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Abstract. We examine the properties of certain mappings between the lattice

L(R) of ideals of a commutative ring R and the lattice L(RM) of submodules

of an R-module M , in particular considering when these mappings are com-

plete homomorphisms of the lattices. We prove that the mapping λ from L(R)

to L(RM) defined by λ(B) = BM for every ideal B of R is a complete ho-

momorphism if M is a faithful multiplication module. A ring R is semiperfect

(respectively, a finite direct sum of chain rings) if and only if this mapping

λ : L(R) → L(RM) is a complete homomorphism for every simple (respec-

tively, cyclic) R-module M . A Noetherian ring R is an Artinian principal ideal

ring if and only if, for every R-module M , the mapping λ : L(R) → L(RM) is

a complete homomorphism.
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1. Introduction

In this paper we continue the discussion in [7] concerning mappings, in particular

homomorphisms, between the lattice of ideals of a commutative ring and the lattice

of submodules of a module over that ring.

A lattice L is called complete provided every non-empty subset S has a least

upper bound ∨S and a greatest lower bound ∧S. Given complete lattices L and L′

we say that a mapping ϕ : L→ L′ is a complete homomorphism provided

ϕ(∨S) = ∨{ϕ(x) : x ∈ S} and ϕ(∧S) = ∧{ϕ(x) : x ∈ S},

for every non-empty subset S of L. A complete homomorphism which is a bi-

jection (respectively, injection, surjection) will be called a complete isomorphism

(respectively, complete monomorphism, complete epimorphism). The first result is

standard and easy to prove.



COMPLETE HOMOMORPHISMS BETWEEN MODULE LATTICES 17

Lemma 1.1. The following statements are equivalent for a bijection ϕ from a

complete lattice L to a complete lattice L′.

(i) ϕ is a complete isomorphism.

(ii) ϕ(∨S) = ∨{ϕ(x) : x ∈ S} for every non-empty subset S of L.

(iii) ϕ(∧S) = ∧{ϕ(x) : x ∈ S} for every non-empty subset S of L.

Moreover, in this case the inverse mapping ϕ−1 : L′ → L is also a complete iso-

morphism.

An element x of a complete lattice L is called compact in case whenever x ≤ ∨S,

for some non-empty subset S of L, there exists a finite subset F of S such that

x ≤ ∨F . The next result is also easy to prove.

Lemma 1.2. Let ϕ : L → L′ be a complete isomorphism from a complete lattice

L to a complete lattice L′ and let x be a compact element of L. Then ϕ(x) is a

compact element of L′.

A lattice L is called distributive in case

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z),

for all elements x, y, z in L. The next result is also well known and easy to prove.

It states that a lattice is distributive if and only if its dual lattice is distributive.

Lemma 1.3. A lattice L is distributive if and only if x∨ (y ∧ z) = (x∨ y)∧ (x∨ z)
for all x, y, z in L.

Throughout this note all rings will be commutative with identity and all modules

will be unital. Let R be a ring and M be any R-module. Let L(R) denote the lattice

of all ideals of the ring R and let L(RM) denote the lattice of all submodules of

the R-module M . In [7] we investigate the mapping λ : L(R)→ L(RM) defined by

λ(B) = BM for every ideal B of R and the mapping µ : L(RM) → L(R) defined

by µ(N) = (N :R M) for every submodule N of M , where (N :R M) denotes the

set of elements r ∈ R such that rM ⊆ N . The module M is called a λ-module in [7]

in case λ : L(R) → L(RM) is a homomorphism. Similarly, in [7] the module M is

called a µ-module if the above mapping µ is a homomorphism. For any unexplained

terminology and notation, please see [7].

Note that the lattice L(RM) is complete when we define

∧S = ∩N∈S N and ∨ S =
∑
N∈S

N,
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for every non-empty collection S of submodules of M . In particular the lattice L(R)

is complete. The module M will be called λ-complete in case the above mapping

λ : L(R) → L(RM) is a complete homomorphism. Similarly the module M will

be called µ-complete if µ : L(RM) → L(R) is a complete homomorphism. It is

clear that every λ-complete module is a λ-module and every µ-complete module is

a µ-module but, in each case, the converse is false in general, as we can easily show.

