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1. Introduction

This work is part of a larger investigation of incidence rings, which are rings of

functions defined on sets with relations. A good reference for this subject is [7].

We start by fixing notation and defining compression maps in Section 2. If

an incidence set is constructed using a finite set of relations, then it is naturally

isomorphic to a blocked matrix ring. In this case the relations set may be replaced

by its directed graph and a compression map yields an injective ring homomorphism

between the blocked matrix rings. This is treated as an application of compression

maps in Section 3.

The class of generalized incidence rings over balanced relations was introduced

by G. Abrams in [1]. In Section 4 we give the analogous definition for directed

graphs and define stable directed graphs, which form a class between balanced and

preordered directed graphs.

Section 5 contains our main result, Theorem 5.2, which provides a necessary

and sufficient condition for a reflexive directed graph to be the compression of a

preordered directed graph. The proof of Theorem 5.2 takes up all of Section 6. A

direct application of Theorem 5.2 is given in [5].

This work is dedicated to the author’s dearly departed friend, Martin Erickson, who suggested

improvements to the writing in earlier drafts.
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2. Compression maps

The directed graphs we consider have a finite number of vertices and no repeated

arrows. Loops are allowed (a loop is an arrow from a vertex to itself). The vertex

set and the arrow set of a directed graph D are denoted by V (D) and A (D),

respectively. An arrow from vertex v to vertex w is denoted by vw. The notation

D∗ is reserved for the subgraph of D with vertex set V (D∗) = V (D) and arrow

set A (D∗) = {xy ∈ A (D) : x, y ∈ V (D) and x 6= y}.
We say a directed graph D is reflexive if vv ∈ A (D) for all v ∈ V (D) and transi-

tive if xy, yz ∈ A (D) implies xz ∈ A (D) for all x, y, z ∈ V (D). If D is reflexive and

transitive then we say D is preordered. A transitive triple in D is an ordered triple of

vertices contained in Trans (D) = {(a, b, c) : a, b, c ∈ V (D) and ab, bc, ac ∈ A (D)}.

Definition 2.1. Suppose D1 and D2 are reflexive directed graphs. A compression

map is a surjective function θ : V (D2)→ V (D1) which satisfies 1, 2, and 3 below.

(1) θ (x) θ (y) ∈ A (D1) for all x, y ∈ D2 such that xy ∈ A (D2).

(2) For all (a1, a2, a3) ∈ Trans (D1) there exists (x1, x2, x3) ∈ Trans (D2) such

that θ (xi) = ai for i = 1, 2, 3.

(3) There is a bijection θ∗ : A (D∗2)→ A (D∗1) given by θ∗ (xy) = θ (x) θ (y) for

all x, y ∈ V (D2) with xy ∈ A (D∗2).

A figure showing a reflexive directed graph D will only display D∗ and will not

show the loops. Thus we assume the directed graphs in Figure 1 are both reflexive.

In Example 2.2 we show directed graph (b) is a compression of directed graph (a).

Figure 1. (a) is transitive and (b) is not transitive.

Example 2.2. Let D1 and D2 be the reflexive directed graphs with V (D1) =

{x, y, z}, A (D∗1) = {xy, yz}, V (D2) = {x, y, z, t}, and A (D∗2) = {xy, tz} where

x, y, z, t are distinct. In Figure 1 we can match up D1 with (a) and D2 with (b). A

compression map θ : V (D2) → V (D1) is given by θ (x) = x, θ (y) = y, θ (z) = z,

and θ (t) = y. The effect on the directed graphs is to map the two middle vertices

of (a) to the middle vertex of (b).

Lemma 2.3. Let D1 and D2 be reflexive directed graphs and let θ : V (D2) →
V (D1) be a compression. Suppose xy, yz ∈ A (D2) and (θ (x) , θ (y) , θ (z)) ∈
Trans (D1) for some x, y, z ∈ V (D2). Then (x, y, z) ∈ Trans (D2).
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Proof. Choose arbitrary x, y, z ∈ V (D2) such that xy, yz ∈ A (D2). If x, y, z are

not distinct then xz ∈ A (D2) follows immediately. If x, y, z are distinct then set

θ (x) = a, θ (y) = b, θ (z) = c. Assume (a, b, c) = (θ (x) , θ (y) , θ (z)) ∈ Trans (D1).

