R?
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The answer is “yes” if R is left morphic [9, Theorem 15], and we also know that

every left ideal of eRe is an annihilator [14, Lemma 8.10]. But the question remains

open, even if R is left quasi-morphic.

Example 2.9. If R is left pseudo-morphic and U ⊆ R is a left denominator set,

the ring of quotients

Q = {u−1r | u ∈ U, r ∈ R}

is also left pseudo-morphic. (The converse is false as Z ⊆ Q shows.)

Proof. If x = u−1a ∈ Q, let Ra = lR(b), b ∈ R. We show that Qx = lQ(b).

We have Qx ⊆ lQ(b) because xb = u−1(ab) = 0. Conversely, let y ∈ lQ(b), say

y = v−1c. Since yb = 0, it follows that c ∈ lR(b) = Ra, say c = ra, r ∈ R. Then

y = v−1ra = (v−1ru)x ∈ Qx, as required. �

We are going show that all commutative pseudo-morphic rings are morphic. In

fact all “reversible” left pseudo-morphic rings are left morphic, where a ring R is

called reversible if ab = 0 implies ba = 0. The Björk example (Example 2.7) is

reversible. Indeed, any local ring R with J2 = 0 is reversible (if xy = 0 in S then

either x or y is a unit or x, y ∈ J). In fact, every left special ring is reversible.

Theorem 2.10. If R is a reversible ring, the following are equivalent:

(1) R is a left pseudo-morphic ring.

(2) R is left morphic.

(3) R is left quasi-morphic.

In particular, a commutative pseudo-morphic ring is morphic.

Proof. The last statement and (2) ⇒ (3) ⇒ (1) are clear. Assume (1). Given

a ∈ R and Ra = l(b) for some b ∈ R, we prove (2) by showing that l(a) = Rb.

Since R is reversible we have

l(a) = r(a) = r(Ra) = rl(b) = lr(b)

where the reversible hypothesis is used at the first and last steps. But lr(b) = Rb

by Lemma 3.1 and Theorem 3.2 below, so l(a) = Rb as required. This proves that

(1) ⇒ (2). �

The following example shows that the “reversible” hypothesis is essential in Theo-

rem 2.10.

Example 2.11. Write Mω(D) = end(DV ) where V is a left vector space on a

basis {v0, v1, . . .} over a division ring D. Then Mω(D) is pseudo-morphic (in fact

regular) but it is not left morphic.
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Proof. The ring R = Mω(D) is clearly regular. Assume that R is left morphic.

Then R is unit regular by a result of Ehrlich [5] (see [9, Proposition 5]). Define

the shift operator σ : V → V by viσ = vi+1 for each i. If τ : V → V is defined by

v0τ = 0 and vi+1τ = vi for each i ≥ 0, then rR(τ) = 0 but Rτ 6= R because τ is

not a unit in R. But Rτ = l(γ) for some γ ∈ R (because R is left morphic). Hence

γ ∈ r(τ) = 0 and so Rτ = l(γ) = R, a contradiction. �

3. Principally injective rings

The next result, part of [11, Lemma 1.1], identifies a class of rings that are important

for this paper.

Lemma 3.1. The following conditions are equivalent for an element a in a ring

R :

(1) R-linear maps aR→ RR all extend to RR → RR.

(2) lr(a) = Ra.

(3) If r(a) ⊆ r(b), b ∈ R, then Rb ⊆ Ra.

A ring R is called right principally injective (right P-injective for short) if every

element a ∈ R satisfies these conditions. Clearly right self-injective rings are right

P-injective, as are all regular rings. The following results of Yang (Theorems 6(2)

and 11(2) in [15]) will be needed, and we include short proofs for completeness.

Theorem 3.2. Let R be a left pseudo-morphic ring. Then:

(1) R is right P-injective.

(2) R is pseudo-morphic if and only if R is quasi-morphic.

Proof. (1) If a ∈ R and Ra = l(b) then lr(a) = lr(Ra) = lrl(b) = l(b) = Ra.