For example, let Z denote the ring of rational integers and let p be any prime in

Z. Then the simple Z-module U = Z/Zp is a λ-module. Let q be any prime in Z
other than p and let S denote the collection of ideals of Z of the form Zqn for all

positive integers n. Then

λ(∧S) = λ(∩n≥1 Zqn) = λ(0) = 0,

but

∧{λ(B) : B ∈ S} = ∩n≥1 qnU = U.

Thus U is not λ-complete.

Now let Z(p∞) denote the Prüfer p-group for any prime p in Z. Let V = Z(p∞).

Then the Z-module V is a µ-module (see [7, Example 3.11]). However V contains

an infinite collection T of proper submodules Vi (i ∈ I) such that V = ∪i∈I Vi.
Thus

µ(∨T ) = µ(V ) = (V :Z V ) = Z,

but

∨{µ(W ) : W ∈ T } =
∑
i∈I

µ(Vi) =
∑
i∈I

(Vi :Z V ) = 0.

Thus the Z-module V is not µ-complete.

Proposition 1.4. Given any ring R and R-module M the following statements are

equivalent.

(i) The mapping λ : L(R)→ L(RM) is a complete isomorphism.

(ii) The mapping µ : L(RM)→ L(R) is a complete isomorphism.

Moreover, in this case M is a faithful R-module.

Proof. (i) ⇔ (ii) By Lemma 1.1 and [7, Corollary 1.5].

Now suppose that (i) holds. Let A = annR(M). Then λ(A) = AM = 0 = 0M =

λ(0) so that A = 0 and M is faithful. �

Again let R be a ring and let M be an R-module. Let A = annR(M). By

defining

(r +A)m = rm (r ∈ R, m ∈M),
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M becomes a faithful (R/A)-module with the property that a subset X of M is an

R-submodule of M if and only if X is an (R/A)-submodule of M . Thus the lattice

L(RM) is identical to the lattice L(R/AM). The mapping λ : L(R/A)→ L(R/AM)

will be denoted by λ. Note that if B is any ideal of the ring R/A then B = B/A

for a unique ideal B of R containing A and hence

λ(B) = λ(B/A) = (B/A)M = BM.

In addition, the mapping µ : L(R/AM)→ L(R/A) is denoted by µ so that

µ(N) = (N :R/A M) = (N :R M)/A,

for every submodule N of M , noting that, of course, A ⊆ (N :R M) for every

submodule N of M .

Let R be any ring. An R-module M is called a multiplication module in case

for each submodule N of M there exists an ideal B of R such that N = BM .

Cyclic modules are multiplication modules as are projective ideals of R or ideals

of R generated by idempotent elements (see [2]). We prove that for any ring R an

R-module M is µ-complete if and only if M is a finitely generated multiplication

module (Theorem 2.2). An easy consequence is that the mapping µ (respectively,

λ) is a complete isomorphism if and only if M is a finitely generated faithful mul-

tiplication module (Corollary 2.4).

For any ring R, projective modules are λ-complete (Corollary 3.4) as are faithful

multiplication modules (Theorem 3.6). We prove that a ring R is arithmetical if

and only if every R-module is a λ-module (Theorem 4.6). The ring R is semiperfect

if and only if every simple R-module is λ-complete (Theorem 4.2). On the other

hand, R is a direct sum of chain rings if and only if every cyclic R-module M is

λ-complete (Theorem 4.7). Note that we do not yet know which rings R have the

property that every R-module is λ-complete. It is proved that a Noetherian ring

R is an Artinian principal ideal ring if and only if every R-module is λ-complete

(Theorem 4.12).

2. µ-complete modules

Let R be a ring and let M be an R-module. In this section we shall investigate

µ-complete modules. We begin with the following basic result.