Then a, b, c are distinct since ab, bc, ac ∈ A (D∗1) by part 3 of Definition 2.1. By part

2 of Definition 2.1 there exist x′, y′, z′ ∈ V (D2) such that (x′, y′, z′) ∈ Trans (D),

θ (x′) = a, θ (y′) = b, and θ (z′) = c. Moreover x′, y′, z′ are distinct since a, b, c are

distinct. Then x′y′, y′z′ ∈ A (D∗2) so θ∗ (xy) = ab = θ∗ (x′y′) and θ∗ (yz) = bc =

θ∗ (y′z′). Therefore x′ = x, y′ = y, and z′ = z since θ∗ is bijective by part 3 of

Definition 2.1. We assumed (x′, y′, z′) ∈ Trans (D) and proved x′ = x and z′ = z

so xz ∈ A (D2) . Therefore (x, y, z) ∈ Trans (D2) as desired.

Lemma 2.3 shows that if a reflexive directed graph has a preordered compression

then it must be a preordered directed graph. Example 2.2 shows a preordered

directed graph may have a compression which is not preordered. Figure 2 shows

directed graphs that are not compressions of preordered directed graphs.

Figure 2. Four directed graphs that are not compressions of tran-

sitive directed graphs.

3. An application to algebra

In this section we follow conventions set in [6]. Let Mn (R) denote the set of

square matrices over R, an arbitrarily chosen ring with unit. If ab ∈ A (D) then we

let Eab denote the standard unit matrix, that is, Eab is the standard n× n-matrix

unit whose ab-entry is 1 and all of its other entries are 0. A matrix is blocked by D

if it is a linear combination of standard matrix units which are indexed by arrows

of D. The subset of all blocked matrices in Mn (R) is a free R-bimodule over R

and we denote it by L (D,R).

Consider the product of two blocked standard unit matrices B and C. We

have BC = 0 unless B = Eij and C = Ejk for some i, j, k ∈ V (D) such that
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ij, jk ∈ A (D). Since EijEjk = Eik we need ik ∈ A (D). Thus L (D,R) is closed

under multiplication if D is transitive. Moreover, L (D,R) is an associative ring

with unity if and only if D is preordered. In this case we call L (D,R) a blocked

matrix ring.

There are many examples of non-isomorphic rings R and S such that their ma-

trix rings Mn (R) and Mn (S) are isomorphic (see book [4] by T. Y. Lam). In

particular, a ring R cannot be recovered from its matrix ring Mn (R), if n > 1. By

contrast, the directed graph can often be recovered from the blocked matrices. If R

is a Noetherian semiprime or commutative ring with 1, D1 and D2 are preordered

directed graphs, and L (D1, R) and L (D2, R) are isomorphic as rings then D1 and

D2 must be isomorphic (see [2, Theorem 2.4]). Theorem 3.1, provides an injective

ring homomorphism between blocked matrix rings over the same base ring such

that the underlying directed graphs are not isomorphic.

Theorem 3.1. Suppose R is a ring with unity, C and D are preordered directed

graphs, and θ : V (D)→ V (C) is a compression. There is an injective ring homo-

morphism h : L (C,R)→ L (D,R) determined by (1) and (2) below.

(1) If a ∈ V (C) then h (Eaa) =
∑

x∈θ−1(a)

Eaa.

(2) If α ∈ A (C∗) then h (Eα) = E(θ∗)−1(α).

Proof. Blocked standard unit matrices form a basis for L (C,R) so h is automat-

ically an R-linear map. It is easy to see kerh = {0}, so h is injective. We only

check the multiplication between standard unit matrices is preserved, that is, we

prove h (EαEβ) = h (Eα)h (Eβ) for all α, β ∈ A (C). This is handled by considering

cases. We check the case when α and β are both not loops and leave the remaining

cases to the reader.

Since α, β are both not loops we may write α = ab and β = cd for some a, b, c, d ∈
V (C) such that a 6= b and c 6= d.

EαEβ =

{
Ead if b = c

0 otherwise

We may also write (θ∗)
−1

(α) = wx and (θ∗)
−1

(β) = yz for some w, x, y, z ∈ V (D)

such that wx, yz ∈ A (D∗). We have h (Eα)h (Eβ) = E(θ∗)−1(α)E(θ∗)−1(β), so the

following holds.

h (Eα)h (Eβ) =

{
Ewz if x = y

0 otherwise
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If h (Eα)h (Eβ) 6= 0 then x = y, θ (x) = θ (y), b = c, h (EαEβ) = h (Ead), and

h (Eα)h (Eβ) = Ewz. This gives h (Ead) = Ewz since θ (w) = a and θ (z) = d; the

equality h (Eα)h (Eβ) = h (EαEβ) follows immediately.