Use Lemma 3.1.

(2) Every quasi-morphic ring is pseudo-morphic. Conversely, if R is pseudo-morphic

and a ∈ R, let aR = r(c) where c ∈ R. Then l(a) = lr(c) = Rc by (1), so R is

left quasi-morphic. Similarly R is right quasi-morphic because it is also left P-

injective—by the analogue of (1). �

Note. The converse to (1) of Theorem 3.2 is false: Example 3.3 below is a finite

commutative P-injective ring (in fact quasi-Frobenius) that is not pseudo-morphic.

If both R and M2(R) are left pseudo-morphic then Theorem 3.2 and [14, Propo-

sition 5.36] show that R is right 2-injective (maps aR + bR → RR extend to R).

Question 3. If R is left pseudo-morphic and right 2-injective, is M2(R) right

pseudo-morphic?



206 V. CAMILLO AND W. K. NICHOLSON

A ring is called quasi-Frobenius if it is right or left self-injective and right or left

artinian (all four combinations are equivalent). These rings grew out of the theory

of representations of a finite group as a group of matrices over a field.

Example 3.3. The group ring R = Z4C2 is a finite, commutative, local, quasi-

Frobenius ring that is not pseudo-morphic.

Proof. The ring R is local by [3, Example 20]. And R is self-injective by a theorem

of Connell [4, Theorem 4.1], so R is quasi-Frobenius (being artinian). In particular

R is P-injective, but R is not pseudo-morphic because R(2 + 2g) 6= l(x) for all

x ∈ R. This is clear if either x = 0 or x is a unit. But the set of nonzero, nonunits

of R is {1 + g, 1− g, −1 + g, −1− g, 0, 2, 2g, 2 + 2g}. Observe:

l(1 + g) = l(−1− g) contains 1 + g,

l(1− g) = l(−1 + g) contains 1− g,
l(2) = l(2g) and l(2 + 2g) both contain 2.

Since R(2 + 2g) = {0, 2 + 2g}, it follows that l(x) 6= R(2 + 2g) for any x. �

The following implications hold for any ring:

Left quasi-morphic ⇒ Left pseudo-morphic ⇒ Right P-injective

Example 3.3 shows that the converse to the second implication is not true, but

(surprisingly) the converse to the first implication is still open:

Question 4. [15, Question 10] Does there exist a left pseudo-morphic ring that is

not left quasi-morphic?

4. Pseudo-morphic modules

It is always instructive to view a ring-theoretic property in an endomorphism ring.

Lemma 4.1. Let RM be a module and write E = end(M). The following are

equivalent for α ∈ E :

(1) Mα = ker(β) for some β ∈ E.
(2) M/Mα ∼= Mβ for some β ∈ E.
(3) M/Mα ∼= N for some submodule N ⊆M.

Proof. (1) ⇒ (2) because M/Mα = M/ker(β) ∼= Mβ, and (2) ⇒ (3) is obvious.

(3) ⇒ (1) Let σ : M/Mα→ N be an R-isomorphism, N ⊆M. Define β : M →M

by mβ = (m+Mα)σ for each m ∈M. Then β ∈ E and ker(β) = Mα. �

Definition 4.2. A module RM is called pseudo-morphic if the conditions in Lemma

4.1 are satisfied for every α ∈ end(M).
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Thus R is a left pseudo-morphic ring if and only if RR is a pseudo-morphic module.

A module RM is called image direct if Mα ⊆⊕ M for all α ∈ E = end(RM).

Such a module M is pseudo-morphic because, if Mα ⊕ K = M, α ∈ E, then

Mα = ker(1− π) where π is the projection onto Mα with kernel K. In particular

M is pseudo-morphic if end(RM) is a regular ring.

A module RM is called image projective if Mγ ⊆ Mα, γ, α ∈ E = end(M),

implies γ ∈ Eα :

M
λ

↙ ↓ γ
M

α→ Mα → 0

Clearly every quasi-projective module is image projective.