Lemma 2.1. Given any ring R, an R-module M is µ-complete if and only if

(
∑

N∈T N :R M) =
∑

N∈T (N :R M) for any non-empty collection T of submod-

ules of M .
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Proof. Let T be any non-empty collection of submodules of M . Then

µ(∧T ) = µ(∩N∈T N) = (∩N∈T N :R M) = ∩N∈T (N :R M)

= ∧{µ(N) : N ∈ T }.

On the other hand

µ(∨T ) = µ(
∑
N∈T

N) = (
∑
N∈T

N :R M),

and

∨{µ(N) : N ∈ T } =
∑
N∈T

(N :R M).

The result follows. �

Note that, given any ring R and R-module M , the mapping µ is not a surjection

in case M is not a faithful R-module because in this case no submodule N of M

has the property that (N :R M) = 0. The next result characterizes µ-complete

modules.

Theorem 2.2. Given any ring R, the following statements are equivalent for an

R-module M with annihilator A in R.

(i) M is µ-complete.

(ii) M is a finitely generated multiplication module.

(iii) The mapping µ : L(R/AM)→ L(R/A) is a complete isomorphism.

(iv) The mapping λ : L(R/A)→ L(R/AM) is a complete isomorphism.

Moreover in this case the mapping µ : L(RM)→ L(R) is a monomorphism.

Proof. (i) ⇒ (ii) Let T denote the collection of all cyclic submodules of the µ-

complete module M . Then M =
∑

N∈T N . By Lemma 2.1,

R = (M :R M) = (
∑
N∈T

N :R M) =
∑
N∈T

(N :R M),

and hence R = (Rm1 :R M) + · · · + (Rmn :R M) for some positive integer n and

elements mi ∈M (1 ≤ i ≤ n). It follows that

M = RM = (Rm1 :R M)M + · · ·+ (Rmn :R M)M ⊆ Rm1 + · · ·+Rmn ⊆M.

Therefore M = Rm1 + · · ·+Rmn. In other words, M is finitely generated. By [7,

Theorem 3.8], M is also a multiplication module.

(ii) ⇒ (i) Suppose that M is a finitely generated multiplication module. By [7,

Lemma 3.1 and Theorem 3.8] and induction,

(K1 + · · ·+Kn :R M) = (K1 :R M) + · · ·+ (Kn :R M),
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for every positive integer n and submodules Ki (1 ≤ i ≤ n). Let Li (i ∈ I) be any

non-empty collection of submodules of M . Clearly,∑
i∈I

(Li :R M) ⊆ (
∑
i∈I

Li :R M).

Let r ∈ (
∑

i∈I Li :R M). Then rM is a finitely generated submodule of
∑

i∈I Li.

There exists a finite subset I ′ of I such that rM ⊆
∑

i∈I′ Li. Hence

r ∈ (
∑
i∈I′

Li :R M) =
∑
i∈I′

(Li :R M) ⊆
∑
i∈I

(Li :R M).

Thus (
∑

i∈I Li :R M) ⊆
∑

i∈I (Li :R M) and we have proved that (
∑

i∈I Li :R

M) =
∑

i∈I (Li :R M). By Lemma 2.1, M is µ-complete.

(ii)⇒ (iii) By [7, Lemma 2.9], the (R/A)-moduleM is a finitely generated faithful

multiplication module and hence the mapping µ is a bijection by [7, Theorem 4.3].

By the proof of (ii) ⇒ (i), the mapping µ is a complete isomorphism.

(iii) ⇔ (iv) By Proposition 1.4.

(iii) ⇒ (ii) By the proof of (i) ⇒ (ii), the (R/A)-module M is a finitely gen-

erated multiplication module and hence the R-module M is a finitely generated

multiplication module by [7, Lemma 2.9].

Finally, suppose that there exist submodules N and L of M such that µ(N) =

µ(L). By [2, p. 756],

N = (N :R M)M = µ(N)M = µ(L)M = (L :R M)M = L.

Thus µ is a monomorphism. �

Given a ring R and an R-module M , note that Theorem 2.2 shows that when-

ever the mapping µ : L(RM) → L(R) is a complete homomorphism then it is a

monomorphism. This is not true if µ is merely a homomorphism (see, for example,

[7, Example 3.11 and Proposition 3.12]).