If h (Eα)h (Eβ) = 0 then x 6= y. Suppose x 6= y and b = c. Then (a, b, d) ∈
Trans (C) so there exists (x1, x2, x3) ∈ Trans (D) such that θ (x1) = a, θ (x2) = b,

and θ (x3) = d. We have θ∗ (x1x2) = α, θ∗ (x2x3) = β, θ∗ (wx) = α, θ∗ (yz) = β,

and θ∗ is bijective. This implies x1 = w, x2 = x, x2 = y, and x3 = z, which

leads to a contradiction since x 6= y. Thus h (Eα)h (Eβ) = 0 implies b 6= c and

h (EαEβ) = 0.

Example 3.2. If C and D are the preordered directed graphs with C∗ and D∗ shown

in Figure 3 then C is a compression of D. The compression map θ : V (D)→ V (C)

is given by θ (6) = 5 and θ (i) = i for all i ∈ {1, 2, 3, 4, 5}.

Figure 3. Directed graph C is a compression of D.

There is an injective ring homomorphism h : L (C,R) → L (D,R) described in

Theorem 3.1.

h




a11 0 0 0 0

0 a22 0 0 0

a31 0 a33 0 0

0 a42 0 a44 0

a51 a52 a53 a54 a55



 =



a11 0 0 0 0 0

0 a22 0 0 0 0

a31 0 a33 0 0 0

0 a42 0 a44 0 0

a51 0 a53 0 a55 0

0 a52 0 a54 0 a55


We describe the construction of the homomorphism from the compression. The most

noticeable change involves vertices 5 and 6. The compression maps both vertices 5

and 6 of D to vertex 5 of C. Thus the image of the standard matrix E55 under h

is E55 + E66 since 5, 6 ∈ θ−1 (5). The compression does not relabel vertices 1, 2,
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3, or 4. The arrows between any pairs of these four vertices, as well as arrows 51,

53, and 55, are also mapped to themselves. Thus the matrix entries in the positions

corresponding to these arrows must be preserved. However, arrows 62, 64, and 66

are mapped to 52, 54, and 55, respectively, so the homomorphism maps the matrix

entries in positions 52, 54, and 55 to positions 62, 64, and 66, respectively.

4. Balanced and stable directed raphs

Definition 4.1. Suppose D is a reflexive directed graph.

(1) D is balanced if for all w, x, y, z ∈ V (D) such that wx, xy, yz, wz ∈ A (D)

there is an arrow from w to y if and only if there is an arrow from x to z.

(2) D is stable if D is balanced and ad ∈ A (D) for all distinct a, b, c, d ∈ V (D)

such that ab, ac, bc, bd, cd ∈ A (D).

A reflexive directed graph is balanced if and only if does not contain an induced

subgraph isomorphic to either (a) or (b) in Figure 2 or either of the directed graphs

in Figure 4.

Figure 4. Two directed graphs which are not balanced.

A balanced directed graph is not stable if and only if it does not contain an

induced subgraph isomorphic to (c) in Figure 2. Directed graph (d) in Figure 2 is

stable but not preordered.

Theorem 4.2. Suppose θ : V (D2) → V (D1) is a compression map and D1 and

D2 are reflexive directed graphs.

(1) If D1 is balanced then D2 is balanced.

(2) If D1 is stable then D2 is stable.

(3) If D1 is preordered then D2 is preordered.

Proof. (1) SupposeD1 is balanced and wx, xy, yz, wz ∈ A (D2) for some w, x, y, z ∈
V (D2). Set a = θ (w), b = θ (x), c = θ (y), and d = θ (z). Then ab, bc, cd, ad ∈
A (D1) by property 1 of Definition 2.1.

If xz ∈ A (D2) then property 1 of Definition 2.1 gives bd ∈ A (D1) so ac ∈ A (D1)

since D1 is balanced. Then (a, b, c) ∈ Trans (D1) so (w, x, y) ∈ Trans (D2) by

Lemma 2.3. This gives wy ∈ A (D2).
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For the other direction assume wy ∈ A (D2). Then property 1 of Definition 2.1

gives ac ∈ A (D1) so bd ∈ A (D1) since D1 is balanced. Then (b, c, d) ∈ Trans (D1)

so (x, y, z) ∈ Trans (D2) by Lemma 2.3. This gives xz ∈ A (D2).