Part (b)⇒ (a) in the following theorem gives a condition that an endomorphism

ring is left pseudo-morphic, and extends parts of [10, Lemma 31]. The proof of

(a) ⇒ (b) involves the following notion: We say that a module RM generates its

submodule K if K = Σ{Mλ | λ ∈ E, Mλ ⊆ K}, and we say that M generates its

kernels if it generates ker(β) for all β ∈ end(M).

Theorem 4.3. Let RM be a module and write E = end(M). Consider the following

conditions:

(a) E is a left pseudo-morphic ring.

(b) M is both pseudo-morphic and image projective.

Always (b)⇒ (a); if M generates its kernels then (a)⇒ (b).

Proof. (b) ⇒ (a) Let α ∈ E. As M is pseudo-morphic we have Mα = ker(β),

β ∈ E. Then Mαβ = 0 so αβ = 0 and we have Eα ⊆ lE(β). On the other hand,

if γ ∈ lE(β) then γβ = 0 so Mγ ⊆ ker(β) = Mα. As M is image projective this

implies γ ∈ Eα, so lE(β) ⊆ Eα. This proves (a).

(a) ⇒ (b) Given (a), we show first that M is image projective. Let Mγ ⊆ Mα,

γ, α ∈ E. If αθ = 0, θ ∈ E, then Mγθ ⊆ Mαθ = 0, so γθ = 0. This means that

rE(α) ⊆ rE(γ), so Eγ ⊆ Eα by Lemma 3.1 because E is right P-injective (Theorem

3.2). Hence M is image projective.

To see that M is left pseudo-morphic, let α ∈ E. By (a) we have Eα = lE(β)

for some β ∈ E. Then αβ = 0 so Mα ⊆ ker(β). For the other inclusion, our

hypothesis gives ker(β) = Σ{Mλ | λ ∈ E, Mλ ⊆ ker(β)}. But Mλ ⊆ ker(β)

means λ ∈ lE(β) = Eα, so Mλ ⊆MEα ⊆Mα. It follows that ker(β) ⊆Mα . �

Remark 4.4. The proof shows that if end(RM) is a left pseudo-morphic ring then

M is always an image projective module.
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Question 5. If end(RM) is a left pseudo-morphic ring, when is M pseudo-

morphic?

If R is any ring then Rn is image projective and generates its submodules. Hence

we have:

Theorem 4.5. If R is a ring, Mn(R) is left pseudo-morphic if and only if Rn is

pseudo-morphic as a left R-module.

We conclude this section with the following remarkable result that will play an

important role in the ring case (Theorem 5.3).

Theorem 4.6. Let RM be a pseudo-morphic module and write E = end(M). If

N ⊆M is finitely generated as an E-submodule then N = ker(β) for some β ∈ E.

Proof. If NE is principal there is nothing to prove. In general, let N = Σni=1Mαi =

N0 + Mαn where, inductively, N0 = Σn−1
i=1 Mαi = ker(β1) for some β1 ∈ E. Let

Mαn = ker(β2), and then let Mαnβ1 = ker(β3). It follows that N ⊆ ker(β1β3),

and we complete the proof by showing that this is equality. Given m ∈ ker(β1β3)

we have mβ1 ∈ ker(β3) = Mαnβ1, say mβ1 = m1αnβ1, m1 ∈ M . It follows that

(m−m1αn) ∈ ker(β1) = N0, whence m ∈ N0 +Mα2 = N , as required. �

5. Semiprime left pseudo-morphic rings

A ring R is called right Kasch if every simple right R-module embeds in RR. The

following Lemma is well known; the cyclic proof is left to the reader.

Lemma 5.1. The following are equivalent for a ring R :

(1) R is right Kasch.

(2) If M is a maximal right ideal of R then M = r(a) for some a ∈ R.
(3) If T ⊂ R is a right ideal then l(T ) 6= 0.