Corollary 2.3. Every homomorphic image of a µ-complete module M is µ-complete.

Proof. By Theorem 2.2. �

In contrast to Corollary 2.3 homomorphic images of λ-complete modules need

not be λ-complete. For example, the Z-module Z is λ-complete but we have already

noted that the simple Z-module Z/Zp is not λ-complete for every prime p in Z.

(Note that every homomorphic image of a λ-module over the ring Z is also a λ-

module by [7, Theorem 2.3].)

Corollary 2.4. Given a ring R, the following statements are equivalent for an

R-module M .
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(i) The mapping λ : L(R)→ L(RM) is a complete isomorphism.

(ii) The mapping µ : L(RM)→ L(R) is a complete isomorphism.

(iii) The R-module M is a finitely generated faithful multiplication module.

Proof. By Proposition 1.4 and Theorem 2.2. �

Corollary 2.5. Let R be a ring and let M be any µ-complete R-module with A =

annR(M). Then the (R/A)-module M is a λ-complete module.

Proof. By [7, Lemma 2.9], Theorem 2.2 and Corollary 2.4. �

Note that in general µ-complete modules are not λ-complete. For, let R be a

domain that is not Prüfer. By [7, Theorem 2.3], there exists a cyclic R-module

M which is not a λ-module and hence is not λ-complete. However, every cyclic

module over any ring is a finitely generated multiplication module.

3. λ-complete modules

In contrast to the case of µ-complete modules, the situation for (non-faithful)

λ-complete modules is more complex. We already know that simple modules over

Z are not λ-complete although they are clearly finitely generated multiplication

modules. First we prove an elementary result characterizing λ-complete modules.

Lemma 3.1. Let R be a ring. Then an R-module M is λ-complete if and only if

(∩B∈S B)M = ∩B∈S (BM) for every non-empty collection S of ideals of R.

Proof. Let S be any non-empty collection of ideals of R. Then

λ(∨S) = (
∑
B∈S

B)M =
∑
B∈S

(BM) = ∨{λ(B) : B ∈ S}.

In addition, λ(∧S) = (∩B∈S B)M and ∧{λ(B) : B ∈ S} = ∩B∈S (BM). The

result follows. �

Corollary 3.2. Let A be any ideal of a ring R. Then the R-module R/A is λ-

complete if and only if ∩B∈S(A+B) = A+(∩B∈SB) for every non-empty collection

S of ideals of R.

Proof. Apply Lemma 3.1 to the module M = R/A. �

Lemma 3.3. Let R be any ring. Then

(a) Every direct summand of a λ-complete module is λ-complete.

(b) Every direct sum of λ-complete modules is also λ-complete.
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Proof. (a) Let K be a direct summand of a λ-complete module M . Let S be any

non-empty collection of ideals of R. Then

(∩B∈S B)K = K ∩ (∩B∈S B)M = K ∩ (∩B∈S (BM))

= ∩B∈S (K ∩BM) = ∩B∈S (BK).

By Lemma 3.1 K is a λ-complete module.

(b) Let Li (i ∈ I) be any collection of λ-complete modules and let L = ⊕i∈ILi.

Given any non-empty collection S of ideals of R we have:

(∩B∈S B)L = ⊕i∈I (∩B∈S B)Li = ⊕i∈I (∩B∈S (BLi)) = ∩B∈S (BL).

By Lemma 3.1 L is λ-complete. �

Corollary 3.4. Given any ring R, every projective R-module is λ-complete.

Proof. Clearly the R-module R is λ-complete. Apply Lemma 3.3. �

Recall the following result (see [2, Theorem 1.2] or [7, Lemma 2.10]).

Lemma 3.5. Let R be any ring. Then an R-module M is a multiplication module

if and only if for each maximal ideal P of R either

(a) for each m in M there exists p in P such that (1− p)m = 0, or

(b) there exist x ∈M and q ∈ P such that (1− q)M ⊆ Rx.