(2) Suppose D1 is stable and wx,wy, xy, xz, yz ∈ A (D2) for some distinct ver-

tices w, x, y, z ∈ V (D2). Set a = θ (w), b = θ (x), c = θ (y), and d = θ (z). Then

ab, ac, bc, bd, cd ∈ A (D∗1) by property 3 of Definition 2.1. In particular a, b, c, d

are distinct and ad ∈ A (D∗1) since D1 is stable. Then (a, c, d) ∈ Trans (D1) so

(w, y, z) ∈ Trans (D2) by Lemma 2.3. This proves wz ∈ A (D∗2) as desired. There-

fore D2 is stable if D1 is stable.

(3) Part 3 follows immediately from Lemma 2.3.

The converse does not hold for every part of Theorem 4.2. Figure 4 shows two

directed graphs which are not balanced. However, they are both compressions of

preordered directed graphs. The compressions are defined in a similar fashion as

Example 2.2 by constructing a directed graph which splits the middle vertex in two.

5. Clasps and soloists

The next definition helps us identify vertices where the transitive relation fails.

Definition 5.1. Suppose D is a reflexive directed graph and x ∈ V (D).

(1) We say x is a clasp if there exist w, y ∈ V (D) \ {x} such that wx, xy ∈
A (D) and there is no arrow from w to y.

(2) We say x is a locked clasp if there exist u, v, w, y ∈ V (D) \ {x} such that

(u, x, y) , (u, x, v) , (w, x, v) ∈ Trans (D) and there is no arrow from w to y.

(3) An unlocked clasp is a clasp which is not locked.

Directed graph (d) in Figure 2 contains a locked clasp determined by the vertex

in the lower right corner. We are now able to state our main Theorem.

Theorem 5.2. Let D be a stable directed graph. Then D is the compression of a

preordered directed graph if and only if every clasp in D is unlocked.

Remark 5.3. Suppose D is a reflexive directed graph. Theorem 5.2 shows D is

the compression of a preordered directed graph if D does not contain an induced

subgraph isomorphic to one of the directed graphs in Figure 2 or in Figure 4. This

is reminiscent of Kuratowki’s characterization of planar graphs (see [3]). Theorem

5.2 is not a complete classification since both directed graphs in Figure 4 are com-

pressions of preordered directed graphs. But both directed graphs in Figure 4 contain

directed cycles so we can give a complete classification if D∗ is acyclic.
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Corollary 5.4. Suppose D is a reflexive directed graph such that D∗ is acyclic.

Then D is the compression of a preordered directed graph if and only if D does not

contain an induced subgraph isomorphic to one of the directed graphs in Figure 2.

Definition 5.5. Suppose D is a reflexive directed graph. If r, s ∈ V (D) satisfy

rs, sr ∈ A (D) then r and s are said to be paired in V (D). We say an element

s ∈ V (D) is a soloist in D if r and s are not paired for all r ∈ V (D) \ {s}.

Lemma 5.6. Suppose D is a reflexive directed graph.

(1) If x ∈ V (D) is a clasp then x is a soloist.

(2) Suppose D2 is a stable directed graph and θ : V (D2) → V (D) is a com-

pression map. There is a locked clasp in D2 if and only if there is a locked

clasp in D.

(3) If D contains a locked clasp then D is not the compression of a preordered

directed graph.

Proof. (1) Since x is a clasp there exist w, y ∈ V (D) such that w, y ∈ V (D) \ {x},
wx, xy ∈ A (D), and there is no arrow from w to y. Suppose there exists z ∈
V (D) \ {x} such that x is paired with z. Applying the balance property to w, x, z, x

and to x, z, x, y yields wz, zy ∈ A (D). This gives w 6= y, y 6= z, and w 6= z since

there is no arrow from w to y. Applying the stable property to w, x, z, y gives

wy ∈ A (D), which is a contradiction.

(2) If x ∈ V (D2) is a locked clasp then there exist u, v, w, y ∈ V (D2) \ {x}
such that (u, x, y) , (u, x, v) , (w, x, v) ∈ Trans (D2) and there is no arrow from w

to y in D2. Properties (1) and (3) of Definition 2.1 give θ (u) , θ (v) , θ (w) , θ (y) ∈
V (D) \ {θ (x)} such that (θ (u) , θ (x) , θ (y)) , (θ (u) , θ (x) , θ (v)) , (θ (w) , θ (x) , θ (v))

∈ Trans (D), and there is no arrow from θ (w) to θ (y) in D. Therefore θ (x) is a

locked clasp in V (D).