Example 5.2. The ring R = Mw(D) in Example 2.11 is pseudo-morphic (indeed

regular), but it is neither right nor left Kasch.

Proof. Suppose R is right Kasch, and let M ⊆max RR. Then M = r(a) for some

0 6= a ∈ R. As Zr = 0 (R is regular), a /∈ Zr so r(a) = M is not essential in RR.

This implies that M ⊆⊕ RR so R is semisimple, a contradiction. Hence R is not

right Kasch; similarly R is not left Kasch. �

The left pseudo-morphic rings are just the rings where every principal left ideal

is a left principal annihilator; surprisingly this extends to finitely generated left

ideals [15, Theorem 5(2)].
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Theorem 5.3. Let R be any left pseudo-morphic ring.

(1) If L ⊆ R is any finitely generated left ideal then L = l(b) for some b ∈ R.
(2) In this case lr(L) = L.

Proof. For (1) the proof of Theorem 4.6 goes through if we take M = RR. As to

(2), if L = l(b) then lr(L) = lrl(b) = l(b) = L. �

Call a ring R left finitely Kasch if it satisfies the following condition:

If L is a finitely generated left ideal of R and r(L) = 0, then L = R.

The name comes from the fact that R is left Kasch if and only if every left ideal

L satisfies this condition (see Lemma 5.1). Thus left Kasch rings are left finitely

Kasch, and the converse holds if maximal left ideals are finitely generated.

Theorem 5.4. Every left pseudo-morphic ring R is left finitely Kasch. The con-

verse is false.

Proof. Let L ⊆ R be a finitely generated left ideal with r(L) = 0. By Theorem

5.3 we have L = l(b) where b ∈ R. Then Lb = 0 so b ∈ r(L) = 0. This means that

L = l(b) = l(0) = R, as required. The converse fails (even if R is left Kasch) by

the following example. �

Example 5.5. If F is a field and V is an F -space of dimension 2, write

R =

{[
a v

a

]∣∣∣∣∣ a ∈ F, v ∈ V
}
. Then R is a commutative, local, artinian, Kasch

ring, but R is not pseudo-morphic.

Proof. R is clearly commutative, local and artinian, and it is Kasch because

J = J(R) =

[
0 V

0

]
is the only maximal ideal and l(J) = J 6= 0. Let 0 6= v ∈ V

and consider α =

[
0 v

0

]
. Then Rα =

[
0 Rv

0

]
, and we claim Rα = l(β) is

impossible for β ∈ R. Indeed, such a β is not a unit and β 6= 0, so β =

[
0 v

0

]
,

0 6= v ∈ V. But then l(β) = J 6= Rα. �

Lemma 5.6. Every left nonsingular, left finitely Kasch ring R is semisimple.

Proof. Assume that Zl = 0. If L is any left ideal of R we show that L ⊆⊕ RR.

By Zorn’s Lemma choose a left ideal M such that L ⊕M ⊆ess RR; we show that

r(L⊕M) ⊆ Zl. If a ∈ r(L⊕M) then L⊕M ⊆ l(a). It follows that l(a) ⊆ess RR;

that is a ∈ Zl, as required. �
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In 1968 Yohe [16, Theorem II] proved that a semiprime ring is in which every

one-sided ideal is principal is semisimple. The following theorem extends this.1

Theorem 5.7. Every semiprime, left pseudo-morphic ring is semisimple.

Proof. R is left finitely Kasch by Theorem 5.4 so, by Lemma 5.6, it suffices to

show that Zl = 0. Suppose that 0 6= a ∈ Zl. Then l(a) ⊆ess RR so Ra ∩ l(a) 6= 0.

But [Ra ∩ l(a)]2 ⊆ (Ra)l(a) = 0, a contradiction because R is semiprime. �

6. Finiteness conditions

We first consider some finiteness conditions on pseudo-morphic rings. We need:

Lemma 6.1. Let R be right P-injective and define

Θ : {Ra | a ∈ R} → {r(a) | a ∈ R} by Θ(Ra) = r(a).