We now strengthen [7, Theorem 2.12].

Theorem 3.6. Let R be any ring. Then every faithful multiplication R-module is

a λ-complete module.

Proof. Let M be a faithful multiplication R-module. Let S be any non-empty col-

lection of ideals of R. Then (∩B∈S B)M ⊆ ∩B∈S (BM). Suppose that there exists

m ∈ ∩B∈S (BM) with m /∈ (∩B∈S B)M . Let I = {r ∈ R : rm ∈ (∩B∈S B)M}.
Then I is a proper ideal of R. Let P be a maximal ideal of R such that I ⊆ P .

Clearly (1 − p)m = 0 for some p ∈ P implies that 1 − p ∈ I, a contradiction. By

Lemma 3.5 there exist x ∈ M and q ∈ P such that (1− q)M ⊆ Rx. Note that for

each ideal B in S (1−q)m ∈ (1−q)BM = B(1−q)M ⊆ Bx. Thus (1−q)m = rBx

for some rB ∈ B for each ideal B in S. If B and C are ideals in S then (rB−rC)x = 0

and hence (1 − q)(rB − rC)M = (rB − rC)(1 − q)M ⊆ (rB − rC)Rx = 0. Because

M is faithful we have (1 − q)(rB − rC) = 0 and (1 − q)rB = (1 − q)rC . It follows

that (1−q)rC ∈ ∩B∈SB. Thus (1−q)2m = (1−q)rCx ∈ (∩B∈SB)M . This implies

that (1− q)2 ∈ I ⊆ P , a contradiction. Thus ∩B∈S (BM) = (∩B∈S B)M for every

non-empty subset S of ideals of R. By Lemma 3.1 M is λ-complete. �
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We have already noted that for any prime p in Z, the simple Z-module Z/Zp is

a multiplication module which is not λ-complete. Thus Theorem 3.6 requires that

the module be faithful as well as a multiplication module.

If R is any ring and M the free R-module R ⊕ R, then it is not hard to check

that the mapping λ : L(R) → L(RM) is a complete monomorphism which is not

an epimorphism. On the other hand, compare the following result with Theorem

2.2.

Proposition 3.7. Let R be a ring and let I be a proper ideal of R which is gen-

erated by idempotent elements such that annR(I) = 0. Then the R-module I is a

faithful multiplication module and the mapping λ : L(R) → L(RI) is a complete

epimorphism but not a monomorphism.

Proof. By [7, Proposition 2.15] and Theorem 3.6. �

4. Special rings

Let R be any ring. Then every cyclic R-module is µ-complete by Theorem 2.2.

However, the same theorem shows that the 2-generated R-module M = R ⊕ R is

not µ-complete because M is not a multiplication module. Thus no non-zero ring

R has the property that every finitely generated R-module is µ-complete. We saw

in Corollary 3.4 that for every ring R every projective R-module is λ-complete. In

addition for every ring R, every faithful multiplication module is λ-complete by

Theorem 3.6. In this section we investigate rings R with the property that every

module in a certain class of R-modules is λ-complete. The classes that we shall look

at are the classes of simple R-modules, semisimple R-modules, cyclic R-modules,

finitely generated R-modules and all R-modules.

First we investigate when simple modules are λ-complete. Following [1, p. 303]

we call a ring R with Jacobson radical J a semiperfect ring in case R/J is semiprime

Artinian and idempotents lift modulo J . For properties of semiperfect rings see [1,

Theorem 27.6] or [10, Theorem 42.6]. By a local ring we mean any (commutative)

ring which contains only one maximal ideal. It is well known that a (commutative)

ring R is semiperfect if and only if R is the (finite) direct sum of local rings (see,

for example, [1, Theorem 27.6]). Given any ring R, a submodule N of an R-module

M has a supplement K in case K is a submodule of M minimal with respect to

the property that M = N +K.

Lemma 4.1. Let R be a ring and let U be a simple R-module with annihilator P .