If x1 ∈ V (D) is a locked clasp then there exist u1, v1, w1, y1 ∈ V (D) \ {x1} such

that (u1, x1, y1) , (u1, x1, v1) , (w1, x1, v1) ∈ Trans (D) and there is no arrow from

w1 to y1 in D. By part 2 of Definition 2.1 there exist a, b, c, d, e, f, u2, x2, y2 ∈
V (D2) such that (a, b, c) , (d, e, f) , (u2, x2, y2) ∈ Trans (D2), θ (a) = u1, θ (b) = x1,

θ (c) = v1, θ (d) = w1, θ (e) = x1, θ (f) = v1, θ (u2) = u1, θ (x2) = x1, and

θ (y2) = y1. We have θ∗ (u2x2) = θ∗ (ab) and θ∗ (bc) = θ∗ (ef) so u2 = a, x2 =

b, e = b, and c = f by part 3 of Definition 2.1. Setting w2 = a and v2 = c

gives u2, v2, w2, y2 ∈ V (D) \ {x2} such that (u2, x2, y2) , (u2, x2, v2) , (w2, x2, v2) ∈
Trans (D), u2x2,x2y2 ∈ A (D2), and there is no arrow from u2 to y2 inD2. Therefore

x2 is a locked clasp in D2.

(3) Part 3 follows immediately from part 2.
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Lemma 5.7. Suppose D is a stable directed graph and s ∈ V (D) is a soloist.

(1) Suppose (a, b, s) ∈ Trans (D) for some a, b ∈ V (D) \ {s} with a 6= b.

(a) If sc ∈ A (D) for some vertex c then ac ∈ A (D) if and only if bc ∈
A (D).

(b) If xa ∈ A (D) for some vertex x then xs ∈ A (D) if and only if xb ∈
A (D).

(2) Suppose (a, s, c) ∈ Trans (D) for some a, c ∈ V (D) \ {s}.
(a) If xa ∈ A (D) for some vertex x then xc ∈ A (D) if and only if xs ∈

A (D).

(b) If cd ∈ A (D) for some vertex d then ad ∈ A (D) if and only if sd ∈
A (D).

(3) Suppose (s, b, c) ∈ Trans (V (D)) for some b, c ∈ V (D) \ {s} with b 6= c.

(a) If cd ∈ A (D) for some vertex d then bd ∈ A (D) if and only if sd ∈
A (D).

(b) If as ∈ A (D) for some vertex a then ab ∈ A (D) if and only if ac ∈
A (D).

Proof. The proofs of parts 1, 2, and 3 are similar. Note that in part 2 we have

a 6= c since s is a soloist. We prove part 1. Assume (a, b, s) ∈ Trans (D) for some

a, b ∈ V (D) \ {s} with a 6= b.

(a) Suppose sc ∈ A (D) for some c ∈ V (D) \ {s}. If ac ∈ A (D) then applying

the balance property to a, b, s, c gives bc ∈ A (D). On the other hand if bc ∈ A (D)

then a 6= c and b 6= c since s is a soloist. Applying the stable property to a, b, s, c

gives ac ∈ A (D).

(b) Suppose xa ∈ A (D) for some x ∈ V (D) \ {a, b}. If xs ∈ A (D) then applying

the balance property to x, a, b, s gives xb ∈ A (D). On the other hand if xb ∈ A (D)

then x 6= s since s is a soloist. Applying the stable property to x, a, b, s gives

xs ∈ A (D).

The proof of Theorem 5.2 is a constructive algorithm described in Section 6. In

each iteration of the algorithm we construct a preordered directed graph with one

more vertex and define a compression. The algorithm stops when we arrive at a

preordered directed graph and the desired compression is obtained by composition.

We finish this section with an example which covers the steps and constructions

given in the proof of Theorem 5.2. The directed graphs in Figure 5 are stable. We

may identify (i) as a compression of (ii) by mapping 2 and t1 to 2. We may also

identify (ii) as a compression of (iii) by mapping 4 and t2 to 4.



224 KENNETH L. PRICE

Example 5.8. Let D be reflexive directed graph (i) shown in Figure 5. The clasps

are 2 and 4 and we set x1 = 2.

Figure 5. A construction using the proof of Theorem 5.2.

Step 1: Y1 = {4, 6} and A1 is empty.