Then Θ is a order-reversing bijection.

Proof. Θ is well defined, onto and order-reversing for any ring. It is one-to-one here

because R is right P-injective: r(a) = r(b) implies Ra = lr(a) = lr(b) = Rb. �

The following eight conditions on a ring R will be referred to as P-conditions:

ACC or DCC on {l(b) | b ∈ R} or {r(b) | b ∈ R},

ACC or DCC on {Ra | a ∈ R} or {aR | a ∈ R}.

}
Any quasi-morphic ring satisfies the following four conditions by [2, Lemma 18]:

ACC or DCC on {Ra | a ∈ R} ⇔ ACC or DCC on {aR | a ∈ R}. (*)

The next result extends this.

Proposition 6.2. If R is a pseudo-morphic ring the eight P-conditions are all

equivalent.

Proof. If R is pseudo-morphic, it is quasi-morphic by Theorem 3.2. Hence R

satisfies (*), and the proposition follows because Lemma 6.1 shows that

ACC or DCC on {Ra | a ∈ R} ⇔ DCC or ACC on {r(a) | a ∈ R},
and

ACC or DCC on {aR | a ∈ R} ⇔ DCC or ACC on {l(a) | a ∈ R}. �

A regular ring R becomes semisimple if it satisfies any of the eight P-conditions.

If we impose any of these conditions on a pseudo-morphic ring it becomes an ar-

tinian principal ideal ring (artinian and every one-sided ideal is principal). This is

1In 1972 Jaegermann and Krempa [7, Theorem 3.1] characterized the semiprime, general rings

(possibly with no unity) in which every one-sided ideal is a principal annihilator, and showed that

they have a unity and are semisimple.
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part of the following theorem which extends (and reformulates) another character-

ization of the artinian principal ideal rings in [2, Theorem 19]. It also extends [15,

Theorem 11(3)] which assumes that R is left or right noetherian.

Theorem 6.3. The following conditions are equivalent for a ring R :

(1) R is pseudo-morphic and satisfies any of the eight P-conditions.

(2) R is quasi-morphic and satisfies any of the eight P-conditions.

(3) R is an artinian principal ideal ring.

(4) R is morphic and quasi-Frobenius.

(5) R ∼= Mn1
(R1)×Mn2

(R2)× · · · ×Mnk
(Rk) where each Ri is special.

Proof. (4) ⇒ (1) is clear, (1) ⇒ (2) by Theorem 3.2, (2) ⇒ (3) by Proposition 6.2

and [2, Theorem 19], and (3) ⇒ (5) ⇒ (4) by [2, Theorem 19]. �

We now turn to a one-sided version of Theorem 6.3. We need a preliminary

observation involving an injectivity condition weaker than P-injectivity. A ring R

is called right mininjective if, for every simple right ideal K, all R-linear maps

K → RR extend to RR → RR. The analogue of Lemma 3.1 is:

Lemma 6.4. [12, Lemma 1.1] The following are equivalent for a ring R :

(1) R is right mininjective.

(2) If kR is simple, k ∈ R, then lr(k) = Rk.

(3) If kR is simple and r(k) ⊆ r(a), k, a ∈ R, then Ra ⊆ Rk.

Right P-injective rings are right mininjective; the converse fails as semiprime rings

are mininjective.

Our one-sided version of Theorem 6.3 entails assuming that R is merely left

pseudo-morphic and applying one of the P-conditions; the one we choose is the

ACC on {l(b) | b ∈ R}. First:

Lemma 6.5. Let R be a left pseudo-morphic ring with the ACC on {l(b) | b ∈ R}.
Then:

(1) R is left noetherian.

(2) L = lr(L) for every left ideal L of R.

(3) Every left ideal is a left principal annihilator.

Proof. (1) ⇒ (3) by Theorem 5.3 and (3) ⇒ (2) is routine. So we prove (1).