Then the R-module U is λ-complete if and only if P has a supplement in RR.
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Proof. Suppose first that U is λ-complete. Let S denote the collection of ideals B

of R such that R = P+B. By Corollary 3.2 R = P+C where C = ∩B∈S B. Clearly

C is a supplement of P in RR. Conversely, suppose that P has a supplement G in

RR. Let T be any non-empty collection of ideals of R. Then

P + (∩D∈T D) = P = ∩D∈T (P +D),

unless D * P for all D ∈ T . Now suppose that D * P for all D ∈ T . Let D ∈ T .

Then R = P +G = P +D implies that R = P +(D∩G) and hence G = D∩G ⊆ D.

It follows that

R = P +G ⊆ P + (∩D∈T D) ⊆ ∩D∈T (P +D) ⊆ R.

Thus in any case P + (∩D∈T D) = ∩D∈T (P +D). By Corollary 3.2, the R-module

U is λ-complete. �

Theorem 4.2. The following statements are equivalent for a ring R.

(i) Every semisimple R-module is λ-complete.

(ii) Every simple R-module is λ-complete.

(iii) The ring R is semiperfect.

Proof. (i) ⇒ (ii) Clear.

(ii) ⇒ (iii) By Lemma 4.1 and [10, Theorem 42.6].

(iii) ⇒ (i) By Lemma 4.1 and [10, Theorem 42.6] every simple R-module is

λ-complete and by Lemma 3.3 every semisimple R-module is λ-complete. �

Next we investigate rings R with the property that every cyclic R-module is

λ-complete. First we recall a result of Stephenson (see [9, Theorem 1.6]).

Lemma 4.3. The following statements are equivalent for a module M over a ring

R.

(i) The lattice L(RM) is distributive (i.e. L ∩ (K + N) = (L ∩K) + (L ∩N)

for all submodules K,L,N of M).

(ii) K + (L ∩N) = (K + L) ∩ (K +N) for all submodules K,L,N of M .

(iii) R = (Rx :R Ry) + (Ry :R Rx) for all x, y ∈M .

Corollary 4.4. The following statements are equivalent for a module M over a

ring R.

(i) The lattice L(RM) is distributive.

(ii) Every finitely generated submodule of M is a µ-module.

(iii) Every 2-generated submodule of M is a µ-module.
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(iv) R = (N :R L) + (L :R N) for all finitely generated submodules N and L of

M .

(v) Every finitely generated submodule of M is a multiplication module.

Proof. By Lemma 4.3 and [7, Corollary 3.9]. �

The next result is [7, Lemma 2.1].

Lemma 4.5. An R-module M is a λ-module if and only if (B ∩ C)M =

BM ∩ CM for all (finitely generated) ideals B and C of R.

We can now generalize [7, Theorems 2.3 and 3.13]. Recall that a ring R is called

a chain ring in case the ideals of R form a chain, that is, for any ideals B and C of

R either B ⊆ C or C ⊆ B. For any ring R and prime ideal P of R the localization

of R at P will be denoted by RP as usual. (See [6, Chapter 5] for a good account

of localization.) In 1949 Fuchs [3] called a ring R arithmetical provided the lattice

L(R) is distributive and Jensen [4, Lemma 1] showed that a ring R is arithmetical

if and only if the local ring RP is a chain ring for every prime ideal P of R.

Theorem 4.6. The following statements are equivalent for a ring R.

(i) R is an arithmetical ring.

(ii) Every R-module is a λ-module.

(iii) Every homomorphic image of a λ-module is a λ-module.

(iv) Every cyclic R-module is a λ-module.

(v) Every finitely generated ideal of R is a multiplication R-module.

(vi) Every finitely generated ideal of R is a µ-module over the ring R.

Proof. (i) ⇒ (ii) Let B and C be any finitely generated ideals of R. By Corollary

4.4, R = (B :R C) + (C :R B). Then

BM ∩ CM = [(B :R C) + (C :R B)](BM ∩ CM)

⊆ (B :R C)CM + (C :R B)BM ⊆ (B ∩ C)M.

It follows that BM ∩ CM = (B ∩ C)M . By Lemma 4.5 the R-module M is a

λ-module.