Step 2: Use construction A since A1 is empty. Let D2 be the reflexive directed

graph with V (D2) = V (D1)∪{t1} and A (D∗2) = σ1∪τ1 where B1 = {4, 6},
σ1 = A (D∗1) \ {24, 26}, and τ1 = {t14, t16}. This gives (ii) in Figure 5.

Step 3: Define θ1 : V (D2) → V (D1) by θ1 (t1) = 2 and θ1 (u) = u for all

u ∈ V (D1).

Step 4: We go back to step 1 with x2 = 4 since 4 is the only clasp in D2.

Step 1: We have Y2 = {6, 7} and A2 = {t1, 3}.
Step 2: Use construction B with a2 = 3, b2 = t1, and y2 = 6. Let D3 be the

reflexive directed graph with V (D3) = V (D2) ∪ {t2} and A (D∗3) = σ2 ∪ τ2
where σ2 = A (D∗2) \ {34, 47}, τ2 = {3t2, t27}. This gives (iii) in Figure 5.

Step 3: Define θ2 : V (D3) → V (D2) by θ2 (t2) = 4 and θ2 (u) = u for all

u ∈ V (D2).

Step 4: (X3, ρ3) is preordered so the algorithm stops. The compression map

is θ1 ◦ θ2.

6. Proof of Theorem 5.2

If D is the compression of a preordered directed graph then every clasp in D is

unlocked by part 3 of Lemma 5.6. We assume D is stable and every clasp in D

is unlocked and prove D is the compression of a preorder. We set D1 = D, and

describe an algorithm to construct stable directed graphs D1, . . . , Dm such that Di
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is a compression of Di+1 for each i < m. In the last iteration Dm is preordered and

the desired compression map is obtained by composition.

Assume D1 is not preordered and fix a clasp x1 ∈ V (D1). In the first iteration

of our algorithm we have i = 1.

Step 1. The sets Yi and Ai are defined below.

• Yi = {y ∈ V (Di) \ {xi} : wxi,xiy ∈ A (D) and wy /∈ A (Di) for some w ∈ V (Di)}
• Ai = {a ∈ V (Di) \ {xi} : (a, xi, y) ∈ Trans (Di) for some y ∈ Yi}.

Note that Yi is nonempty since xi is a clasp.

Step 2. We fix ti /∈ V (Di) and construct a reflexive directed graph Di+1 such

that V (Di+1) = V (Di) ∪ {ti}, and A
(
D∗i+1

)
= σi ∪ τi where σi and τi are defined

using construction A or construction B. In both constructions τi = A
(
D∗i+1

)
\σi

and |τi| = |A (D∗i ) \σi| so |A (D∗i )| =
∣∣A (D∗i+1

)∣∣. The arrows in τi will all contain

ti. If an arrow does not contain xi then it will be in σi. Moreover σi consists of the

arrows belonging to both Di+1 and Di. Depending on the construction, an arrow

may be contained in σi even if it contains xi.

Use construction B if there exist ai, bi ∈ Ai such that (bi, xi, yi) ∈ Trans (Di)

and aiyi /∈ A (Di) for some yi ∈ Yi. Otherwise use construction A.

Construction A.

• Bi = {b ∈ V (Di) \ {xi} : (xi, b, y) ∈ Trans (Di) or (xi, y, b) ∈ Trans (Di)

for some y ∈ Yi}
• σi = A (D∗i ) \ ({axi : a ∈ Ai\ {xi}} ∪ {xib : b ∈ Bi})
• τi = {ati : a ∈ Ai} ∪ {tib : b ∈ Bi}

If y ∈ Yi then y ∈ Bi since (xi, y, y) ∈ Trans (Di). Therefore Yi ⊆ Bi.
Construction B.

• Ti = {cz : c ∈ V (Di) , z ∈ V (Di) \ {xi} , (c, xi, z) ∈ Trans (V (Di)) , and cyi /∈ A (Di)}

• σi = A (D∗i ) \ {cxi, xiz : c, z ∈ V (Di) and cz ∈ Ti}
• τi = {cti, tiz : c, z ∈ V (Di) and cz ∈ Ti}

There exists z ∈ Yi such that (ai, xi, z) ∈ Trans (Di) since ai ∈ Ai. Moreover

aiyi /∈ A (Di), z ∈ xi, and xi /∈ Yi so aiz ∈ Ti. Therefore Ti is nonempty.

Step 3. Define θi : V (Di+1) → V (Di) so that θi (ti) = xi and θi (u) = u for all

u ∈ V (Di).