Suppose a left ideal L ⊆ R is not finitely generated. Choose 0 6= a1 ∈ L, so

Ra1 ⊂ L. Then let a2 ∈ L r Ra1 so Ra1 ⊂ Ra1 + Ra2 ⊂ L. Continuing we get

Ra1 ⊂ Ra1 +Ra2 ⊂ Ra1 +Ra2 +Ra3 ⊂ · · · . By Theorem 5.3, this takes the form

l(b1) ⊂ l(b2) ⊂ l(b3) ⊂ · · · , bi ∈ R, contradicting the ACC. �
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A ring satisfying conditions (1) and (2) in Theorem 6.5 is called a left Johns ring

after B. Johns [8].

Finally, we can prove our one-sided version of Theorem 6.3. With an eye on

Theorem 6.3 one might hope that if R is left pseudo-morphic with the ACC on

{l(b) | b ∈ R}, then R would be quasi-Frobenius. However the Björk example

(Example 2.7) has both these properties but is not quasi-Frobenius. In fact it

is not left mininjective by [14, Example 2.5]. So some other condition is needed

to guarantee that the ring is quasi-Frobenius. Surprisingly left mininjectivity is

enough.

Theorem 6.6. The following are equivalent for a ring R :

(1) R is left pseudo-morphic, left mininjective, with the ACC on {l(b) | b ∈ R}.
(2) R is quasi-Frobenius and every right ideal is principal.

(3) R is quasi-Frobenius and every left ideal is a left principal annihilator.

Proof. (1) ⇒ (2) Given (1), R is left Johns by Lemma 6.5. Since R is left

mininjective by hypothesis, it is quasi-Frobenius by [13, Theorem 4.6]. If T is

a right ideal of R write l(T ) = l(a) for some a ∈ R, again by Lemma 6.5. Hence

T = rl(T ) = rl(a) = aR, proving (2).

(2) ⇒ (3) Given a left ideal L ⊆ R, use (2) to write r(L) = bR, b ∈ R. Since R is

quasi-Frobenius, L = lr(L) = l(b), proving (3).

(3) ⇒ (1) Since R is quasi-Frobenius, it is clearly left mininjective with the ACC

on {l(b) | b ∈ R}. If L ⊆ R is a left ideal then L = l(b) by (3). So R is certainly

left pseudo-morphic, proving (1). �

A ring satisfying the conditions in Theorem 6.6 will be called a QF-PRI ring.

Note that the ring R = Z4C2 in Example 3.3 is a commutative, finite, quasi-

Frobenius ring but R is not QF-PRI. Indeed, J(R) = R(1 + g) + R(1 − g) is not

principal (in fact it is the only non principal ideal by [2, Example 20]).

Remark 6.7. Ghorbani [6, Proposition 2.1] has a version of (2) ⇔ (3) in Theorem

6.6 for reflexive modules.

Question 6. Which of the P-conditions can replace the ACC on {l(b) | b ∈ R} in

Theorem 6.6? One possibility is the DCC on {aR | a ∈ R}.

Corollary 6.8. Let R be a left perfect, left minjective, left pseudo-morphic ring.

Then R is QF-PRI.

Proof. Since R is left perfect it has the DCC on {aR | a ∈ R}. Because R is

right P-injective, it has the ACC on {l(a) | a ∈ R} by Lemma 6.1. As R is left

mininjective, Theorem 6.6 applies. �
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In view of condition (4) in Theorem 6.3 we ask:

Question 7. If a ring R is QF-PRI, must R be left morphic? The Björk example

does not rule this out because it is not left mininjective.

Question 8. If R is a QF-PRI ring, is R right pseudo-morphic?

Remark 6.9. Z4C2 and Z2C4 are both local, commutative, quasi-Frobenius rings

and so are mininjective with the ACC on {l(b) | b ∈ R}. However Z4C2 is not

pseudo-morphic, not a PRI ring, and J is not principal; while Z2C4 is special (and

so is morphic, PRI and J is principal).
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