(ii) ⇒ (iii) Clear.

(iii) ⇒ (iv) Because RR is a λ-module.

(iv) ⇒ (i) Let A, B and C be any ideals of R. Then the cyclic R-module R/A

being a λ-module implies, by Lemma 4.5, (B∩C)(R/A) = (B(R/A))∩(C(R/A)) and

hence ((B∩C)+A)/A = ((B+A)/A)∩((C+A/A). It follows that (A+B)∩(A+C) =

A+ (B ∩ C). By Lemma 4.3, R is an arithmetical ring.
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(i) ⇔ (v) ⇔ (vi) By Corollary 4.4. �

Theorem 4.6 applies to Prüfer domains because every finitely generated ideal is

invertible and hence a multiplication module. More generally, if R is a semihered-

itary ring (that is, every finitely generated ideal of R is a projective R-module),

then every finitely generated ideal of R is a multiplication module by [8, Theorem

1] and hence Theorem 4.6 applies to R. It also applies to von Neumann regular

rings because every ideal of such a ring is generated by idempotent elements and

hence is a multiplication module (see [2, Corollary 1.3]).

Corollary 4.7. The following statements are equivalent for a ring R.

(i) Every cyclic R-module is λ-complete.

(ii) The ring R = R1⊕ · · · ⊕Rn is the direct sum of chain rings Ri (1 ≤ i ≤ n)

for some positive integer n.

Proof. (i)⇒ (ii) By Theorem 4.2 and [1, Theorem 27.6], the ring R = R1⊕· · ·⊕Rn

is the direct sum of local rings Ri (1 ≤ i ≤ n) for some positive integer n. By

Theorem 4.6 and [4, Lemma 1], Ri is a chain ring for all 1 ≤ i ≤ n.

(ii) ⇒ (i) Without loss of generality we can suppose that R is a chain ring. Let

A be any ideal of the chain ring R and let S be any non-empty collection of ideals

of R. Then A ⊆ ∩B∈S B or ∩B∈S B ⊆ A. Suppose first that A ⊆ ∩B∈S B. Then

A+ (∩B∈S B) = ∩B∈S B = ∩B∈S (A+B).

Now suppose that ∩B∈S B ⊂ A. Then there exists an ideal C in S such that A * C

and hence C ⊆ A because R is a chain ring. In this case, it is easy to see that

A+ (∩B∈S B) = A = ∩B∈S (A+B).

In any case, we have proved that A+ (∩B∈S B) = ∩B∈S (A+B). By Corollary 3.2

every cyclic R-module is λ-complete, as required. �

Now we consider finitely generated modules and ask the question: Which rings

R have the property that every finitely generated module is λ-complete? Are these

precisely the rings for which every cyclic module is λ-complete? This amounts

to asking whether chain rings R have the property that every finitely generated

R-module is λ-complete. Some chain rings do have this property. Contrast the

following result with Theorem 4.6.

Theorem 4.8. Let R be a local principal ideal domain. Then R is a chain ring

such that every finitely generated R-module is λ-complete but no non-zero injective

R-module is λ-complete.
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Proof. It is well known that if P is the unique maximal ideal of R then the only

ideals of R are the ideals R, Pn (n ≥ 1) and 0 = ∩n≥1 Pn. Thus R is a chain ring.

Let M be any finitely generated R-module. Then M is a finite direct sum of cyclic

R-modules (see, for example, [6, Theorem 10.30]) and hence M is λ-complete by

Theorem 4.7 and Lemma 3.3. Now let X be any non-zero injective R-module. By

[5, Proposition 2.6] and [6, Corollary 8.27],

∩n≥1(PnX) = X 6= 0 = (∩n≥1 Pn)X.

Thus X is not λ-complete by Lemma 3.1. �

Finally in this section we consider rings R with the property that every R-module

is λ-complete. Note first the following simple fact which can be contrasted with

Corollary 2.3.

Proposition 4.9. The following statements are equivalent for a ring R.

(i) Every R-module is λ-complete.