Before moving on we prove θi is a compression. Routine calculations show part

(1) of Definition 2.1 hold and there is a well-defined map θ∗i : A
(
D∗i+1

)
→ A (D∗i )

given by θ∗i (uv) = θi (u) θi (v) for all u, v ∈ V (Di) such that uv ∈ A
(
D∗i+1

)
. It is

easy to see θ∗i (σi)∪ θ∗i (τi) = A (D∗i ) hence θ∗i is surjective. We have already shown∣∣A (D∗i+1

)∣∣ = |A (D∗i )| so θ∗i is a bijection.
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The only condition left is part 2 of Definition 2.1. Suppose d1, d2, d3 ∈ V (Di)

and (d1, d2, d3) ∈ Trans (Di). We must show (d1, d2, d3) is the image of a transitive

triple in Di+1. This is easy if d1, d2, d3 are not distinct since every arrow in Di is

the image of an arrow in Di+1. Assume d1, d2, d3 are distinct.

We check every possible case and make repeated use of the fact uv ∈ σi if and

only if uv ∈ A (D∗i ) for all u, v ∈ V (Di) \ {xi}. In cases 2, 3, and 4 we have

xi = dr for some r ∈ {1, 2, 3}. We will show either (d1, d2, d3) ∈ Trans (Di) so that

θi (dj) = dj for j = 1, 2, 3 or the desired transitive triple is obtained by replacing

dr with ti so that θi (dj) = dj for j 6= r, and θi (ti) = dr.

We split cases between construction B and construction A when necessary. Note

that xi is a soloist by part 1 of Lemma 5.6.

Case 1 d1, d2, d3 ∈ V (Di) \ {xi}
We have d1d2, d2d3, d1d3 ∈ σi thus (d1, d2, d3) ∈ Trans (Di).

Case 2 If d1, d2 ∈ V (Di) \ {xi} and d3 = xi then d1d2 ∈ σi since d1d2 ∈ A (D∗i ).

Check case 2 for construction A. If xiy ∈ A (Di) then d1y ∈ A (Di) if and only

if d2y ∈ A (Di) by part 1(a) of Lemma 5.7. This gives d1 ∈ Ai if and only if

d2 ∈ Ai so d1ti ∈ τi if and only if d2ti ∈ τi and either (d1, d2, ti) ∈ Trans (Di) or

(d1, d2, xi) ∈ Trans (Di).

Check case 2 for construction B. We have d1z ∈ A (Di) if and only if d2z ∈ A (Di)

for all z ∈ V (Di) \ {xi} such that xiz ∈ A (Di) by part 1(a) of Lemma 5.7. This

gives d1z ∈ Ti if and only if d2z ∈ Ti for all z ∈ V (Di) \ {xi}. Therefore d1ti ∈ τi if

and only if d2ti ∈ τi and either (d1, d2, ti) ∈ Trans (Di) or (d1, d2, xi) ∈ Trans (Di).

Case 3 If d1, d3 ∈ V (Di) \ {xi} and d2 = xi then d1d3 ∈ σi since d1d3 ∈ A (D∗i ).

Check case 3 for construction A. If d3 ∈ Bi then there exists y ∈ Yi such that

(xi, d3, y) ∈ Trans (Di) or (xi, y, d3) ∈ Trans (Di). This gives d1y ∈ A (Di) by

applying either part 2(b) or part 3(b) of Lemma 5.7. Therefore d1 ∈ Ai.
On the other hand if d1 ∈ Ai then (d1, xi, z) ∈ Trans (Di) for some z ∈ Yi.

Since z ∈ Yi there exists w ∈ V (Di) such that wxi ∈ A (Di) and wz /∈ A (Di).

If wd3 ∈ A (Di) then (d1, xi, z) , (d1, xi, d3) , (w, xi, d3) ∈ Trans (Di) and xi is a

locked clasp, which is a contradiction. We are left with wd3 /∈ A (Di), d3 ∈ Yi, and

d3 ∈ Bi.
We have shown d1 ∈ Ai if and only if d2 ∈ Bi so d1ti ∈ τi if and only if tid3 ∈ τi

and either (d1, xi, d3) ∈ Trans (Di) or (d1, ti, d3) ∈ Trans (Di).

Check case 3 for construction B. If d1yi /∈ A (Di) then d1d3 ∈ Ti and (d1, ti, d3) ∈
Trans (Di).
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If d1yi ∈ A (Di) then d1xi ∈ σi and we must show xid3 ∈ σi. Note that

(d1, xi, d3) , (d1, xi, yi) , (bi, xi, yi) ∈ Trans (Di) so bid3 ∈ A (Di) since xi is an un-

locked clasp. If xid3 /∈ σi then cd3 ∈ Ti for some c ∈ V (Di) such that cyi /∈ A (Di).

This gives (bi, xi, yi) , (bi, xi, d3) , (c, xi, d3) ∈ Trans (Di) with cyi /∈ A (Di) and xi

is a locked clasp. This is a contradiction. We are left with d1xi, xid3 ∈ σi and

(d1, xi, d3) ∈ Trans (Di).

Case 4 If d2, d3 ∈ V (Di) \ {xi}, d1 = xi then d2d3 ∈ σi since d2d3 ∈ A (D∗i ).

Check case 4 for construction A. Suppose dj ∈ Bi for j = 2 or j = 3 and let

k ∈ {2, 3} be such that k 6= j. If dj ∈ Bi then (xi, dj , y) ∈ Trans (Di) or (xi, y, dj) ∈
Trans (Di) for some y ∈ Yi. There exists w ∈ V (Di) \ {xi} such that wxi ∈ A (Di)

and wy /∈ A (Di) since y ∈ Yi. Then wd2, wd3 /∈ A (Di) by two applications of part

3(b) of Lemma 5.7. Thus d2, d3 ∈ Yi and (ti, d2, d3) ∈ Trans (Di).

We have shown d2 ∈ Bi or d3 ∈ Bi imply (ti, d2, d3) ∈ Trans (Di). On the other

hand if d2 /∈ Bi and d3 /∈ Bi then xid2, xid3 ∈ σi and (xi, d2, d3) ∈ Trans (Di).

Check case 4 for construction B. We have cd2 ∈ A (Di) if and only if cd3 ∈ A (Di)

for all c ∈ V (Di) such that cxi ∈ A (Di) and cyi /∈ A (Di) by part 3(b) of Lemma

5.7. This gives cd2 ∈ Ti if and only if cd3 ∈ Ti for all c ∈ V (Di) \ {xi}. Therefore

tid2 ∈ τi if and only if tid3 ∈ τi and either (xi, d2, d3) ∈ Trans (Di) or (ti, d2, d3) ∈
Trans (Di).

Step 4. If Di+1 is preordered then the algorithm stops and the compression from

Di+1 to D is determined by composition. Otherwise fix a clasp xi+1 ∈ V (Di) and

go back to step 1 with i replaced by i+ 1.

To study the algorithm we consider a given iteration i. Then A (Di+1) is stable

by Theorem 4.2 and Di+1 contains no unlocked clasps by part 2 of Lemma 5.6.

This means we may repeat the algorithm as often as necessary. We must prove the

algorithm stops eventually.

In each iteration of the algorithm we are adding a new vertex but not adding

any arrows other than loops. The only way this can continue indefinitely is if our

algorithm forces vertices to not form arrows with any other elements. We assume

every vertex of Di forms an arrow with some other vertex of Di and show every

vertex of Di+1 forms an arrow with some other vertex of Di+1.

Suppose x, y ∈ V (Di) satisfy x 6= y and xy ∈ A (Di). If x 6= xi and y 6= xi then

xy ∈ σi so xy ∈ A (Di+1). Note that ti forms an arrow with some other vertex of

Di+1 by construction. We are left with proving xi forms an arrow with some other

vertex of Di+1.

Assume there is not an arrow formed by xi and any other vertex of Di+1 after

using construction A. There exist b, z ∈ V (Di) such that bxi ∈ A (Di), xiz ∈
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A (Di), and bz /∈ A (Di) since xi is a clasp. Then bti ∈ A (Di+1) and tiz ∈ A (Di+1)

by assumption so b ∈ Ai and z ∈ Bi. Since b ∈ Ai there exists y ∈ V (Di) such that

(b, xi, y) ∈ Trans (Di). There must also exist a ∈ V (Di) such that axi ∈ A (Di)

and ay /∈ A (Di) since y ∈ Yi. This gives ati ∈ A (Di+1) by assumption so a ∈ Ai.
Thus a, b ∈ Ai satisfy the conditions in step 2 for construction B. This contradicts

our assumption that we used construction A, so there is an arrow formed by xi and

another vertex of Di+1.

In construction B we have biyi ∈ A (Di) so biz /∈ Ti for all z ∈ V (Di) \ {xi}.
This gives bixi ∈ σi and bixi ∈ A (Di+1) so there is an arrow formed by xi with

another vertex of Di+1.
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