(ii) Every homomorphic image of every λ-complete module is λ-complete.

Proof. (i) ⇒ (ii) Clear.

(ii) ⇒ (i) Let M be any R-module. There exist a free R-module F and a

submodule K of F such that M ∼= F/K. By Corollary 3.4 the module F is λ-

complete and hence so too is M . �

In the case of Noetherian rings we can give a complete classification. We shall

require the following two lemmas.

Lemma 4.10. Let R be a ring such that every R-module is λ-complete and let A

be any ideal of R. Then every (R/A)-module is λ-complete.

Proof. Let S be any non-empty collection of ideals of the ring R/A. Then every

ideal of S has the form B/A for some ideal B of R. Let S ′ denote the collection of

ideals B of R such that B/A belongs to S. Let M be any (R/A)-module. Then M

is an R-module in the usual way and we have

(∩C∈SC)M = (∩B∈S′ (B/A))M = ((∩B∈S′ B)/A)M = (∩B∈S′ B)M

= ∩B∈S′ (BM) = ∩B∈S′ ((B/A)M) = ∩C∈S (CM).

By Lemma 3.1, the (R/A)-module M is λ-complete. �

Lemma 4.11. The following statements are equivalent for a domain R with field

of fractions F .
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(i) R is a field.

(ii) Every R-module is λ-complete.

(iii) The R-module F is λ-complete.

Proof. (i) ⇒ (ii) ⇒ (iii) Clear by Lemma 3.1.

(iii) ⇒ (i) Let Bi(i ∈ I) denote the collection of all non-zero ideals of R. Then

Lemma 3.1 gives that

F = ∩i∈I (BiF ) = (∩i∈I Bi)F.

Thus ∩i∈IBi 6= 0. It follows that R has non-zero socle and hence R = F . �

Contrast the following result with Theorem 4.8.

Theorem 4.12. A Noetherian ring R has the property that every R-module is

λ-complete if and only if R is an Artinian principal ideal ring.

Proof. Suppose first that every R-module is λ-complete. Let P be any prime ideal

of R. By Lemma 4.10, every (R/P )-module is λ-complete and hence the domain

R/P is a field by Lemma 4.11. Thus every prime ideal of R is maximal. By [5,

Theorem 4.6], the ring R is Artinian. Next, by Theorem 4.6 every ideal of R is a

multiplication module and hence, by [2, Corollary 2.9] every ideal of R is principal.

Thus R is a principal ideal ring.

Conversely, suppose that R is an Artinian principal ideal ring. Let M be any

R-module. Let S be any non-empty collection of ideals of R. Because R is Artinian,

there exists a finite subset S ′ of S such that ∩B∈S B = ∩B∈S′ B. Noting that R is

a principal ideal ring and so every ideal of R is a multiplication module, Theorem

4.6 and [7, Lemma 2.1] together give that (∩B∈S′ B)M = ∩B∈S′ (BM). Thus,

∩B∈S (BM) ⊆ ∩B∈S′ (BM) = (∩B∈S′ B)M = (∩B∈S B)M,

and hence (∩B∈S B)M = ∩B∈S (BM). By Lemma 3.1 the R-module M is λ-

complete. �

5. Other homomorphisms

In general there will be many complete homomorphisms ν : L(R)→ L(RM) for

a given ring R and R-module M (see [7, Section 5]). Note the following result.

Proposition 5.1. Let R be a ring and let M be an R-module such that there

exists a complete isomorphism ν : L(R)→ L(RM). Then M is a finitely generated

R-module.
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Proof. By Lemma 1.2 because M is a finitely generated R-module if and only if

M is a compact element of L(RM). �

Recall that a ring R is called semilocal provided it contains only a finite number

of maximal ideals.

Corollary 5.2. Let R be a ring and let M be an R-module such that there exists

a complete isomorphism ν : L(R)→ L(RM). Suppose further that either

(a) R is a local ring, or

(b) R is a semilocal ring and M is a faithful R-module.

Then M is a cyclic R-module.

Proof. By Proposition 5.1 and [7, Theorem 5.3]. �
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